
Intro to public-key ciphers

A symmetric or private-key cipher is one
in which knowledge of the encryption key is
explicitly or implicitly equivalent to knowing
the decryption key.
A asymmetric or public-key cipher is one
in which the encryption key is effectively
public knowledge, without giving any useful
information about the decryption key.
Until 30 years ago all ciphers were private-key.
The very possibility of public-key crypto did
not exist until the secret work of some British
CESG-at-GCHQ people Ellis-Cocks-Williamson
in the 1960’s, and public-domain work of
Merkle, Diffie-Hellman, and Rivest-Shamir-
Adleman in the 1970’s.

1



Examples of symmetric/private-key ciphers

Cryptograms (substitution ciphers) [broken:
letter frequencies, small words]
Anagrams (permutation ciphers) [broken: double
anagramming]
Vigenère [broken: Kasiski attack, Friedman
attack]
Enigma, Purple [broken: key distribution
problems, too small keyspace]
DES [broken: too small keyspace]
3DES [slow]
Blowfish [in use], Arcfour [in use], TEA, IDEA
Serpent, Twofish, RC6, MARS [AES finalists]
AES (Rijndael)

2



Examples of asymmetric/public-key ciphers

RSA (Rivest-Shamir-Adlemen)
ElGamal
Elliptic curve cipher

(∼ abstracted ElGamal)
Knapsack ciphers [discredited]
Coding-theory ciphers [out of fashion...]
NTRU
Arithmetica (word-problem ciphers)

3



RSA overview

One-time preparation: Alice chooses
two large random primes p, q, from 10100 to
10600 depending on the desired security. She
computes the RSA modulus n = p · q. She
chooses encryption exponent e (often e = 3),
and computes the multiplicative inverse d of e
modulo (p− 1)(q− 1). She publishes n, e (on her
web page?) and keeps d secret. Primes p and q
are thrown away.
Encryption: Bob wishes to encrypt a plaintext
message x and send it to Alice on an insecure
channel. Suppose 1 < x < n for simplicity. Bob
computes and transmits y = xe %n.
Decryption: When Alice receives the
ciphertext y, she computes yd %n, which is the
plaintext x.

4



Why is this ok?

Why is it feasible for Alice to find two primes
∼ 10200 or so?
Why is it feasible for Alice to compute
e−1 % (p− 1)(q − 1)?
Why is it feasible for Bob to compute xe %n?
Why is it feasible for Alice to compute yd %n?
Why is yd %n = x?
Why is it not feasible for Eve (the
eavesdropper) to compute d from n and e?
Why is it not feasible for Eve to compute x
from xe %n?
How do we get a good supply of random
numbers?

5



Minor qualifications about RSA

Want p and q equal to 3 mod 4.
In fact, maybe want p and q to be strong
primes, namely so that p − 1 and q − 1 are
not exclusively composed of small prime factors.
Want to be sure that e is relatively prime to
(p − 1)(q − 1): if we want e = 3 or some
other pre-specified number, must tweak p and
q. Otherwise, tweak e.
Very unlikely that gcd(x, n) > 1, so ignore
this, though RSA does work without this
assumption.
Need good-quality randomization for choice
of p and q. Else potential for catastrophic
failure. (Related recent examples in software
implementations of various security protocols.)

6



Diffie-Hellman Key Exchange

Alice and Bob have never met, and can only
communicate across an insecure channel on
which Eve is eavesdropping.
Eve has considerably greater computational
power than Alice and Bob, and hears everything
they say to each other.
Yet Alice and Bob can establish a shared
secret which Eve cannot also acquire (assuming
the difficulty of computing discrete logs).
The shared secret is then typically used as a key
for a symmetric/private-key cipher to encrypt a
subsequent conversation.

7



Alice and Bob agree on a large random prime
p (∼ 10130 or larger) and a random base g in
the range 1 < g < p. Alice secretly chooses a
random a in the range 1 < a < p and computes
A = ga % p. Similarly, Bob secretly chooses a
random b in the range 1 < b < p and computes
B = gb % p. Alice sends A over the channel, and
Bob sends B over the channel.
So Alice knows p, g, a, A,B, Bob knows
p, g, A, b,B, and Eve knows p, g, A,B.
Alice computes

KA = Ba % p

and Bob computes
KB = Ab % p

Since
KA = KB % p

Alice and Bob now have a shared secret which it
is infeasible for Eve to obtain.

8



Why do Alice and Bob get the same secret
K?

This is a corollary of so-called Laws of
Exponents, mediated by the good interaction of
reduction modulo p with arithmetic operations.
Alice’s secret value is a, Bob’s is b.
Alice publishes A = ga % p, Bob publishes
B = gb % p.
Then

Alice’s computation = Ba % p

= (gb % p)a % p = (gb)a % p = gba % p

= (ga)b % p = (ga % p)b % p

= Ab % p = Bob’s computation

Thus, Alice and Bob do have a common value to
be used as a key.

