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1. Vectorspaces over division rings

In this section we quickly sketch a recapitulation of finite-dimensional linear algebra over division rings.
That is, we give the usual proofs of the usual basic results on dimension without using commutativity of
the division ring over which the ‘vectorspaces’ are modules. The point is that many basic parts of finite
dimensional linear algebra over division rings works just as well as over fields.

Let D be a division ring. (All D-modules will be ‘left’ D-modules, which is mostly a notational issue.) An
expression

∑
i αivi = 0 with αi ∈ D and vi ∈ V is a linear combination of the elements vi. A set {vi}

of distinct elements of a D-module V is linearly independent if
∑

i αivi = 0 with αi ∈ D implies that
αi = 0 for all i. A set {vi} of generators for V is said to span V . A set which is both linearly independent
and spans V is a basis for V .

Proposition: Let V be a finitely generated D-module.
• There is a unique integer n, the D-dimension of V , so that V ≈ Dn as a D-module. That is, the D-module
isomorphism class of V is determined by the dimension of V .
• Any linearly independent set of elements of V is a subset of a basis.
• Let W be a submodule of V . Then W is finitely-generated, and there is a complementary submodule W ′

to W in V , that is, so that V = W ⊕W ′. And dimD V = dimD W + dimD W ′.
• Let ϕ : V →W be a D-homomorphism. Then

dimD V = dimD(kerϕ) + dimD(Imϕ)

Proof: Let {vi} be a set of generators for V of minimal (finite) cardinality. We claim that these generators are
necessarily linearly independent. If there were a non-trivial relation

∑
i αivi = 0, we may suppose without

loss of generality (by relabeling) that α1 6= 0, and rearrange to

v1 =
∑
i>1

(−α−1
1 αi) vi

which contradicts the assumed minimality. Thus,

(α1, . . . , αn) →
∑

i

αivi = 0
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has trivial kernel. As it is surjective, is is an isomorphism.

Let {v1, . . . , vn} be a set of generators with minimal cardinality, and {w1, . . . , wt} a linearly independent
set of elements in V . (The following argument is the replacement principle.) Express w1 =

∑
i αivi = 0.

Without loss of generality (by relabeling) α1 6= 0, from which follows (by rearranging) that v1 is a linear
combination of w1, v2, . . . , vn. This also implies that w1, v2, . . . , vn generate V . Suppose inductively that
w1, . . . , ws, vs+1, . . . , vn generate V . Then the same argument shows that ws+1 is a linear combination

ws+1 =
∑
i≤s

αiwi +
∑
i>s

βivi

Some βi must be non-zero, or else ws+1 would have been a linear combination of w1, . . . , ws, contradicting
the hypothesis. By renumbering, without loss of generality βs+1 6= 0. Then vs+1 is a linear combination
of w1, . . . , ws+1, vs+2, . . . , vn. Again, this implies that w1, . . . , ws+1, vs+2, . . . , vn generate V . By induction,
w1, . . . , wm generate V , where m = min (n, t). Thus, by the minimality hypothesis on n, t ≥ n.

When the vi’s and wi’s both generate V , we can symmetrically argue that t ≤ n, and, thus, that t = n. This
proves that ‘dimension’ is well-defined, as the minimal number of generators of V .

With a basis {v1, . . . , vn}, and given a linearly independent set {w1, . . . , wt}, by now we know that t ≤ n,
and we can use the same argument (renumbering the vi’s if necessary) to show that w1, . . . , wt, vt+1, . . . , vn

is a basis. This shows that every linearly independent set can be extended to a basis.

Given a submodule W , from the previous any linearly independent subset has cardinality less than or equal
n, the dimension of V . Thus, W is finitely-generated. Let w1, . . . , wm be a basis for W . As just above, for a
basis v1, . . . , vn of V , extend the collection of wj ’s to a basis w1, . . . , wm, vm+1, . . . , vn (renumbering the vi’s
if necessary). Then the subspace W ′ spanned by vm+1, . . . , vn is a complementary subspace to W in V .

The image of a D-module homomorphism ϕ is certainly finitely generated, and the submodule kerϕ of V is
finitely generated, from above. Let W ′ be a complementary subspace to kerϕ. Then ϕ(V ) = ϕ(W ′) ≈ W ′

since ϕ is an isomorphism when restricted to W ′. Then

dimV = dim kerϕ+ dimW ′ = dim kerϕ+ dim Imϕ

as desired, from the dimension properties of complementary subspaces just proven. ///

2. Matrices, opposite rings

Let R be a (not necessarily commutative) ring with 1.

For a ring B, let Mn(B) denote the ring of n-by-n matrices with entries in B.

Proposition: Let E be a not-necessarily-simple R-module, and En the direct sum of n copies of E. Then
EndR(En) ≈Mn(EndRE).

Proof: Let pi : En → E be the ‘projection’ which takes the ith component of an element of En, and let
si : E → En be the inclusion which sends E to the ith copy inside En. For an R-endomorphism ϕ of En,
Let

ϕij = pi ◦ ϕ ◦ sj

We will take ϕij as the (i, j)th matrix entry (ith row and jth column entry) of a matrix attached to ϕ. We
must show that ϕ→ {ϕij} is an isomorphism. Note that obviously∑

i

si ◦ pi = 1En

Then for two endomorphisms ϕ,ψ,

pi ◦ϕψ ◦ sj = pi ◦ϕ ◦ 1En ◦ψ ◦ sj = pi ◦ϕ ◦ (
∑

`

s` ◦ p`) ◦ψ ◦ sj =
∑

`

(pi ◦ϕ ◦ s`) (p` ◦ψ ◦ sj) =
∑

`

ϕi` ◦ψ`j
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as desired. Thus, the map is a homomorphism. It is injective, since any ϕ can be recovered from its ϕij ’s.
It is surjective, since any collection of ϕij ’s gives an R-endormorphism. ///

Let B be a ring, and let Bopp denote the opposite ring, which by definition has the same underlying set,
but whose multiplication ∗ is the reverse of that of B itself. That is, letting ψ : B → Bopp be the set bijection
of B to its opposite,

ψ(α) · ψ(β) = ψ(βα)

(Associativity does hold.)

Proposition: For any ring R with unit 1, EndRR ≈ Ropp, and the associated endomorphisms are simply
right multiplications. Equivalently, EndRoppR ≈ R.

Proof: Certainly right multiplications r → rs by elements s ∈ R are (left) R-module endomorphisms of R.
Note that multiplying on the right requires reversal of multiplication in R for associativity, so that the ring
that acts on the right is indeed Ropp. On the other hand, let T ∈ EndRR. Then for r ∈ R

T (r) = r · T (1)

Thus, taking s = T (1) shows that T (r) = r · s. The proof of the second assertion is nearly identical.
///

Proposition: Let R be an arbitrary ring, with ψR : R→ Ropp the bijection to its opposite ring. (The map
ψ is the identity on the underlying set.) The opposite ring of the n-by-n matrix ring Mn(R) with entries in
R is

T : Mn(R)opp ≈Mn(Ropp)

and the isomorphism is essentially given by transpose: in terms of entries,

(T ψ(α))ij = ψR(αji)

where ψ is the natural bijection of Mn(R) to its opposite ring.

Proof: Let α, β be two matrices with (i, j)th entries αij , βij in R. Compute directly

T (ψ(α)ψ(β))ij = T (ψ(βα))ij = ψR((βα)ji)

= ψR(
∑

t

βjtαti)} =
∑

t

ψR(αti)ψR(βjt) =
∑

t

(Tψα)it (Tψβ)tj = ((Tψα) (Tψβ))ij

This verifies the homomorphism propery. Bijectivity is obvious. ///

3. Semi-simple modules and rings, density theorem

Let R be a (not-necessarily commutative) ring with identity 1. A module M over R is simple if it has no
proper submodule, that is, has no submodule other than {0} and M itself.

Proposition: If M and N are simple R-modules, then every R-homomorphism f : M → N is either the
zero map or is an isomorphism.

Proof: The kernel is a submodule of M , and the image is a submodule of N . ///

Corollary: (Schur’s Lemma) If M is a simple R-module, then the ring EndRM of R-homomorphisms of
M to itself is a division ring. ///

An R-module M is semi-simple if it satisfies the equivalent conditions of the following proposition.
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Proposition: The following three conditions on a module M over R are equivalent:
•M is a direct sum of simple submodules Eα.
•M is a (not-necessarily direct) sum of simple submodules Eα.
• Every submodule N of M is a direct summand of M , that is, there is another submodule N ′ so that
M = N ⊕N ′.

Proof: Certainly the first assertion implies the weaker second assertion. Suppose, for the converse, that
M =

∑
αEα with each Eα simple. Let J be a maximal set of indices so that the sum over J is a direct sum:∑

α∈J

Eα =
⊕
α∈J

Eα

For any simple Eβ ⊂ M , the intersection of Eβ with the sum
∑

α∈J Eα is either {0} or Eβ , by simplicity.
The intersection cannot be {0}, or maximality of J would be contradicted. Thus, the sum over J contains
every Eβ , so must be all of M .

To see that every submodule N of a direct sum expression
⊕

α∈J Eα of simple modules is a direct summand,
let J be a maximal set of indices so that

N +
∑
α∈J

Eα

is a direct sum. The same argument as in the previous paragraph shows that every simple submodule Eβ

must be contained in such a sum, so the sum is all of M .

Now suppose that every submodule is a direct summand, and prove that M is a sum of simple modules.
It suffices to show that every non-zero submodule N of M contains a simple module, since then the sum
of all simple submodules must be the whole M , by the same argument used twice already above. To show
that a submodule N of M contains a (non-zero) simple submodule, pick non-zero n ∈ N , and consider the
submodule R · n. The kernel of the R-homomorphism r → rn is a proper left ideal K in R, necessarily
contained in a maximal proper left ideal L of R (since R has a unit 1). Then L · n ≈ L/K is a maximal
submodule of Rn not equal to Rn, but possibly {0}. Using the fact that every submodule of M is a direct
summand, there is a submodule P of M so that M = P ⊕ Ln. For r · n ∈ Rn, write rx = `n+ p with ` ∈ L
and p ∈ P . Then p = (r − `)n ∈ Rn. Thus,

Rn = Ln⊕ (P ∩Rn)

Since L is maximal proper in R, certainly Ln is maximal proper in Rn, so P ∩ Rn can have no proper
submodules. Since Ln 6= Rn, P ∩Rn is not {0}, so is simple. ///

Corollary: Submodules, quotient modules, and sums of semi-simple R-modules are semi-simple.
///

Theorem: (Density Theorem) Let M be a semi-simple R-module. Let R′ = EndRM , and R′′ = EndR′M .
For every finite subset X of M , for every r′′ ∈ R′′ there is r ∈ R so that r′′x = rx for every x ∈ X.

