Today’s Outline

Review

Real-life examples of Fermat pseudoprime
test

Miller-Rabin strong-pseudoprime test

Review

e Be able to distinguish reduction modulo m
from equality modulo m.

e Notation: Z/m = {integers mod m}

Z/m=1{0,1,...,m — 1}

e Fast Modular Exponentiation algorithm.

e Fermat’s Little Theorem (special case of
Euler’s theorem).

e Formula for square roots for prime
p = 3 mod 4 with mandatory checking.

e Easy formula for e roots mod prime p

for e prime, p # 1 mod e. (Fverything is an
e'™ power modulo such p.)

e Less easy formula for e roots mod prime

p for e prime, p = 1 mod e, €2 J(p — 1), with
mandatory checking.

e Note: There are algorithms for roots
(if exist) modulo all primes. See book
for general square root algorithm modulo
primes.

e Note: Taking roots mod composite n = pq
is as hard as factoring n: can use a square
root oracle mod n to factor n. (Below.)

e Fermat pseudoprime tests. Only
moderately good, but very cheap/feasible.

3

Remark: To make RSA and other PK
(public-key) things work at all, we need
many large primes, with at least 100
decimal digits.

And they must be hard to recreate by
unauthorized entities, so we must be able
to find them n any range of integers.

That is, special methods which produce
special primes are insufficient for
cryptographic purposes, since the set of
such things would be too small.

For example, an implementation of RSA
which chooses the secret primes p, q
effectively from a small set of possibilities
can be broken by a brute force search of that
space, rather than by factoring.

In this context, recall Kerckhoft’s
Principle: Assume that the mechanism of
any cipher or algorithm will become known.

Hunting for large pseudoprimes

Choose sufficient pseudoprime test for your
purposes.

To find large primes, choose a suitable
starting point some odd N. (Large enough,
and probably chosen randomly?!)

Test N for suitable pseudoprimality: if it
passes you're done, else continue.

Test N + 2. If it passes you’re done, else
continue.

Test N + 4. If it passes you’re done, else
continue.

The heuristic coming from the Prime
Number Theorem is that we should roughly
expect to have to test only about % In NV
candidates before finding a prime.

Examples using Fermat pseudoprime test

base 2:

> 10%Y
> 103Y
> 10%Y
> 10°Y
> 109
> 107
> 108Y

> 1029

is 10%°+39 (19 tries vs 23 predicted)
is 10°0+57 (28 tries vs 34 predicted)
is 104121 (60 tries vs 46 predicted)
is 10°°4-151 (75 tries vs 58 predicted)
is 109947 (3 tries vs 69 predicted)

is 10"°+33 (16 tries vs 81 predicted)
is 10894129 (64 tries vs 92 predicted)
is 10994289 (144 tries vs 104)

(The last computation starts to take a
noticeable amount of time on a 1.44 G
machine in Python.)

It turns out that these are all Fermat
pseudoprimes base 3, as well.

First Fermat pseudoprimes above larger
numbers, and predicted number of tests to
find a prime:

> 10199 is 10199 4-267 (133 tries vs 115)

> 1020 is 10129 +79 (39 tries vs 138)

> 10140 is 10140 +13 (6 tries vs 161)

> 10169 is 10194303 (151 tries vs 184)

> 10'80 is 1080 +313 (156 tries vs 207)

> 10299 is 102994357 (178 tries vs 230)

> 10390 is 10399 4+331 (165 tries vs 345)

> 1099 is 10%°°+-69 (34 tries vs 460)

> 10°%0 is 10°90+961 (480 tries vs 576)

> 101990 i5 101990+ 453 (226 tries vs 1152)

(30 minutes wait for the last. All these are
also Fermat pseudoprimes base 3.)

The 51 Fermat pseudoprimes base 2 just
above 10°9 are 10°0 + .. .:

151, 447, 577, 709, 889, 897, 961, 1059,
1087, 1137, 1249, 1441, 1459, 1521, 1527,
1563, 1611, 1623, 1831, 1899, 2043, 2151,
2239, 2443, 2599, 2691, 2713, 2743, 2781,
2923, 2949, 3021, 3061, 3073, 3139, 3177,
3219, 3417, 3639, 3747, 3889, 4171, 4209,
4227, 4279, 4299, 4453, 4477, 4483, 4917

An over-interpreted version of the Prime
Number Theorem would suggest the
heuristic that near 10°Y in an interval of

length 5000 there should be about

5000 5000 2000

— ~ ~ 43
In10°° 50-In10 50-2.3

primes (we found 51) with gaps

In10°° ~ 115

The 50 Fermat pseudoprimes base 2 just
above 10199 are 10109 + . .