9



Why is this ok?

Why is it feasible for Alice and Bob to find a
random g ∼ 10200?
Why is it feasible for Alice and Bob to find a
random prime ∼ 10200?
Why is it feasible for Alice and Bob to acquire
good-quality random numbers a, b ∼ 10200?
Why is it feasible for Alice to compute ga % p
with a ∼ 10200? (And similarly for Bob.)
Why is it not feasible for Eve (the
eavesdropper) to compute a from A = ga % p
nor b from B = gb % p?
How does one get a good supply of random
numbers?

10



Ingredient:
Fast exponentiation algorithm
(also called square-and-multiply)
To compute bn %n, with n ∼ 10100 or larger, do
not multiply 10100 times.
Rather, note that repeated squaring reduces
the number of operations:

b69 = b2
6+22+20

= (((((b2)2)2)2)2)2 · (b2)2 · b

To compute xe %n

initialize (X,E, Y ) = (x, e, 1)
while E > 0

if E is even
replace X by X2 %n
replace E by E/2

elsif E is odd
replace Y by X · Y %n
replace E by E − 1

The final value of Y is xe %n.

11



For example, to compute 217 % 29,
Initialize (X,E, Y ) = (2, 17, 1)

With (X,E, Y ) = (2, 17, 1), E = 17 is odd
replace E = 17 by 17− 1 = 16
replace Y = 1 by X ∗ Y % 29 = 2

E = 16 is even
replace E = 16 by 16/2 = 8
replace X = 2 by X ∗X % 29 = 4

E = 8 is even
replace E = 8 by 8/2 = 4
replace X = 4 by X ∗X % 29 = 16

E = 4 is even
replace E = 4 by 4/2 = 2
replace X = 16 by X ∗X % 29 = 24

E = 2 is even
replace E = 2 by 2/2 = 1
replace X = 24 by X ∗X % 29 = 25

With (X,E, Y ) = (25, 1, 2), E = 1 is odd
replace E = 1 by 1− 1 = 0
replace Y = 2 by X ∗ Y % 29 = 21

Now (X,E, Y ) = (25, 0, 21), E = 0, so

217 % 29 = current value Y = 21

12



Ingredient: Euclidean Algorithm

To compute gcd’s, and to compute e−1 %m, use
the familiar Euclidean algorithm. To compute
gcd(x, y) takes at most 2 log2 y steps, if x ≥ y.
To compute gcd(x, y):

Initialize X = x, Y = y, R = X %Y
while R > 0

replace X by Y
replace Y by R
replace R by X %Y

When R = 0, Y = gcd(x, y)
This gives the familiar pattern: for example to
compute gcd(1477, 721):

1477− 2 · 721 = 35
721− 20 · 35 = 21
35− 1 · 21 = 14
21− 1 · 14 = 7
14− 2 · 7 = 0

And 7 is the gcd.

13



Multiplicative inverses via Euclid

To compute e−1 %x with gcd(e, x) = 1,
minimizing memory use, rewrite each of the
steps in the previous as(

0 1
1 0

)(
1 −q
0 1

)(
X
Y

)
=
(

new X
new Y

)
where R = X − qY with |R| < Y .

Thus, we obtain an integral matrix
(
a b
c d

)
with determinant ±1 such that(

a b
c d

)(
x
e

)
=
(

gcd(x, e)
0

)
When gcd(x, e) = 1, we have

ax+ be = 1

and thus
b = e−1 %x

14



Ingredient: Euler’s Theorem

Let ϕ(n) be Euler’s totient function, which
counts the integers ` in the range 1 ≤ ` ≤ n
which are relatively prime to n.
Theorem: For gcd(x, n)=1, xϕ(n)=1%n.
(This is an immediate corollary of Lagrange’s
theorem, from group theory, applied to the
group Z/n×.)
This proves that RSA decryption works,
using ϕ(pq) = (p − 1)(q − 1): with y = xe %n,
letting ed = 1 +M ·ϕ(n), all equalities modulo n,

yd = (xe)d = x1+M ·ϕ(n)

= x · (xϕ(n))M %n = x · 1M = x

(In fact, even if x is divisible by one of p or q,
a similar argument still proves that decryption
succeeds.)

15



Ingredient:
Infeasibility of factoring n

No proof exists that factoring is hard, but there
is much practical evidence.
Several decades of new insights into factoring
have yielded very clever factorization
algorithms, which are sub-exponential, but still
super-polynomial.
If large quantum computers ever exist, Shor’s
quantum factoring algorithm will break RSA.
Some public-key systems (e.g., lattice-based
ciphers such as NTRU) are not known to have
fast quantum algorithms to break them.
With quantum computers, Grover’s

√
n-time

quantum search of n unordered things would
require increased key size for nearly all ciphers.