Proof: Certainly R naturally sits inside R′′. First, show that R-submodules of M are actually R′′-
submodules. Given an R-submodule N , let N ′ be its complementary submodule, so M = N ⊕ N ′. Let
π be the R-homomorphism projecting M to N with kernel N ′. So π ∈ R′. Thus, for r′′ ∈ R′′,

r′′N = r′′(πM) = π(r′′M) ⊂ πM = N

Thus, N is an R′′-submodule. If X had only a single element x, then Rx is an R′′-submodule of M , and the
theorem follows. For arbitrary X with n elements, replace M by Mn, which is still semi-simple over R. The
map Mn →Mn given by

r̃′′ : (m1, . . . ,mn) → (r′′m1, . . . , r
′′mn)

is in EndEndRMn(Mn), since EndR(Mn) ≈ Mn(R′). This reduces to the case that X has a single element.
///
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Corollary: (Burnside’s theorem) Let V be a finite-dimensional vector space over an algebraically closed
field k, and R a k-subalgebra of Endk(V ). If V is a simple R-algebra, then R is the full endomorphism
algebra Endk(V ).

Remark: This is irretrievably false without the assumption that k is algebraically closed.

Proof: By the simplicity of V as an R-module, D = EndRV is a division ring. It contains k in its center.
By the finite-dimensionality of V over k, D is finite-dimensional over k. For α ∈ D but α 6∈ k, k(α) would
be a proper algebraic field extension of k, which is impossible, by the algebraic closedness of k, so D = k.
Let {ei} be a (finite) basis for V . Using the Density Theorem, using EndRV = k, for any r′′ ∈ EndkV there
is r ∈ R so that rei = r′′ei for all i, which yields r′′ = r. ///

Recall that an R-module M is faithful if for every 0 6= r ∈ R there is m ∈M so that r ·m 6= 0.

Corollary: (Wedderburn’s theorem) Let R be a ring with 1, and M a simple faithful R-module. Let
D = EndRM , and suppose that M is finite-dimensional over the division ring D. Then R = EndDM .

Proof: Let {ei} be a D-basis for M . Given r′′ ∈ EndDM , by the Density Theorem there is r ∈ R so that
rei = r′′ei for all i. Thus, the natural map R→ EndDM is surjective. The faithfulness of M over R implies
that the map is also injective. ///

A ring R is semi-simple if it is semi-simple as a left module over itself, and if it is not {0}. A ring R is
simple if it is semi-simple and has a unique isomorphism class of simple left ideals.

Proposition: If R is a semi-simple ring then every R-module is semi-simple.

Proof: Let M be an R-module, and show that M is a sum of simple submodules. Let m ∈ M , and look at
the submodule R ·m ⊂ M . Let I be the left ideal in R which is the kernel of the map r → rm. Express R
as a sum of simple left ideals R =

∑
i Li. Then

R ·m =
∑

i

Li ·m

Since Li is simple, Lim is either an isomorphic copy of Li, or is {0}. Thus, R ·m is a sum of simple modules.
Thus, every element in M is contained in a sum of simple modules, so M itself is a sum of simple submodules.

///

A module M over a ring R is Artinian if any descending chain of submodules

M1 ⊃M2 ⊃M3 ⊃ . . .

eventually stabilizes, that is, there exists an index io so that for i ≥ io we have Mi = Mio .

Remark: Finite-dimensional vectorspaces over fields are Artinian modules over the field. By contrast,
many common rings such as the integers Z are not Artinian as modules over themselves. Our immediate use
of the Artinian condition on modules is as an abstracted form of requiring modules to be finite-dimensional
vectorspaces over a field.

Proposition: Let D be a division ring, and A = Mn(D) the ring of n-by-n matrices with entries in D.
Then A is a simple Artinian ring. The whole ring A is the direct sum of the (mutually isomorphic) simple
left ideals consisting of matrices with non-zero entries only in a single column.

Proof: We must prove that A is a sum of simple left ideals, and that all these left ideals are isomorphic.
Let Lj be the collection of n-by-n matrices with non-zero entries only in the jth column. To see that Lj is
simple, let eij denote a matrix with zeros everywhere except for a 1 in the (i, j)th entry. Suppose that some
non-zero element

` =
∑

i

di eij

5
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lies in a left ideal I inside Lj , with di ∈ D. Let io be an index so that dio 6= 0. Then

Lj 3 d−1
io
eioio · x = eioj

And then for any index k
Lj 3 ekio · eioj = ekj

so Lj contains the D-basis e1j , e2j , . . . , enj for Lj . Thus, Lj is simple.

The Mn(D)-isomorphism from Lj to Lk is the obvious

ϕ :
∑

i

di eij →
∑

i

di eik

We can check that ϕ respects left multiplication by matrices non-computationally by observing that the map
ϕ can be realized by a right matrix multiplication by ejk +ekj . Thus, not surprisingly, all these column-ideals
are isomorphic as left ideals over the matrix ring.

To prove that A is (left) Artinian, note that any chain of left modules certainly is a chain of (left) D-
modules (with D imbedded in A as ‘scalar’ matrices). Since A = Mn(D) is a finite-dimensional D-space,
any descending chain of D subspaces is finite. ///

Theorem: Let R be a semi-simple ring. Then there is only a finite number of isomorphism classes of simple
left ideals. Let {Li} be representatives for these. If Ri is the sum of all left ideals isomorphic to Li, then Ri

is a simple ring with a unit ei, and 1R =
∑

i ei. Further, R =
⊕

iRi, and eiej = δij (Kronecker delta). And

Ri = eiR = Rei = eiRei

Proof: Claim that if L is a simple left ideal of R and M is a simple R-module not isomorphic to L then
L ·M = 0. Indeed, LM is an R-submodule of M , so is either {0} or M . If it were M , then, for some non-zero
m ∈ M , L ·m = M . Then the map ` → `m is a surjective R-module map L → M . Since L is simple, this
map is an isomorphism. Thus, either L ·M = 0 or L ≈M .

Thus, RiRj = 0 unless i = j. Since by semisimplicity R is the sum of its simple left ideals, R =
∑

i Ri.
Thus,

Rj ⊂ Rj ·R = Rj ·Rj ⊂ Rj

which shows that Rj is also a right ideal. Write 1R =
∑

i ei with ei ∈ Ri. Since the R =
∑

i Ri is algebraic,
the expression 1R =

∑
i ei has only finitely-many non-zero summands. Since Ri is a two-sided ideal, it

follows that there are only finitely-many Ri’s. From the fact that Ri ·Rj = 0 unless i = j, we have

ei = ei · 1 = ei ·
∑

j

ej =
∑

j

ei · ej = ei · ei

and eiej = 0 unless i = j. That is, the ei’s are an orthogonal system of idempotents in R, and ei is the unit
in Ri. For x ∈ R

x = x · 1 = x ·
∑

i

ei =
∑

i

x · ei

x = 1 · x = ∗
∑

i

ei) · x =
∑

i

ei · x

so eix = xei ∈ Ri is the ‘projection’ of x to Ri. In particular, Ri is a ring itself, with unit ei, and with a
unique isomorphism class of left ideal, so by definition simple. ///

Theorem: A simple ring R is a finite direct sum of simple left ideals. There are no proper two-sided ideals.

6
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Proof: Using semisimplicity, write R as a direct sum
⊕

i Li of simple left ideals Li. Let 1 =
∑

i `i with
`i ∈ Li. Necessarily this sum has only finitely-many non-zero summands. Let J be the set of indices so that
`i 6= 0 for i ∈ J . Then ⊕

i

Li = R = R · 1 =
∑
i∈J

R · `i =
∑
i∈J

Li

Thus, J is the whole index set, which is finite. For any simple left ideal, L ·R is a left ideal, so is necessarily
a direct sum LR =

⊕
j Lj for some simple left ideals Lj . Using the direct summand property, R = L ⊕N

for some left ideal N in R. Let π be the projection of R to L with kernel N . Every simple left ideal I
is isomorphic to L by the hypothesis of simplicity, so let f : L → I be an isomorphism. Then f ◦ π is a
R-endomorphism of R. By the lemma, (f ◦ π)(r) = rs for some s ∈ Ropp. Thus, for ` ∈ L,

f(`) = (f ◦ π)(`) = ` · s

That is, every simple left ideal I is contained in L ·R, so LR = R. That is, R has no proper two-sided ideals.
///

Proposition: Let V be a vectorspace over a division ring D. Then EndDV is simple if and only if V is
finite-dimensional over D.

Proof: If V is finite-dimensional over D, then V ≈ (Dopp)n for some finite integer n, and EndDV is
isomorphic to a matrix ring

Mn(EndDD
opp) ≈Mn(Dopp)

over Dopp. Let Li be the left ideal of matrices with non-zero entires only in the ith column. Clearly the Li’s
are mutually isomorphic simple left ideals in the matrix algebra, and Mn(Dopp) is their direct sum. Thus,
Mn(Dopp) is simple.

On the other hand, for V infinite-dimensional over D, let Bo be the subset of EndDV consisting of
endomorphisms with D-finite-dimensional images. It is clear that Bo is closed under left and right
multiplication by D-endomorphisms. Since V is infinite-dimensional, the identity map is not in Bo, so
Bo is not all of EndDV . The subset Bo is closed under addition, because

Im(T1 + T2) ⊂ ImT1 + ImT2

for any two endomorphisms. To see that Bo is not {0}, choose a basis {eα : α ∈ A}, pick β ∈ A, and define

T (
∑
α

cα eα = cβ eβ

This T lies in Bo and is not the zero map. ///

Corollary: (of Density Theorem) Let M be a semi-simple Artinian module over a ring R with unit 1. Let
R′ = EndRM , and R′′ = EndR′M . Then the natural map R → R′ is a surjection. In particular, if M is a
faithful R-module, then R ≈ R′′.

Proof: Writing M as a direct sum of simple submodules, the Artinian condition implies that the sum must
be finite. Thus, M is finitely-generated as an R-module. Then the Density Theorem implies that for every
r′′ ∈ R′′ there is r ∈ R which has the same effect on M . This gives the surjectivity. The remark about
faithfulness is then clear. ///

Theorem: Let B be a simple ring which is Artinian as a left module over itself. Then there is a division
ring D (unique up to isomorphism) and a unique integer n so that B is isomorphic (as a ring) to the ring
Mn(D) of n-by-n matrices with entries in D. In particular, let L be a simple left ideal of B. Then EndBL
is a division ring, and D ≈ (EndBL)opp. Further, the integer n is the number of simple direct summands of
B as left module over itself.