267, 949, 1243, 1293, 1983, 2773, 2809, 2911,
2967, 3469, 3501, 3799, 4317, 4447, 4491,
5383, 5641, 5949, 6403, 6637, 6903, 7443,
8583, 8653, 9013, 9223, 9259, 9631, 10071,
10557, 10833, 10903, 11143, 11173, 11529,
11667, 11839, 12207, 12817, 13057, 13197,
13369, 13831, 13867, 14287, 15139, 15783,
16183, 16431

An over-interpreted version of the Prime
Number Theorem would suggest the
heuristic that near 10'%° in an interval of
length 16500 there should be about

16500 16500 16500

In10190 — 100-In10 100-2.3

72

primes (we stopped when we found 50) with

gaps
In 10199 ~ 230

The 50 Fermat pseudoprimes base 2 just
above 10290 are 10200 + .. .

357, 627, 799, 1849, 2569, 3381, 4143, 4603,
4731, 5263, 5541, 7317, 7357, 7851, 8269,

8383, 8833, 9073, 9277, 11269, 11421, 11619,

12091, 12769, 12897, 13761, 13909, 13981,
14727, 15313, 16407, 16671, 16687, 16699,
16737, 17773, 19069, 21783, 22093, 22711,
22957, 23277. 23317, 23433, 24621, 25329,
25749, 25951, 26737, 27723, 27979

An over-interpreted version of the Prime
Number Theorem would suggest the
heuristic that near 10%%° in an interval of

length 26700 there should be about

26700 26700 26700

. ~ ~ 60
In10200 200-In10 200 - 2.3

primes (we stopped when we found 50) with

gaps
In 10299 ~ 460

10

Examples of Fermat pseudoprimes base 2
that fail base 3:

Taking the first examples above successive
powers of 10:

> 100 1s 341

> 1000 1s 1387

> 10000 1s 10261

> 100000 1s 113201

> 1000000 1s 1004653

> 10000000 1s 10004681

> 100000000 1s 100302391
> 1000000000 1s 1001723911

11

Examples of Fermat pseudoprimes base 2
and 3 that fa:l base 5:

Taking the first examples above successive
powers of 10:

> 100 1s 2701

> 1000 1s 2701

> 10000 1s 18721

> 100000 1s 104653

> 1000000 1s 1373653

> 10000000 1s 10084177

> 100000000 1s 100017223
> 1000000000 1s 1002261781

Apparently there are composite numbers
detected base 5 but not base 3, and vice
versa, etc.

12

Looking for Carmichael numbers
(2.44 Gig, C++ with GMP)

In 1,000,000,000 < n < 2,000,000,000
1001152801, 1018928485, 1027334881,
1030401901, 1031750401, 1035608041,
1038165961, 1055384929, 1070659201,
1072570801, 1074363265, 1079556193,
1090842145, 1093916341 [11 hrs]
100674561, 1103145121 [13 hrs] 1125038377
[15 hrs] 1131222841, 1132988545,
1134044821, 1136739745, 1138049137 [16.5
hrs] 1140441121, 1150270849, 1152793621
20 hr] 1162202581, 1163659861 [21 hrs]
1177195201, 1177800481, 1180398961,
1183104001, 1189238401, 1190790721,
1193229577, 1194866101, 1198650961,
1200456577, 1200778753, 1206057601,
1207252621, 1210178305, 1213619761,
1214703721, 1216631521, 1223475841,
1227220801, 1227280681, 1232469001

[31 hrs]

13

Miller-Rabin test, Strong Pseudoprimes

Granting fast modular exponentiation,
the following algorithm runs fast. For odd
integer n factor

n—1=2°.¢

with £ odd. Then n is a strong
pseudoprime base b if

b* =1 mod n

or if for some 0 < r < s
2%t = _1modn

If n fails the test for some b, then n is
definitely composite.

The heuristic is that if n passes base b then
the probability is at least 3/4 that n is
prime.

(strong pseudoprime base b implies Fermat
pseudoprime base b.)