16



Unauthorized computation of
RSA decryption exponent?

For an eavesdropper to compute the RSA
decryption exponent

d = e−1 mod (p− 1)(q − 1)

it would suffice (since the Euclid algorithm
computes inverses quickly) to know the quantity
m = (p− 1)(q − 1).
But observe that knowledge of the RSA
modulus n = pq and of m = (p − 1)(q − 1)
would amount to knowing the factors p, q, since
the roots of the polynomial equation

X2 + (m− n+ 2)X + n = 0

are p, q.
Presumably factoring is hard, so this is
evidence (?) that an eavesdropper will not find a
trick whereby to obtain
(p−1)(q−1), from which to obtain the decryption
exponent.

17



Ingredient: big primes?

To acquire 200-digit prime numbers, trial
division would not succeed in the lifetime of the
universe using all the computational power of
the internet.
Trial division confirms that a number is prime
by failing to factor it.
It turns out that primality testing is much
easier than factoring.
Factoring big numbers is hard, despite
striking (and wacky) modern factorization
techniques much better than trial division.
Even more surprising are fast modern
probabilistic primality tests.
(And, one can construct large primes with
accompanying certificates of primality
indicating how to reprove their primality upon
demand.)

18



Failure of trial division:

Trial division attempts to divide a given
number N by integers from 2 up through

√
N .

Either we find a proper factor of N , or N is
prime. (If N has a proper factor ` larger than√
N , then N/` ≤

√
N .) The extreme case takes

roughly
√
N steps, or at least

√
N/ lnN .

If N ∼ 10200 is prime, or if it is the product
of two primes each ∼ 10100, then it will take
about 10100 trial divisions to discover this. Even
if we’re clever, it will take more than 1098 trial
divisions.
If we could do 1012 trials per second, and if
there were a 1012 hosts on the internet, with
< 108 seconds per year, a massively parallel
trial division would take ...

1066
years

19



Examples of trial division

What are the practical limitations of trial
division? On a 2.5 Gigahertz machine, code in
C++ using GMP

1002904102901 has factor 1001401

(‘instantaneous’)

100001220001957 has factor 10000019

(3 seconds)

10000013000000861 has factor 100000007

(27 seconds)

1000000110000000721 has factor 1000000007

(4 minutes)

Nowhere near 10200 ...

20



What were the previous examples?

By other means, not trial division I generated
pairs of primes p, q of whatever size I wanted,
and then tried to factor the product p · q by trial
division.
These other means include the Fermat
pseudoprime test, and the Miller-Rabin test
for strong pseudoprimes.
These pseudoprime tests simply tell whether the
test number n is composite or probably prime.
A pseudoprime test may tell that the test
number n is composite, but will not tell a
proper factor of it.

21



Facts about primes

The number π(N) of primes less than N is

π(N) ∼ N

logN

This is the Prime Number Theorem (Hadamard
and de la Vallée Poussin, 1896).
Riemann observed (1858) that if all the complex
zeros of the zeta function ζ(s) =

∑
n−s lay on

the line Re(s) = 1
2 then (as refined...)

π(N) =
∫ N

1

dt

log t
+O(

√
N logN)

The conjecture on the location of the zeros is
the Riemann Hypothesis.
No result approaching this is known: there is no
known zero-free region Re(s) ≥ σ for σ < 1.
The Prime Number Theorem uses the non-
vanishing of ζ(s) on Re(s) = 1.

22



Hunting for primes

Nevertheless, when developing expectations for
hunting for primes, we pretend that primes are
distributed as evenly as possible.
Note: it is not true that primes are distributed
evenly, even under the Riemann Hypothesis.
But if primes were evenly distributed, then near
x primes would be about lnx apart.
Thus, in hunting for primes near x expect to
examine 1

2 lnx candidates:
For x ∼ 1020 we have 1

2 lnx ∼ 23
For x ∼ 10100 we have 1

2 lnx ∼ 115
For x ∼ 10500 we have 1

2 lnx ∼ 575

23



Fermat pseudoprime test

Bargain-basement pseudoprime test
Fermat’s Little theorem: If p is prime, then
for any integer 1 < b < p

bp % p = b

Thus, if n is an integer and bn %n 6= b for some
b, then n is composite.
The converse is false, but not very false...
Thus, we have
Converse-with-disclaimer: If bp % p = b then
p is fairly likely to be prime, but may not be.