7
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Proof: Write B as a direct sum
⊕

α Lα of simple left ideals, mutually isomorphic as B-modules (by the
definition of simplicity). The left Artinian property implies that this is a finite direct sum, of cardinality n,
a finite integer. Let L be a simple left ideal, simple up to isomorphism. Then

EndBB ≈ EndB(Ln) ≈Mn(EndBL)

and the simplicity of the ideal L implies that C = EndBL is a division ring. By counting C-dimension we
see that n is uniquely determined. The left ideal L must be faithful as a B-module, since if bL = {0} for
b ∈ B then

b = b · 1B ∈ b ·B = b ·
∑
α

Lα =
∑

b · Lα =
∑

{0}

Therefore, the corollary above yields
B = EndCL

By the proposition above, L is finite-dimensional over C. Let m be the C-dimension of L. Then

B = EndCL ≈ EndC(Cm) = Mm(EndCC) ≈Mm(Copp)

Let Li be the left ideal of Mm(Copp) of matrices whose non-zero entires occur only in the ith column. These
are simple ideals. Then B is a direct sum of these m simple ideals, and clearly m = n. ///

Corollary: The center of an Artinian simple ring is a field.

Proof: Using the theorem just above, we equivalently can ask about the center of a matrix algebra Mn(D)
over a division ring D. It is elementary that the center consists of scalar (diagonal) matrices with entries in
the center of D. Since D is a division ring, its center is a field. ///

4. Semi-simple algebras

The theorem just above asserting that Artinian simple rings are isomorphic to matrix algebras Mn(D) over
division rings D still has too weak a conclusion for further developments, since in general the division ring
D may be of infinite dimension over its center. This precludes constructions such as taking tensor products
of two such algebras over a common center k, since the resulting object may lose its Artinian property.

A ring A is a central over a field k if k is exactly its center. We will be mostly interested in the situation
that A is finite-dimensional and central over a field k. More generally a k-algebra is a ring with a copy of k
in its center.

A k-algebra homomorphism T : A→ B of rings with units is a ring homomorphism T so that

T (α · 1A) = α · 1B

for all α ∈ k. Note that this ensures not only the k-linearity of T , but also that the identity of A is mapped
to that of B. In particular, this avoids irrelevant complications about the center.

Corollary: Let B be a semi-simple ring which is a k-algebra, and is finite-dimensional over k. Then B
is isomorphic (as k-algebra) to a finite product of matrix rings Mn(D) over division rings D whose center
contains a copy of a finite algebraic field extension of k. The integers n and division rings D so occurring
are unique up to permutations (and k-isomorphism).

Proof: Because B is a semi-simple ring, it is a finite product of simple rings, unique (up to isomorphism) up
to permutations, so it suffices to treat the case of simple rings B. The finite-dimensionality over k implies
that B is Artinian, so from just above is of the form Mn(D) for a division ring D containing k in its center.
The finite-dimensionality of B over k implies the finite-dimensionality of D over k, and also k is necessarily
contained in the center K of D. Thus, also, K is finite-dimensional over k. As in the earlier argument, for

8
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a simple finite-dimensional k-algebra S with (up to isomorphism unique) simple left ideal L, the division
algebra D is determined as

D = (EndSL)opp

which specifies D uniquely up to k-algebra isomorphism. ///

Let Bopp denote the opposite ring to a ring B, which has the same underlying set, but whose multiplication
∗ is the reverse of that of B itself:

α ∗ β = β α

(Associativity does hold.)

Proposition: For a finite-dimensional central simple k-algebra A,

A⊗k A
opp ≈ EndkA

and the latter is isomorphic to a matrix algebra over k.

Proof: Let S = A⊗k A
opp. We give A a natural S-module structure by

(α⊗ β)x = α · x · β

This gives a k-algebra homomorphism T : S → EndkA. Since A has no proper two-sided ideals, A has no
proper S-submodules, so is a simple S-module. By the Density Theorem, using the finite-dimensionality of A
over k, T is surjective. By comparing k-dimensions, it also follows that T is injective, so is an isomorphism.

///

Theorem: For simple k-algebras A and B, if A is finite-dimensional and central over k, then A ⊗k B is
a simple k-algebra. If also B is central over k, then so is A ⊗k B. If K is a field extension of k and A is a
central simple k-algebra, then A⊗kK is a central simple K-algebra. In the latter situation, the K-dimension
of A⊗k K is equal to the k-dimension of A.

Proof: First, always
Mn(k)⊗k B ≈Mn(B)

If B is simple, then this matrix algebra is simple, since it is the sum of left ideals isomorphic to Bn, each of
which is easily verified to be simple. Whatever the center Z of B is, the center of Mn(B) consists of ‘scalar’
matrices with (equal) diagonal entries in Z. If A⊗k B had a proper two-sided ideal then so would

Aopp ⊗k A⊗k B ≈ (matrix algebra with entries in k)⊗k B ≈ matrix algebra with entries in B

(using the previous theorem to identify Aopp⊗A). But we just noted that this algebra is simple, contradiction.
Likewise, if both A and B are central over k, and if the center of A⊗k B were larger than k, then the center
of Aopp ⊗k A⊗k B would also be larger than k, contradiction.

Certainly a field K is simple as a ring. Thus, for a field K containing k, A ⊗k K is simple, and it is clear
that K is contained in its center. On the other hand, if the center were strictly larger than K, then so would
be the center of

Aopp ⊗k A⊗k K ≈ EndkA⊗k K ≈ (matrix algebra over k)⊗k K

which is false. ///

Corollary: Every finite-dimensional central division algebra D over a field k has dimension of the form n2

for an integer n. There are no proper finite-dimensional division algebras over an algebraically closed field.

Proof: For the latter assertion, if α ∈ D by α 6∈ k, then k(α) would be a proper finite-dimensional (therefore
algebraic) field extension of k, which is impossible. Now let k̄ be an algebraic closure of k, and consider the
simple central k̄-algebra D ⊗k k̄. From the classification of simple central algebras as matrix algebras over
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central division algebras (above), and from the fact just noted that there are no proper finite-dimensional
central division algebras over k̄, this must be a matrix algebra over k̄, so has k̄-dimension a square n2.
Since dimension does not change when tensoring with a field extension, the k-dimension of D is also n2.

///

Theorem: (Skolem-Noether) Let A be a simple k-subalgebra of a finite-dimensional central simple k-algebra
B. Then every k-algebra isomorphism ϕ : A→ A extends to an inner automorphism of B, that is, to an
automorphism of the form α→ βαβ−1 for some β ∈ B×.

Proof: Give B two R = A⊗k B
opp-algebra structures E1 and E2, by

(α⊗ β)x = αxβ (for E1)
(α⊗ β)x = ϕ(α)xβ (for E2)

By the previous theorem, R is a simple k-algebra, so there is a single isomorphism class of simple left ideals
in it. Further, the k-dimension of an R-module determines its isomorphism class. Since E1 and E2 have
the same k-dimension, they are isomorphic R-modules. Let i : E1 → E2 be an R-isomorphism. Then the
R-isomorphism property

i(αbβ) = i((α⊗ β)b) = (α⊗ β) i(b) = ϕ(α) i(b)β

with α = 1 gives
i(bβ) = i(b)β

Since B is simple as a right Bopp-module, and since i is a Bopp-isomorphism, (from above) there is bo ∈ B×
so that i(b) = bob. Taking b = β = 1 gives

boα = i(α) = i((α⊗ 1) 1) = (α⊗ 1) i(1) = (α⊗ 1) bo = ϕ(α) bo

Therefore,
ϕ(α) = boαb

−1
o

This certainly extends to an inner automorphism of B. ///

Corollary: Every k-algebra automorphism of a finite-dimensional simple central k-algebra is inner.
///

5. Reduced trace and norm

We will need the notion of reduced trace and reduced norm later, for elements of finite-dimensional simple
central k-algebras. To this end we introduce the reduced characteristic polynomial.

Let B be a finite-dimensional central simple algebra over a field k. Let E be a finitely-generated B-module.
Let x be an indeterminate. Then k[x] is a principal ideal domain, and the k[x] module

E′ = E ⊗k k[x]

is a free k[x]-module of finite rank (equal to the k-dimension of E). The highest non-vanishing exterior
power of E′ over k[x] is a free k[x]-module of rank 1, so for β ∈ B left multiplication on E′ by

1⊗X − β ⊗ 1 ∈ B ⊗k k[x]

induces multiplication by a polynomial χβ,E(x) on that exterior power of E′. This χα,E(x) is the
characteristic polynomial of β on E.

Proposition: For two finitely-generated B-modules M and N over the finite-dimensional simple central
k-algebra B, for β ∈ B,

χβ,M⊕N (x) = χβ,M (x) · χβ,N (x)

10
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And
χβ,M⊗kK(x) = χβ,M (x)

for a field extension K of k. ///

From the previous section, an algebraic closure K of k splits any finite-dimensional simple central k-algebra
B. Let L be a simple left module in

Mn(K) ≈ B ⊗k K

Since K splits B the ideal L is an n-dimensional K-vectorspace, and as left B ⊗k K module

B ⊗k K ≈ L⊕ . . .⊕ L︸ ︷︷ ︸
n

Therefore, from the proposition, for β ∈ B ⊂ B ⊗k K,

χβ,B = χβ,B⊗kK = χβ,Ln = χn
β,L ∈ k[x]

Proposition: LetK be a separable field extension of k. If the nth power P (x)n of a polynomial P (x) ∈ K[x]
is actually in k[x], then the polynomial P (x) itself is in k[x].

Proof: If k is of characteristic 0, or if the characteristic p is positive but does not divide the exponent
n, then a simple induction on coefficients proves the proposition. Thus, we reduce to the case of positive
characteristic p and exponent n = p. In that case,

(ao + a1x+ . . .+ amx
m)p = ap

o + ap
1x

p + . . .+ ap
mx

mp

Thus, since K is separable over k, for ai ∈ K, ap
i ∈ k implies ai ∈ k for every index i. ///

Then define the reduced characteristic polynomial of β ∈ B, with dimk B = n2, to be the polynomial
χβ ∈ k[x] so that

χn
β = χβ,B

The previous proposition assures that χβ really does have coefficients in k, not merely in a splitting field
of B. The reduced trace of β is −1 times the coefficient of Xn − 1 in χβ,B , where dimk B = n2. The
reduced norm of β is (−1)n times the constant coefficient of χβ,B . Note that both lie in k.