14

In fact, there is something provable about
the Miller-Rabin test:

Theorem: (Miller-Rabin 1978) For
composite n, at least 3/4 of b in the range

1 < b < n will detect the compositeness (via
the Miller-Rabin test)

Pseudo-corollary: If n passes the
Miller-Rabin test with k£ random bases b,
then

k
1
probability(n is prime) > 1 — (Z)

Remark: Of course, an integer is

either prime or it isn’t, so to talk about
the probability of its being prime is is
misleading at best. On the other hand,
operationally this is the viewpoint that is
usually taken.

15

Detaziled version of Miller-Rabin base b:

Miller-Rabin test base b:

factor n — 1 = 2° - m with m odd

replace b by 6™ mod n
if b= +1 mod n stop: n is 3/4 prime
else continue

set r =1

while r < s
replace b by b? mod n
if b= —1 mod n stop: n is 3/4 prime
elsif b = +1 mod n stop: n is composite
else replace r by r + 1 and continue

if we fall out of the loop, n is composite.

If n passes this test it is a
strong pseudoprime base b.

16

By the way, all the Fermat pseudoprimes
mentioned earlier are also strong
pseudoprimes base the 20 prime bases 2,
3,5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 73

. which suggests that the probability that
we’ve reached the wrong conclusion is less
than

1 — 4720 ~ 0.0000000000001

17

Failure rate of Miller-Rabin?

The fraction of b’s which detect
compositeness is apparently much greater
than 3/4. For n = 21311 the detection rate
is 0.9976. For 64777 the detection rate is
0.99972. For 1112927 the detection rate is
0.9999973

For n < 50,000 there are only 9 non-prime

strong pseudoprimes base 2, namely 2047
3277 4033 4681 8321 15841 29341 42799
49141

For n < 500,000 there are only 33 non-
prime strong pseudoprimes base 2.

For n < 500,000 there are no non-prime
strong pseudoprimes base 2 and 3

For 100,000,000 < n < 101,000,000 there
are 3 strong pseudoprimes base 2 whose

compositeness is detected base 3, namely
100463443 100618933 100943201

18

Some big strong pseudoprimes

On a 2.44 Gig machine, in C++ using
GMP: Primality testing Fermat base 2,
Miller-Rabin base 2, 3, 5, to find next prime
after...

(’instantaneous’)
First prime after 102! is 102! + 117

(’instantaneous’)
First prime after 10°° is 10°° 4 151

(hint of time taken’)
First prime after 10'%° is 10190 + 267

(3 seconds)
First prime after 102%0 is 10290 4 357

(8 seconds)
First prime after 103%° is 103%° 4 331

(97 seconds (vs 30 minutes for Fermat test
in Python))
First prime after 101000 js 101990 4 453

19

Miller-Rabin test on 25 base 7

Factor 25 — 1 = 2% - m with m odd: here
m =3 and s = 3. The baseis b= 7.

(by fast exponentiation) replace b by
b™ mod 25 = 7° = 18 mod 25.

Since b = 18 # 41 mod 25 we continue,
entering the squaring loop. (Set r = 1.
Since 1 = r < s = 3 continue.)

Replace b = 18 by b = 182 = 24 mod 25.

Since b = 24 = —1 mod 25 conclude that 25
is a strong pseudoprime base b = 7.

20

Miller-Rabin test on 25 base 2

Factor 25 — 1 = 2% - m with m odd: here
m =3 and s = 3. The base is b = 2.

(by fast exponentiation) replace b = 2 by
b™ mod 25 = 2% = 8 mod 25.

Since b = 8 # 41 mod 25 we continue,
entering the squaring loop. (Set r = 1.
Since 1 = r < s = 3 continue.)

Replace b by b = 82 = 14 £+ 1 mod 25.
Increment r to 2: still 1 = r < s = 3, so
continue.

Replace b by b* = 14? = 21 # +1 mod 25.
Increment r to 3.

Now r = 3 = s so fall out of squaring loop:
25 is definitely composite.

21

Miller-Rabin test on 101 base 2

Factor 101 — 1 = 2% - m with m odd: here
m = 25 and s = 2. The base is b = 2.

(By fast exponentiation) replace b by
b™ = 22° = 10 mod 101.

Since b = 10 # 41 mod 101 we continue,
entering the squaring loop. (Set r = 1.
Since 1 = r < s = 2 continue.)

Replace b by b* = 10%? = 100mod101.

Since thisis b = —1 mod 101, 101 is a
strong pseudoprime base 2.

22