24



Failure rate of Fermat pseudoprime test

The only non-prime n < 5000 with
2n = 2 mod n are 341 561 645 1105 1387 1729
1905 2047 2465 2701 2821 3277 4033 4369 4371
4681
Requiring also 3n %n = 3 leaves 561 1105 1729
2465 2701 2821
Requiring also 5n %n = 5 leaves 561 1105 1729
2465 2821
Compared with 669 primes under 5000, this is a
false positive failure rate of less than 1%.
n is a Fermat pseudoprime base b if
bn %n = b.

25



Terminology

Usage is not consistent.
My usage is that a number that has passed a
primality test (Fermat, Miller-Rabin, etc.) is a
pseudoprime.
Sometimes a pseudoprime is meant to be a non-
prime which has nevertheless passed a primality
test such as Fermat. But for large numbers
which have passed pseudoprimality tests we
may never know for sure whether or not they’re
prime or composite ...
Another usage is to call a number that has
passed a test a probable prime.
But this is dangerously close to provable
prime, which is sometimes used to describe
primes with accompanying certificates of their
primality.

26



There are only 172 non-prime Fermat
pseudoprimes base 2 under 500,000 versus
41,538 primes, a false positive rate of less than
0.41%
There are only 49 non-prime Fermat
pseudoprimes base 2 and 3 under 500,000, a
false positive rate of less than 0.118%
There are only 32 non-prime Fermat
pseudoprimes base 2, 3, 5 under 500,000
There are still 32 non-prime Fermat
pseudoprimes base 2, 3, 5, 7, 11, 13, 17 under
500,000
561 1105 1729 2465 2821 6601 8911 10585 15841
29341 41041 46657 52633 62745 63973 75361
101101 115921 126217 162401 172081 188461
252601 278545 294409 314821 334153 340561
399001 410041 449065 488881

27



Adding more such requirements does not shrink
these lists further.
n is a Carmichael number if it is a
non-prime Fermat pseudoprime to every base b.
In 1994 Alford, Granville, and Pomerance
showed that there are infinitely-many
Carmichael numbers.
And it appears that among large numbers
Carmichael numbers become more common.

Nevertheless, the Fermat test is a very fast way
to test for compositeness, and is so easy and
cheap that it is still the best first approximation
to primality.
It is cheap because bn %n can be computed in
∼ log n steps, not n...

28



Better primality test: Miller-Rabin (1978)

If n = r · s is composite (with gcd(r, s) = 1)
then by Sun-Ze’s theorem there are at least 4
solutions to

x2 = 1 mod n

namely the 4 choices of sign in

x = ±1 mod r x = ±1 mod s

Thus, if we find b 6= ±1 mod n such that
b2 = 1 mod n, n is definitely not composite.
Roughly, the Miller-Rabin test looks
for such extra square roots of 1 modulo n
(details below).

[0.0.1] Theorem: (Miller-Rabin) For
composite n, at least 3/4 of b in the range
1 < b < n will detect the compositeness (via
the Miller-Rabin test)

29



Pseudo-corollary If n passes the Miller-Rabin
test with k random bases b, then
(exercise: explain the fallacy)

probability(n is prime) ≥ 1−
(

1
4

)k

Miller-Rabin test base b:
factor n− 1 = 2s ·m with m odd
replace b by bm mod n

if b = ±1 mod n stop: n is 3/4 prime
else continue

set r = 0
while r < s

replace b by b2 mod n
if b = −1 mod n stop: n is 3/4 prime
elsif b = +1 mod n stop: n is composite
else continue
replace r by r + 1

if we fall out of the loop, n is composite.
If n passes this test it is a
strong pseudoprime base b.

30



Failure rate of Miller-Rabin?

The fraction of b’s which detect compositeness
is apparently much greater than 3/4. For
n = 21311 the detection rate is 0.9976. For
64777 the detection rate is 0.99972. For 1112927
the detection rate is 0.9999973
For n < 50, 000 there are only 9 non-prime
strong pseudoprimes base 2, namely 2047 3277
4033 4681 8321 15841 29341 42799 49141
For n < 500, 000 there are only 33 non-prime
strong pseudoprimes base 2.
For n < 500, 000 there are no non-prime strong
pseudoprimes base 2 and 3
For 100, 000, 000 < n < 101, 000, 000
there are 3 strong pseudoprimes base 2 whose
compositeness is detected base 3, namely
100463443 100618933 100943201

31



Some big strong pseudoprimes
Not trial division, but instead primality testing
Fermat base 2, Miller-Rabin base 2, 3, 5, to find
next prime
after...
(’instantaneous’)
First prime after 1021 is 1021 + 117
(’instantaneous’)
First prime after 1050 is 1050 + 151
(’hint of time taken’)
First prime after 10100 is 10100 + 267
(3 seconds)
First prime after 10200 is 10200 + 357
(8 seconds)
First prime after 10300 is 10300 + 331
(97 seconds)
First prime after 101000 is 101000 + 453

32



More issues

Random numbers?
Relative failure of modern factorization attacks?

33