6. Other criteria for simplicity

Theorem: Let B be a finite-dimensional central k-algebra without any proper two sided ideal. Then B is
a simple central k-algebra.

Proof: The finite-dimensionality over k certainly implies that B is left Artinian over itself, so it has a minimal
left ideal L. We claim that L is a faithful simple B module. The simplicity is immediate from the minimality.
The lack of proper two-sided ideals implies L · B = B, since L · B 3 L · 1. Thus, if β · L = {0} for some
β ∈ B, we would have

β = β · 1 ∈ β ·B ⊂ β · L ·B = 0 ·B = 0

so β = 0, proving faithfulness. Therefore, from above, C = EndBL is a division algebra, and L is finite-
dimensional over C because everything in sight is finite-dimensional over k. By Wedderburn’s theorem,
B = EndCL, and the latter is isomorphic to a matrix algebra over Copp = EndCC, and (from above) is
therefore simple. ///

Corollary: Let B be a finite-dimensional central k-algebra and suppose that K is a field extension of k so
that B ⊗k K is simple. Then B is simple.

11
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Proof: By the previous theorem, we need only show that B does not have any proper two-sided ideals. If
J were a proper two-sided ideal of B, then J ⊗k K would be a two sided ideal of B ⊗k K. By counting
dimensions, noting that k-dimensions before tensoring are equal to K-dimensions after tensoring, J ⊗k K
would necessarily be a proper two-sided ideal. This would contradict the simplicity of B ⊗k K.
///

Next, we have the trace-pairing criterion for simplicity. Let V be a finite-dimensional vectorspace over a
field k, with k-linear dual V ∗. We can define the trace

tr : Endk(V ) → k

intrinsically, as follows. First, we have a natural isomorphism

t : V ⊗k V
∗ ≈ Endk(V )

by taking
(v ⊗ µ)(x) = µ(x) · v

for v, x ∈ V and µ ∈ V ∗ and then extending k-linearly. Then define the trace by

tr v ⊗ µ = µ(v)

and extending k-linearly. For a central k-algebra A, and for x ∈ A, let `x ∈ EndkV be left multiplication by
x. Then define the trace pairing

〈, 〉 : A×A→ k

by
〈x, y〉 = tr (`x ◦ `y)

This is symmetric and k-bilinear. As usual, a k-bilinear pairing 〈, 〉 is said to be non-degenerate if 〈x, y〉 = 0
for all y implies x = 0. Note that for T, x, y ∈ A

〈Tx, y〉 = tr (µTx ◦ µy) = tr (µT ◦ µx ◦ µy) = tr (µx ◦ µy ◦ µT ) = tr (µx ◦ µyT ) = 〈x, yT 〉

Even more simply,

〈xT, y〉 = tr (µxT ◦ µy) = tr (µx ◦ µT ◦ µy) = tr (µx ◦ µTy) = 〈x, Ty〉

Theorem: The trace pairing on a finite-dimensional central k-algebra A is non-degenerate if and only if A
is semi-simple.

Proof: First, suppose that the trace pairing is non-degenerate, and do induction on the k-dimension of A.
Let I be a minimal non-zero two-sided ideal in A, which must exist by the finite-dimensionality. If I = A,
then A is simple, from above. So suppose I is proper. Let I⊥ be the orthogonal complement

I⊥ = {b ∈ A : 〈b, i〉 = 0 for all i ∈ I}

From the property that for S, T, x, y ∈ A

〈SxT, y〉 = 〈x, TyS〉

it follows that I> is also a two-sided ideal. It is not A itself, by the non-degeneracy assumption. And I ∩ I⊥
is another two-sided ideal. If the intersection is non-zero, then by the minimality hypothesis on I it must be
that I ∩ I⊥ = I. That is, the trace pairing restricted to I × I is identically zero. The ideal I · I is another
two-sided ideal, and is contained in I, so is either I or is {0}, by the minimality of I. If I · I = I, then (still
assuming I ⊂ I⊥ = I)

〈I,A〉 = 〈I · I,A〉 = 〈I, A · I〉 ⊂ 〈I, I〉 = 0

12
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contradicting the non-degeneracy of the pairing. Thus, I · I = {0}. Then, for any a ∈ A and i ∈ I, (ai)2 = 0,
so µ2

ai = 0. In particular, µai is nilpotent. Quite generally, nilpotent endomorphisms of finite-dimensional
vectorspaces have trace 0. Thus,

0 = trµai = tr (µa ◦ µi) = 〈a, i〉

for every a ∈ A and for every i ∈ I. But, again, this contradicts the non-degeneracy of the pairing. Therefore,
it must have been that I ∩ I⊥ = {0}, so I⊥ and I are both algebras with a non-degenerate trace pairing,
and we can invoke the induction hypothesis. This proves that non-degeneracy implies semi-simplicity.

Now suppose that A is semi-simple. It suffices to consider that case that A is simple and central over a
separable extension E of k. Let L be a maximal separable subfield of A. Then by general structure results
the reduced trace on A, when restricted to L, is the Galois trace from L to E. Thus, to prove non-degeneracy
of the trace pairing it suffices to prove that the field-theoretic trace tr : L → k is not identically zero for
separable field extensions L of k. This is an immediate corollary of Artin’s theorem on linear independence
of distinct characters L× → k̄×, where k̄ is an algebraic closure of k. ///

7. Involutions

Here we begin to classify involutions on semi-simple central k-algebras in terms of involutions on division
algebras.

An involution on a ring R is a multiplication-reversing addition-preserving map i : R→ R whose square is
the identity map on R. That is, for all r, s ∈ R,

i(r + s) = i(r) + i(s)

i(r · s) = i(s) · i(r)

i(i(r)) = r

Proposition: Let R be a ring, and ψ : R → Ropp the (multiplication-reversing) bijection of R to its
opposite ring Ropp which is the identity on the underlying set. Then the collection of involutions i on R is
in bijection with the collection of ring isomorphisms R→ Ropp by

i→ ψ ◦ i

Proof: Given an involution i, ψ◦i is a ring isomorphismR→ Ropp. Conversely, an isomorphism ϕ : R→ Ropp

gives an involution ψ−1 ◦ ϕ. ///

Theorem: Let Every involution σ on an Artinian simple ring B gives rise to an involution θ on the
underlying division ring D = EndBoppR for a simple right ideal R.

Proof: From above, an Artinian simple ring B is a finite direct sum of mutually isomorphic simple right
ideals R, each D = EndBoppR is a division ring, and

B = EndBoppB ≈Mn(EndBoppR)

where n is determined by
B ≈ R⊕ . . .⊕R︸ ︷︷ ︸

n

As noted earlier, an involution σ on B can be viewed as an isomorphism of B to its opposite ring. Thus,

Mn(D) ≈ B ≈ Bopp ≈Mn(D)opp ≈Mn(Dopp)

13
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where (as above) the last isomorphism is transpose (and entrywise mapping D to Dopp). Earlier we uniquely
characterized (up to isomorphism) the division ring D so that a simple Artinian ring is isomorphic to Mn(D),
so we have an isomorphism D ≈ Dopp, which yields an involution on D. ///

Now let A be a central semi-simple algebra over a field k, and let σ be an involution on A. Say that σ is of
first kind if it is the identity map on k, otherwise that σ is of second kind.

Proposition: Involutions of first kind on a central k-algebra A are in bijection with k-linear isomorphisms
of A with its opposite ring. ///

Proposition: Any two involutions σ, τ of first kind on a finite-dimensional central simple algebra B over
a field k differ by an inner automorphism of B, that is, there is γ ∈ B× so that for β ∈ B

βτ = γβσγ−1

Proof: It is immediate that σ ◦ τ is an isomorphism of B with itself, whose square is the identity map on B.
Thus, by the Skolem-Noether theorem there is α ∈ B× so that for any β ∈ B

(βτ )σ = αβα−1

Apply σ to both sides to obtain
βτ = (α−1)σβσασ

Letting γ = (α−1)γ gives the result. ///

Corollary: A simple central algebra A ≈Mn(D) over a field k has an involution σ of first kind if and only
if D has an involution θ of first kind, and in that case there is γnB× so that for all β ∈ A

βσ = (βθ)>

where the notation means that θ is applied entrywise to a matrix β, and then the transpose is taken.

Proof: The proof is a variation of the proof above of the analogue for Artinian simple rings. That is, A is a
direct sum of mutually isomorphic simple right ideals R, each D = EndBoppR is a division ring containing
k in its center, and

B = EndBoppB ≈Mn(EndBoppR)

where n is determined by
B ≈ R⊕ . . .⊕R︸ ︷︷ ︸

n

An involution σ of first kind on B can be viewed as a k-algebra isomorphism of B to its opposite ring. Thus,

Mn(D) ≈ B ≈ Bopp ≈Mn(D)opp ≈Mn(Dopp)

where (as above) the last isomorphism is transpose (and entrywise mapping D to Dopp). The division ring D
so that A ≈Mn(D) is unique up to k-algebra isomorphism, so we have a k-algebra isomorphism D ≈ Dopp,
which yields an involution of first kind on D. ///

Remark: Not surprisingly, involutions of second kind are somewhat less tractable, in part because there
may be many possibilities for the quadratic subfield of the center fixed by the involution.

8. Splitting by field extensions, Brauer groups

For a fixed field k, the collection of all finite-dimensional simple central algebras over k, or, equivalently,
the collection of all finite-dimensional central simple division algebras over k, naturally forms a group, the
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Brauer group of k, described below. Finite field extensions K of k give refinements of the structure of the
Brauer group of k, from the fact that the map

B → B ⊗k K

(for finite-dimensional simple central algebras B over k) gives a group homomorphism from the Brauer group
of k to the Brauer group of K. Further properties are catalogued below.

Two finite-dimensional central simple k-algebras A, B are equivalent, denoted A ∼ B, if A ≈Mm(D) and
B ≈Mn(D) for the same (isomorphic) underlying (finite-dimensional central simple) division algebra D over
k (with possibly different matrix sizes m,n).

Proposition: The collection of equivalence classes of finite-dimensional central simple k-algebras, with
‘multiplication’ given by tensor product over k, forms an abelian group, the Brauer group Br(k) of k.
The identity element has representative k itself, and the inverse of (the class of) a finite-dimensional central
simple k-algebra B is (the class of) its opposite algebra Bopp.

Proof: First, the well-definedness of the equivalence follows from the well-definedness of the isomorphism
class of the division algebraD so that a finite-dimensional central simple k-algebra A is isomorphic toMn(D).
That is, for a simple left ideal L in A (whose isomorphism class is unique, by the definition of ‘simple’ ring),

D ≈ (EndBL)opp

The associativity follows from the associativity of the tensor product. The inverse property follows from the
fact that

A⊗k A
opp ≈ EndkA ∼ k

which itself is a consequence of the Density Theorem. The abelian-ness of the group follows from the natural
isomorphism

A⊗k B ≈ B ⊗A

which follows from the fact that k is central in both A and B. Certainly

A⊗k k ≈ A

which proves that (the class of) k is the identity. ///

The equivalence class of the identity is the collection of split algebras over k, and consists of all finite-
dimensional central simple algebras isomorphic to some matrix algebra Mn(k) over k.

Proposition: For a field extension K of k the map

A→ A⊗k K

(for finite-dimensional central simple k-algebra A) is a group homomorphism Br(k) → Br(K).

Proof: The well-definedness comes from the natural isomorphism

Mn(D)⊗k K ≈Mn(D ⊗k K)

The homomorphism property is just the basic property

(A⊗k K)⊗K (B ⊗k K) ≈ (A⊗k B)⊗k K

of the tensor product. ///

For fixed k and K, and for a finite-dimensional central simple k-algebra A, if A⊗kK ∼ K, that is, if A⊗kK
is a split algebra, then say that K splits A.
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Corollary: For a field extension K of k, the set Br(k,K) of Br(k) consisting of algebras split by K is the
kernel of Br(k) → Br(K), so is a subgroup of Br(k). ///

Recall that an algebraic closure k̄ of k splits every finite-dimensional central simple k-algebra, and that
(above) this showed that the k-dimension of a finite-dimensional central (necessarily simple) division algebra
over k is necessarily a square.

Theorem: Let D be a finite-dimensional central simple division algebra over a field k of dimension n2.
• Every subfield K of D containing k is contained in a maximal subfield of D separable over K.
• Every maximal subfield of D has dimension n over k.
• The maximal subfields of D are those k-subalgebras which are their own centralizers in D.
• Any maximal subfield of D splits D.
• If a field K of degree n over k splits D, then there is a subfield of D isomorphic to K (and the isomorphism
is the identity map on k).
• If an extension K of degree N over k splits D, then there is an imbedding K → MN/n so that the image
of K is its own centralizer (and the imbedding is the identity map on k).

Remark: In the course of the proof some further worthwhile information is noted.

Proof: Let K be a subfield of D containing k, and let [K : k] < n, and show that the centralizer Z of K in
D is properly larger than K. Let D have the = D ⊗k K-module structure given by

(δ ⊗ α)x = δ xα

Then Zopp ≈ EndRD. Let
m = dimk D/ dimk Z = n2 / dimk Z

By Wedderburn’s theorem,
R ≈ EndZoppD ≈Mm(Z)

Thus, counting k-dimensions, noting that Z contains K,

n2 dimk K = dimk R = dimk Mm(Z) = (dimk D/dimk Z)2 · dimk Z = n4/dimk Z = n4/(dimK Z dimk K)

Therefore,
dimK Z = (n/dimk K)2

Thus, if [K : k] < n we may adjoin an element of Z to K to create a larger field. Also, maximal subfields
are of degree n over k, and are their own centralizers. And every subfield is contained in a subfield of degree
n over k.

Next we show that for n > 1 the central division algebra D contains a proper separable extension of k. If
not, then there is a prime power q so that αq ∈ k for every α ∈ D. The map α → αq is a polynomial map
on the k-vectorspace D, and thus this property is preserved under tensoring with k̄ over k. That is, the qth

power of every element of
D ⊗k k̄ ≈Mn(k̄)

lies in its center. This obviously requires that n = 1.

Further, the arguments of the previous two paragraphs together show that every subfield K of D containing
k is either of degree n over k or has a proper separable field extension inside D. In particular, there exists
at least one separable extension of degree n over k inside D.

Let K be a maximal (degree n) subfield of D containing k. From above,

D ⊗k K ≈ EndZoppD = EndKD ≈Mn(K)

That is, K splits D.
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Now suppose that K splits D, and let N be the dimension of K over k. Then

Dopp ⊗k K ≈ (D ⊗k K)opp ≈Mn(K)opp ≈Mn(K)

where the latter map is essentially by transpose. This simple ring has a simple module V which is an
n-dimensional K-vectorspace, and by counting k-dimensions is of dimension

n · dimk K

dimk Dopp
=
n ·N
n2

= N/n

over Dopp. Thus, certainly n divides N , and we have a natural imbedding

K → EndDoppV ≈MN/n(D)

since the Dopp-endomorphism ring of an `-dimensional Dopp vectorspace is the matrix algebra of size ` over
D. Let Z be the centralizer of K in A = MN/n(D). Let A⊗k K act on A by

(α⊗ β)x = αxβ

Then by definition Z = EndRA, and by Wedderburn’s theorem R ≈ EndZA. Since R ≈MN (K) is simple, R
has a unique simple module which is of K-dimension N . As A is of k-dimension N2, A is of K-dimension N .
Therefore, as the dimension of a module over a simple algebra determines its isomorphism class, it must be
that A is that simple R-module. Then Z is a division algebra, and contains K. By counting k-dimensions,

N3 = dimk A · dimk K = dimk R = dimk(EndZA) = dimk Z
opp · (dimZ A)2

= dimk Z
opp · (dimk A/dimk Z

opp)2 = N4/dimk Z
opp

Therefore, Z can be no larger than K. ///

9. Tensor products of fields

In the study below of tensor products of crossed product algebras, and also in the examination below of
splitting of crossed products and cyclic algebras by field extensions, a simpler yet essential sub-issue is
understanding the structure of tensor products of fields.

Let K be a finite separable field extension of k, and let L be an arbitrary field extension of k. The theorem
of the primitive element assures that there is α ∈ K so that K = k(α). Let P (x) be the irreducible monic
polynomial of α over k, so

K ≈ k[x]/P

where k[x]/P denotes the quotient of the ring k[x] by the ideal generated by P (x). Then

K ⊗k L ≈ k[x]/P ⊗k L ≈ L[x]/P

via the map
xi ⊗ c→ c xi

Note that for a polynomial f with coefficients in k (rather than in a larger overfield), computing inside
k[x]⊗ L,

f(x⊗ 1) = f(x)⊗ 1

Let P =
∏

i Pi be the factorization of P into irreducible monics in E[x]. By the separability, pairwise these
irreducibles have no common factors, so Sun Ze’s theorem applies and

K ⊗k L ≈ L[x]/P ≈
⊕

i

L[x]/Pi
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and each L[x]/Pi is a field. We can be more explicit about the last isomorphism. Let

P̂i(x) =
∏
j 6=i

Pj(x)

and let Ri(x) ∈ L[x] so that ∑
i

Ri(x) P̂i(x) = 1

Put
Ei = Ri(x) P̂i(x) mod P (x)

It is easily checked that {Ei} is an orthogonal collection of idempotents in the commutative semi-simple
L-algebra K ⊗k L. The number of these idempotents matches the number of simple factors in the tensor
product, so we are assured that it is a maximal collection. Indeed,

Ei · (K ⊗k L) ≈ L[x]/Pi

and
K ⊗k L =

⊕
i

Ei · (K ⊗k L) ≈
⊕

i

L[x]/Pi

As a very special case of the situation just considered, take L = K and add the hypothesis that K is Galois
over k, with Galois group G. Since K is Galois over k, the polynomial P factors into distinct linear factors
x− σα over K, where σ ∈ G. Thus, by Sun Ze’s theorem,

K ⊗k K ≈ K ⊗k k[x]/P ≈ K[x]/P ≈
⊕

σ

K[x]/(x− σα) ≈ K ⊕ . . .⊕K︸ ︷︷ ︸
n

Note that in this case our index runs through the Galois group G. For σ ∈ G the polynomials

Qσ(x) =
∏
τ 6=σ

x− τα

σα− τα

have the property that Qσ(τα) = 0 for τ 6= σ, while Qσ(σα) = 1. Thus,∑
σ

Qσ(x) = 1 mod P (x)

Qσ(x)Qτ (x) = 0 mod P (x) for τ 6= σ

Going back via the isomorphism k[x]⊗K ≈ K[x] to k[x]⊗K, the image of Qσ(x) is∏
τ 6=σ

x⊗ 1− 1⊗ τα

1⊗ σα− 1⊗ τα
∈ K ⊗k K

Then, mapping k[x] → k[x]/P by sending x to α, thereby mapping k[x]⊗k K → k[x]/P (x)⊗k K, we obtain
idempotents

Eσ =
∏
τ 6=σ

α⊗ 1− 1⊗ τα

1⊗ σα− 1⊗ τα
∈ K ⊗k K

Note that the denominator is 1⊗P ′(σα), and P ′(α) 6= 0 by separability. Thus, by construction, {Eσ : σ ∈ G}
is a maximal orthogonal set of idempotents in K ⊗k K.

Next, compute
(α⊗ 1− 1⊗ σα)Eσ = (1⊗ P ′(σα)−1) ·

∏
τ

(α⊗ 1− 1⊗ τα)
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and because
P (x) = xn + cn−1x

n−1 + . . .+ c1x+ co

has coefficients ci in k∏
µ

(α⊗ 1− 1⊗ µα) = αn ⊗ 1 + αn−1 ⊗ cn−1 + αn−2 ⊗ cn−2 + . . .+ α⊗ c1 + 1⊗ co

= αn ⊗ 1 + cn−1α
n−1 ⊗ 1 + cn−2α

n−2 ⊗ 1 + . . .+ c1α⊗ 1 + co ⊗ 1 = P (α)⊗ 1 = 0⊗ 1 = 0

Thus,
(α⊗ 1− 1⊗ σα)Eσ = 0

which is the same as
(α⊗ 1) · Eσ = (1⊗ σα) · Eσ

We may take powers of both sides to see that the analogous identity holds for powers of α, as well. Further,
since Eσ is an idempotent, we may add such identities, and thus find such an identity for all β ∈ K

(β ⊗ 1) · Eσ = (1⊗ σβ) · Eσ

The action of 1× τ for τ ∈ G on Eσ is easy to understand. Since

(1× τ)(β ⊗ γ) = β ⊗ τγ

for β, γ ∈ K, from the definition we find
(1× τ)Eσ = Eτσ

The action of τ × 1 in G × {1} on Eσ is a little subtler. First, note that there are [K : k] different
homomorphisms k[x] → K, namely by sending x to the [K : k] different roots µα in K of P (x) = 0. Thus,
for any µ ∈ G define

E(µ)
σ =

∏
τ 6=σ

µα⊗ 1− 1⊗ τα

1⊗ σα− 1⊗ τα

Then
{E(µ)

σ : σ ∈ G}

is a maximal orthogonal collection of idempotents in K ⊗k K. Therefore, the set of such must be the same
regardless of µ, but the bijections between such sets for differing µ are not immediately clear. Partly to
determine the bijection, but also to understand the action of τ ×1, we apply µ×1 to the expression defining
Eσ

(µ× 1)Eσ =
∏
τ 6=σ

µα⊗ 1− 1⊗ τα

1⊗ σα− 1⊗ τα
= E(µ)

σ

On the other hand, applying µ× 1 to both sides of the identity

(β ⊗ 1) · Eσ = (1⊗ σβ) · Eσ

gives
(µβ ⊗ 1) · (µ× 1)Eσ = (1⊗ σβ) · (µ× 1)Eσ

Replace β by µ−1β and use (µ× 1)Eσ = E
(µ)
σ to obtain

(β ⊗ 1) · E(µ)
σ = (β ⊗ 1) · (µ× 1)Eσ = (β ⊗ 1) · E(µ)

σ = (1⊗ σµ−1β) · (µ× 1)Eσ = (1⊗ σµ−1β) · E(µ)
σ

This property uniquely characterizes Eσµ−1 , so we conclude that

(µ× 1)Eσ = Eσµ−1

19



Paul Garrett: Algebras and Involutions (February 19, 2005)

For applications we need a slightly more general version of the last computation, namely K ⊗k L with K
Galois over K and k ⊂ L ⊂ K. Let K have Galois group G over k, and let H be the subgroup of G fixing
L. Keeping the notation from just above, let

EHσ =
∑

µ∈Hσ

Eµ =
∑
η∈H

(1× η)Eσ

(The second equality follows from properties noted just above.) The second equality shows that EHσ lies in
the fixed subring in K ⊗k K of the Galois group {1} ×H. To be able to invoke ordinary Galois theory to
conclude that therefore EHσ lies in K ⊗k L ⊂ K ⊗k K, look at the preimage in k[x]⊗k K, namely

∑
µ∈H

∏
τ 6=σ

x⊗ 1− 1⊗ µτα

1⊗ µσα− 1⊗ µτα

Under the natural isomorphism k[x]⊗kK → K[x] this yields a polynomial with coefficients in the fixed field
L of H inside K. Thus, this entity is in L[x], which is in bijection with k[x]⊗k L, which maps to K ⊗k L as
desired. From the idempotent properties of the Eσ’s, it follows immediately that

{EHσ : Hσ ∈ H\G}

is a set of orthogonal idempotents. Their number, namely |G|/|H|, is equal to the known number of simple
factors in K⊗kL, namely [L : k], by Galois theory. Thus, this set is maximal. The action of G×{1} on these
idempotents follows from the previous determination of the action on the underlying idempotents. That is,

(τ × 1)EHσ = EHστ−1

Other salient properties follow similarly from the computations above for the underlying idempotents Eσ.

10. Crossed product construction of simple algebras

The crossed product construction given below yields all finite-dimensional central algebras over a field k, up
to isomorphism. Various aspects and refinements of this construction are used in the sequel.

Let k be a field, K a finite Galois extension of k with Galois group G. Let A be a (left) K-vectorspace with
(left) K-basis {eσ : σ ∈ G}, so

A =
⊕
σ∈G

K · eσ

We wish to construct a central k-algebra structure on A related to the natural action of G on the indices for
the K-basis and the action of G on K. For β ∈ K and σ, τ ∈ G, define

eσ β = βσ eσ

and
eσ eτ = f(σ, τ) eστ

for a K-valued function f on G × G with additional properties to be specified shortly. These operations
give a k-bilinear map A × A → A which is left K-linear in the first argument, although the requirement of
associativity surely puts a non-trivial condition on what f may be. It is clear that distributivity with respect
to addition is no problem, so we only need consider associativity of monomials βeσ with β ∈ K. In fact, it
is not hard to see that it suffices to consider associativity of monomials eσ, since the coefficients in K are
not an obstacle to associativity.

To lighten notation, we may write
fσ,τ = f(σ, τ)
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Computing, on one hand
(eσeτ )eµ = fσ,τ eστeµ = fσ,τfστ,µ eστµ

On the other hand,
eσ(eτeµ) = eστfτ,µetauµ = fσ

τ,µeσeτµ = fσ
τ,µfσ,τµeστµ

Thus, the associativity condition is equivalent to the so-called cocycle condition

fσ,τ fστ,µ = fσ
τ,µ fσ,τµ

(and such f is a cocycle). Since the fixed field of G in K is exactly k, it is easy to see that the center of
this algebra is exactly k. Write

A(k,K, f)

for the associative k-algebra defined as just above, assuming of course that f satisfies the cocycle condition.
Such A(k,K, f) is called a crossed product algebra.

The issue remains of testing for k-algebra isomorphism among these algebras constructed as crossed products.
First, we consider special sorts of (left) K-linear maps

Φ : A(k,K, f) → A(k,K, g)

of the form
Φ(
∑

σ

βσeσ) =
∑

σ

βσ ϕ(σ) eσ

for σ ∈ G, βσ ∈ K, where ϕ is a K×-valued function on the Galois group G. For such a map to be a ring
homomorphism, it evidently is necessary and sufficient that

Φ(eσ eτ ) = Φ(eσ) Φ(eτ )

That condition is

fσ,τ ϕ(στ) eστ = Φ(fσ,τ eστ ) = Φ(eσ eτ ) = Φ(eσ) Φ(eτ ) = ϕ(σ)eσ ϕ(τ)eτ = ϕ(σ)ϕ(τ)σ g(σ, τ) eσ eτ

Thus, the condition for this special sort of map to be a k-algebra isomorphism is

fσ,τ = ϕ(σ)ϕ(τ)σϕ(στ)−1 g(σ, τ)

Thus, the latter condition is sufficient for isomorphism A(k,K, f) → A(k,K, g), and is necessary for the
isomorphism to be of the special form indicated.

With this construction as motivation, define two-cochains

C2(G,K×) = { K×-valued functions on G×G }

which is an abelian group under pointwise multiplication. An element σ in the Galois group G acts on
two-cocycles f pointwise, namely, by

(σf)(µ, ν) = f(µ, ν)σ

The define the two-cocycles

Z2(G,K×) = {f ∈ C2(G,K×) : fσ,τ fστ,µ = fσ
τ,µ fσ,τµ}

(using lighter notation as above). Define the two-coboundaries

B2(G,K×) = {f ∈ C2(G,K×) : for some ϕ : G→ K× f(σ, τ) = ϕ(σ)ϕ(τ)σ ϕ(στ−1)}
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One may verify that B2(G,K×) ⊂ Z2(G,K×). The second cohomology group of G with coefficients in
K× is defined to be

H2(G,K×) = Z2(G,K×)/B2(G,K×)

We have just shown that the collection of associative k-algebra structures on A, modulo the special
isomorphisms above, is isomorphic to H2(G,K×). The next theorem in part shows that existence of an
arbitrary isomorphism implies the existence of an isomorphism of this special form.

Theorem:
• The centralizer of K in A(k,K, f) is K itself.
• Crossed products A(k,K, f) over k are central simple k-algebras.
• Two crossed product algebras A(k,K, f) and A(k,K, g) are isomorphic as central k-algebras if and only if
there is a central k-algebra isomorphism Φ of the form

Φ(eσ) = ϕ(σ) eσ

for σ ∈ G, where ϕ is a K-valued function on the Galois group G.

Proof: The multiplicative identity in A = A(k,K, f) is readily seen to be f−1
1,1 e1, where 1 is the identity in

G. The copy K · e1 of K in A is readily verified to be its own centralizer in A. To see that A is simple,
suppose J 6= A were a two-sided ideal, and let q : A → A/J be the quotient map. We claim that q is an
injection on the image K · e1 of K in A. If not, then (since K is a field) q(K · e1) = {0}, and therefore

q(A) = q(K ·A) = q(K · e1 ·A) = q(K · e1) · q(A) = 0 · q(A) = 0

Thus, indeed, q is an injection on K. Next, we claim that the elements q(eσ) are a K-basis for q(A) (which
would prove the injectivity of q, whence that J = {0}). Let∑

σ

βσ q(eσ) = 0

be a shortest non-trivial relation. Then ∑
σ

βσ eσ ∈ J

By right multiplication by some eτ we may suppose that β1 6= 0, and then that β1 = 1 by suitable left
multiplication by K×. Then right multiplication by α ∈ K× and left multiplication by α−1 gives

α−1(e1 +
∑
σ 6=1

βσ eσ)α = e1 +
∑
σ 6=1

α−1βσ ασ eσ ∈ J

Now note every α−1ασ can be 1 for α taken not in k, so we can subtract

e1 +
∑
σ 6=1

α−1ασ βσ eσ

from
e1 +

∑
σ 6=1

βσ eσ

to get a shorter non-trivial linear combination in J , contradiction. Thus, J = {0}, and A is simple.

Now we show that existence of a k-algebra isomorphism Ψ : A(k,K, f) → A(k,K, g) implies the existence of
an isomorphism of the special form above. By the Skolem-Noether theorem, there is γ ∈ B× so that

γΨ(K · e1)γ−1 = K · e1
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Thus, adjusting Ψ by this conjugation, we may assume without loss of generality that

Ψ(K · e1) = K · e1

Thus,
Ψ(β · e1) = βτ · e1

for some τ ∈ G. Invoking Skolem-Noether again, further adjusting Ψ so as to undue this Galois conjugation,
we may assume without loss of generality that Ψ is the identity on the imbedded copy of K in the two
algebras, namely

Ψ(β · e1) = β · e1
for β ∈ K. Then for β ∈ K, in A(k,K, g)

eσΨ(eσ)−1 Ψ(β · e1)Ψ(eσ)e−1
σ = eσΨ(e−1

σ β · e1eσ)e−1
σ = eσΨ(βσ−1

· e1)e−1
σ

= eσβ
σ−1

· e1e−1
σ = (βσ−1

)σ · e1 = β · e1
Since K · e1 is its own centralizer in A(k,K, g), it must be that eσΨ(eσ)−1 ∈ K · e1 for all σ ∈ G. That is,
Ψ is of the special form given above. ///

The previous theorem determines the isomorphism classes of crossed-product algebras constructed via a
Galois extension K of the central field k. The following shows that every finite-dimensional central simple
k-algebra occurs in such a construction, at least up to equivalence in the Brauer group.

Theorem: Let A be a finite-dimensional central simple k-algebra, and let K be a finite Galois extension
of k splitting A. Then there is a cocycle f so that

A(k,K, f) ∼ A

Proof: From above, A ≈ Mn(D) for some central division algebra D over k, and it must be that K splits
D. Therefore, from above, there is a matrix algebra A′ = Mm(D) into which K imbeds so as to be its own
centralizer, and then necessarily the k-dimension of A′ is [K : k]2. By Skolem-Noether, any automorphism
of K can be extended to an inner automorphism of A′. In particular, for all σ ∈ G there is eσ ∈ A′ so that
for all β ∈ K

βσ = eσ β e
−1
σ

For σ, τ ∈ G, define
f(σ, τ) = eσ eτ eστ ∈ A′

It is easy to check that this element f(σ, τ) of A′ commutes with every element of K, so lies in K. Since
multiplication in A′ is associative, this f satisfies the cocycle condition. We have the obvious non-zero
surjection of A(k,K, f) to the subalgebra

A′′ = {
∑
σ∈G

βσeσ}

which is an injection since A(k,K, f) is simple. By counting k-dimensions, A′′ = A′. Thus, we have
constructed a crossed product in the same Brauer group class as the given algebra A. ///

To complete the basic description of (equivalence classes of) finite-dimensional central simple k-algebras as
crossed products, we must examine the behavior of crossed products under tensor products over k.

Theorem:
A(k,K, f)⊗k A(k,K, g) ∼ A(k,K, fg)

That is, the tensor product of two crossed products is equivalent to the crossed product obtained by pointwise
multiplication of the cocycles.
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Proof: Let G be the Galois group of K over k, with [K : k] = n. Let α ∈ K be such that K = k(α), and as
earlier define a maximal orthogonal collection of idempotents in K ⊗k K, indexed by σ ∈ G, by

Eσ =
∏
τ 6=σ

α⊗ 1− 1⊗ τα

1⊗ σα− 1⊗ τα

In the tensor product B = A(k,K, f) ⊗k A(k,K, g), conjugation by any element eσ ⊗ τ stabilizes the
subalgebra K⊗kK, so must permute the simple factors K ·Eσ, and therefore must permute the idempotents
Eσ. Specifically, from the relation

(α⊗ β)Eσ = (αβσ ⊗ 1)Eσ

we have
(eσ ⊗ e1)Eτ (eσ ⊗ e1)−1 = Eστ

(e1 ⊗ eσ)Eτ (e1 ⊗ eσ)−1 = Eτσ−1

Now claim that
E1 (A(k,K, f)⊗k A(k,K, g))E1 ≈ A(k,K, fg)

To this end, we need a K-basis {vσ} so that the multiplication in those coordinates is obviously the same as
that in A(k,K, fg). Take vσ = E1(eσ ⊗ eσ)E1. The conjugation formula yields

vσ vτ = E1(eσ ⊗ eσ)E1E1(eτ ⊗ eτ )E1 = E1Eσ1σ−1(eσ ⊗ eσ)(eτ ⊗ eτ )E1

= E1E1(eσ ⊗ eσ)(eτ ⊗ eτ )E1 = E1(fσ,τeστ ⊗ gσ,τeστ )E1

Using the case σ = 1 of
(1⊗ α)Eσ = (ασ ⊗ 1)Eσ

the product becomes
E1fσ,τgσ,τ (eστ ⊗ eστ )E1

Giving E1BE1 the K-vectorspace structure arising from β → β ⊗ 1, this shows that

E1BE1 ≈ A(k,K, fg)

as desired. In fact, a similar computation shows that for any index σ we have EσBEσ ≈ A(k,K, fg).

To finish the proof, we must show that for a simple algebra B if there is a simple algebra C and a set of
orthogonal idempotents Eσ with EσBEσ ≈ C for all indices σ, then B is isomorphic to a matrix algebra
with entries in C. To prove this, let C = E1BE1. For any index σ, by Skolem-Noether there is z ∈ B× so
that EσBEσ = zCz−1. In particular, Eσ = zE1z. Thus,

EσBE1 = zE1z
−1BE1 = zE1BE1

Thus, the EσBE1’s are all isomorphic as right Copp-modules. now

EndCopp(E1BE1) = EndCoppC = C

so for every index σ
EndCoppEσBE1) ≈ C

Let R = B ⊗k C
opp act on

V = BE1 =
⊕

σ

EσBE1 ⊂ B

in the natural manner by
(α⊗ γ)(

∑
σ

EσβσE1) = α
∑

σ

EσβσE1 γ
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This yields a k-algebra homomorphism
ϕ : B → EndCoppV

Since 1V ∈ A, ϕ(A) is not 0. Since A is simple, A has no proper two-sided ideals, so ϕ is injective. As a
Copp-module, we saw that V is isomorphic to Cn, so EndCoppV ≈ Mn(C). Since B =

⊕
σ,τ EσBEτ , and

since EσBEτ ≈ C as Copp-modules, by counting k-dimensions we at last find that ϕ is an isomorphism of
B to the indicated matrix algebra over C. ///

Corollary: For a fixed finite Galois extension K of k, the map from H2(G,K×) to the Brauer group of k
given by f → A(k,K, f) is a bijective group homomorphism to the subgroup Br(k,K) of Br(k) consisting
of (equivalence classes of) finite-dimensional central simple k-algebras split by K. ///

A similar argument proves that extension of scalars behaves in a reasonable manner on crossed product
algebras.

Theorem: Let K be a finite Galois extension of the field k, with intermediate field E, and let H be the
subgroup of G so that E is the fixed field of H. Then, for any cocycle f , in the Brauer group of E we have
an equivalence of crossed product algebras

A(k,K, f)⊗ kE ∼ A(E,K, f |H×H)

where, as earlier, A(k,K, f) is the crossed product algebra constructed via the extension K of k and K×-
valued cocycle f on G×G, and f |H×H is the restriction of f to H ×H ⊂ G×G.

Proof: The technical aspects of the proof are very similar in nature to those in the determination of the
equivalence class of the tensor product of two crossed products over k. And, similarly, we need a preliminary
computation of tensor products of fields. Let A = A(k,K, f). As earlier, for σ ∈ G let

EHσ =
∑

µ∈Hσ

∏
τ 6=σ

α⊗ 1− 1⊗ µτα

1⊗ µσα− 1⊗ µτα

be a maximal orthogonal collection of idempotents in K ⊗k L ⊂ A ⊗k L. Let {eσ : σ ∈ G} be the usual
K-basis in the construction of A. Conjugation in A ⊗k L by eσ stabilizes K ⊗k L, so must permute the
idempotents EHτ (by the structure theorem applied to the commutative semi-simple L-algebra K⊗kL). Let

(eσ ⊗ 1)EHτ (eσ ⊗ 1)−1 = EHµ

for some Hµ ∈ H\G. We will determine Hµ via the characterization

(1⊗ νβ)EHν = (β ⊗ 1)EHµ

of EHν , for β ∈ L. On one hand,

(eσ ⊗ 1) (1⊗ τβ)EHτ (eσ ⊗ 1)−1 = (1⊗ τβ)EHµ

and on the other hand
(eσ ⊗ 1) (β ⊗ 1)EHτ (eσ ⊗ 1)−1 = (σβ ⊗ 1)EHµ

As (1⊗ τβ)EHτ = (β ⊗ 1)EHτ , upon replacing β by σ−1β we have

(1⊗ τσ−1β)EHµ = (β ⊗ 1)EHµ

From the characterization
(1⊗ νβ)EHν = (β ⊗ 1)EHν

we conclude that
(eσ ⊗ 1)EHτ (eσ ⊗ 1)−1 = EHτσ−1
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As this conjugation action is visibly transitive on the idempotents EHσ, all the subalgebras EHσ(A⊗kL)EHσ

are isomorphic as central L-algebras. As we saw in our earlier discussion of tensor products of crossed product
algebras, A ⊗k L is isomorphic to a matrix algebra over EH(A ⊗k L)EH . From the conjugation properties
just above, and from the orthogonality of the idempotents, we find that unless Hτ = Hµσ−1

EHτ (eσ ⊗ 1)EHµ = EHτ EHµσ−1 (eσ ⊗ 1) = 0

In particular, by counting dimensions, it must be that⊕
σ∈H

Keσ ⊗ L→ EH (
⊕
σ∈G

Keσ ⊗ L)EH

is an injection. Since K and L commute with EH , for στ ∈ H we have

EH(eσ ⊗ 1)EH · EH(eτ ⊗ 1)EH = EH(eσ ⊗ 1)(eτ ⊗ 1)EH

from which the theorem follows easily. ///

11. Cyclic algebra construction of simple algebras

Cyclic algebras are the special case of the crossed product construction in which the Galois extension K of
the base field k is cyclic (has cyclic Galois group). This special case is sufficiently general to treat the case
of p-adic fields, as we will see later. (The latter fact is certainly good news, since then the structure of finite-
dimensional central simple algebras over p-adic fields is more transparent than we might have expected.) In
this context we give a slightly frivolous proof of Wedderburn’s theorem that finite division rings are fields.
The element of frivolity resides in the fact that, while the result comes out very simply from discussion of
cyclic algebras, the result has a more elementary proof that is usually given. For finite-dimensional central
simple algebras constructed as cyclic algebras we can often understand completely the structure of the algebra
as a matrix algebra Mn(D) over a division algebra D. In particular, we can often give clear necessary and
conditions for cyclic algebras to be division algebras.

Let K be a cyclic finite Galois extension of the field k with Galois group generated by σ, with [K; k] = n.
Consider cocycles of the special form

f(σi, σj) =
{

1 for i+ j < n
γ for i+ j ≥ n

for some γ ∈ k×. Then the crossed product algebra A(k,K, f) is called a cyclic algebra. We write
C(k,K, γ) for this cyclic algebra.

Theorem: For cyclic Galois extensions K of k, all isomorphism classes of crossed product algebras
A(k,K, f) have representatives which are cyclic algebras. Further, the cyclic algebras C(k,K, γ) and
C(k,K, γ′) are isomorphic as k-algebras if and only if

γ/γ′ ∈ NormK/k(K×)

Indeed, depending upon the choice of generator of the Galois group, we have a group isomorphism

ϕK : H2(G,K×) ≈ Gr(k,K) ≈ k×/NormK/k(K×)

Proof: We keep the notation of the previous section on crossed products. Recall that, given a cocycle f ,
f(1, 1)−1e1 is the identity in the crossed product algebra A(k,K, f). Let

µi = (eσ)i (eσi)−1
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It is easy to check that µi centralizes (the image of) K, so lies in (the image of) K since we know that
maximal subfields are their own centralizers. Thus,

(eσ)i = µi eσi

expresses (eσ)i in terms of the basis eσj ’s. Thus, the elements

Ei = (eσ)i

are a K-basis for the algebra. Replacing eσi by Ei visibly transforms f into another cocycle of the form
asserted. The cocycle condition further shows that γ lies not merely in K×, but in k×.

As shown in the last section, two elements γ, γ′ give isomorphic algebras if and only if the corresponding
cocycles f and f ′ satisfy f/f ′ ∈ B2(G,K×). That is, there should be ϕ : G→ K× so that

(f/f ′)(σi, σj) = ϕ(σi)ϕ(σj)σi

ϕ(σi+j)−1

When f and f ′ are of the special form as above, this condition is

ϕ(σi)ϕ(σj)σi

ϕ(σi+j)−1 =
{

1 for i+ j < n
γ/γ′ hboxfori+ j < n

The first of these conditions is equivalent to the condition that ϕ(σ0) = 1, and for i < n− 1

ϕ(σi+1) = ϕ(σ)ϕ(σi)σ

That is, ϕ(σ) determines all the other values of ϕ. Inductively,

ϕ(σi) = ϕ(σ)ϕ(σ)σ ϕ(σ)σ2
ϕ(σ)σ3

. . . ϕ(σ)σi−1

Then the second condition becomes

1 = ϕ(σ0) = ϕ(σn) = (γ′/γ)ϕ(σ)ϕ(σn−1)σ = (γ′/γ) NormK/k(ϕ(σ))

This gives the indicated result.

That the obvious map of Br(k,K) to k×/NormK/k(K×) is a group homomorphism follows from the general
fact for arbitrary crossed products (above) that

A(k,K, f)⊗k A(k,K, g) ∼ A(k,K, fg)

This finishes the theorem. ///

Corollary: Every finite division ring is commutative, hence, is a field.

Proof: Let D be a finite division ring. Then D is finite-dimensional over its center k, which is a finite field.
Let K be a maximal subfield of D. From the theory of finite fields, the Galois group of K over k is cyclic.
From above, D is equivalent to a cyclic algebra constructed via K. But norms on finite fields are surjective,
so Br(k,K) ≈ {1}. That is, D = k. ///

Corollary: Suppose that K is cyclic Galois over k with Galois group G of order N generated by σ, and
A = A(k,K, f) the simple algebra with cocycle f defined (for fixed γ ∈ k×) by

f(σi, σj) =
{

1 for i+ j < N
γ for i+ j ≥ N
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Let d be the smallest positive integer so that

γd ∈ NormK/kK
×

Then in the Brauer group of k we have A ∼ D for a central division algebra D over k of dimension d2. In
particular, A itself is a division algebra if and only if N is the least positive integer so that γN is a norm
from K.

Proof: Let L be an intermediate field between k and K, so that K has Galois group H over L. Let
B = A(L,K, f) be the central simple algebra over L defined via the restriction of the cocycle f to H ×H.
We have seen that B is split if and only if γ ∈ NormK/LK

×, and also A⊗k L ∼ B. Thus, A splits over L if
and only if γ lies in NormK/LK

×.

We claim that if γd = NormK/kε with ε ∈ K×, then d divides [K : k] = N . Indeed, write the greatest
common divisor δ of d and N as δ = rd+ sN with integers r, s, and then

NormK/k(εr γs) = γdr γNs = γδ

Thus, as K is cyclic over k, there is an intermediate field L with [L : k] = d, and γ = NormK/Lε. That is,
L splits A. Therefore, A is isomorphic to a matrix algebra over a central division algebra D over k with the
k-dimension of D at most d2. On the other hand, if D were of dimension n2 with n < d, then D would be
split by an intermediate field L of degree n over k. Then NormK/Lη = γ for some η ∈ K×.

NormK/kη = NormL/k NormK/Lη = γn

Therefore, in fact d divides [L : k], and D is of dimension exactly d2 over k. ///

Proposition: Let K be a Galois extension of k with Galois group G, and let L be a field extension of k
linearly disjoint from K over k. Identify K⊗kL with a compositum KL of K and L in some field containing
k. Identify G with the Galois group of KL over L, by

σ(x⊗ y) = σx⊗ y

Then, for any K×-valued cocycle f on G×G,

A(k,K, f)⊗k L ≈ A(L,KL, f)

Proof: The linear disjointness assures that any compositum of K and L is indeed isomorphic to K ⊗k L.
Consider the left K-linear map

ϕ : A(k,K, f)⊗k L→ A(L,KL, f)

given by
ϕ(eσ ⊗ x) = xẽσ

where x ∈ L, {eσ} is the K-basis used to construct A(k,K, f), and {ẽσ} is the KL-basis used to construct
A(L,KL, f). Since x ∈ L commutes with the ẽσ’s, this map is also L-linear. All that remains to check is
that

ϕ((eσ ⊗ 1)(eτ ⊗ 1)) = ẽσ ẽτ

Indeed,

ϕ((eσ ⊗ 1)(eτ ⊗ 1)) = ϕ(f(σ, τ) (eστ ⊗ 1)) = f(σ, τ) ph(eστ ⊗ 1)) = f(σ, τ) ẽστ = ẽσ ẽτ

as desired. ///

12. Quaternion algebras
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Four-dimensional central simple algebras play a special role, in part because they have a canonical involution
of first kind. This construction is purely algebraic and is therefore completely general. Recall that it followed
from the Skolem-Noether theorem every other involution of first kind differs from a given one by conjugation.

For us, a quaternion algebra over a field k is a central simple algebra of dimension 4 over k. We showed
via the crossed product construction that every n2-dimensional central simple algebra over a field is split by
a separable extension of degree n over the center. Thus, quaternion algebras are split by separable quadratic
extensions, which are necessarily cyclic. Thus, quaternion algebras are always cyclic algebras.

Proposition: Let B be a quaternion algebra over a field k. There is an involution of first kind, the main
involution \, given by

β\ = reduced traceβ − β

We have
reduced traceβ = β + β\

reduced normβ = β · β\

Proof: We must show that the map β → β\ is an involution and is trivial on the center k. If would suffice
to prove these assertions for B ⊗k K where K is a field extension of k splitting B. We know that B ⊗k K
is a two-by-two matrix algebra over K. Reduced trace respects tensor products, so the K-linear extension
of \ is still given by the same expression, with reduced trace being the reduced trace in the matrix algebra.
Then we observe that (

a b
c d

)\

=
(

0 −1
1 0

)(
a b
c d

)>( 0 −1
1 0

)−1

Since transpose is an involution, this proves that \ is an involution. Triviality on the center is clear. (The
fact that reduced norm is given by the indicated formula is also easy.) ///

13. Examples

The cyclic algebra construction makes possible some relatively straightforward construction of division
algebras of dimension N2 over Q for arbitrary integers N . And, using Galois extensions with dihedral
Galois groups, the crossed product construction yields examples of algebras with involutions of second kind.

Fix a positive integer N , and let q be a prime congruent to 1 modulo n. (By Dirichlet’s theorem on primes in
arithmetic progressions there are infinitely many such q.) Let E be the field generated over Q by a primitive
qth root of unity, and let K be the subfield of E which is cyclic over Q of degree n, with Galois group
generated by σ. For γ ∈ Q×, we have the cyclic algebra

A(γ) = A(Q,K, f)

given by

f(σi, σj) =
{

1 for i+ j < n
γ for i+ j ≥ n

We saw above that A(γ) is a division algebra if and only if ` = n is the smallest positive integer so that γ`

is a norm from K.

Proposition: Let p be a prime number so that p generates the cyclic group (Z/q)×. (By Dirichlet’s
theorem, there are infinitely many such primes congruent to a given primitive root modulo q.) Then the
cyclic algebra A(p) described just above is a central division algebra over Q of dimension n2.

Proof: The condition on p is that ` = q − 1 is the smallest positive integer so that p` = 1 mod q. That
is, ` = q − 1 is the smallest integer so that q divides p` − 1, which is to say that ` = q − 1 is the smallest
integers so that a finite field with p` elements contains a primitive qth root of unity. Thus, by elementary
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algebraic number theory, p remains prime in the ring of integers of E, hence in the ring of integers of the
sub-extension K. Thus, by unique factorization of ideals in the ring of integers of K, n is the smallest so
that pn is a norm from K. ///

Corollary: There are infinitely-many non-isomorphic central division algebras of dimension n2 over Q. In
particular, the cyclic algebras A(p) of the previous proposition are mutually non-isomorphic.

Proof: By Dirichlet’s theorem, there are infinitely many primes p as in the statement of the previous
proposition. We have seen that the cyclic algebras A(p) and A(p′) are equivalent in the Brauer group of Q
if and only if p/p′ is a norm from the field K above. If there were a fractional ideal a of the integers o of K
so that

NormK/Qa =
p

p′
· Z

then
(p′o)

∏
σ

σa = po

where σ runs over the Galois group of K over Q. By hypothesis, po and po are distinct prime ideals in
o, and are stable under the Galois action. By unique factorization of ideals in the Dedekind domain o it
must be that po divides some σa, hence (by Galois stability) divides every σa. But then pN divides Norma,
contradiction. ///

Previous discussions have reduced questions about involutions on simple algebras to corresponding questions
about involutions on division algebras, without explicitly demonstrating any involutions on division algebras.
Above we saw that 4-dimensional simple algebras (quaternion algebras) always have an involution of first
kind, the main involution. This is a general and purely algebraic construct. On the other hand, we will
also see later that over local fields there are no non-commutative central division algebras with involutions
of second kind. Anticipating this, we might imagine that involutions of second kind are harder to come by
than those of first kind, and that we cannot manufacture involutions of second kind in a purely algebraic
fashion (that is, over an arbitrary field).

Nevertheless, again using some number theory, we can exhibit a family of examples of algebras with involution
of second kind, depending upon construction of Galois extension with dihedral Galois group, that is, with
Galois group having presentation

σn = 1 τ2 = 1 τστ = σ−1

Proposition: Let K be a Galois extension of a field ko with dihedral Galois group with generators σ, τ
with σn = 1 as just above. Let k be the subfield of K fixed by σ. Suppose that there is an element γ of k×o
so that the smallest positive ` so that γ` is a norm from K is ` = n. Then the cyclic algebra B = A(k,K, f)
over k defined via

B =
⊕

0≤i<n K · πi

πβπ−1 = βσ for β ∈ K
πn = γ

is a division algebra. The map x→ x\ on B defined for β ∈ K and 0 ≤ i < n by

(βπi)\ = πiβτ

is an involution of second kind on B, whose fixed field in the center k of B is ko.

Proof: The hypotheses are designed to assure that B is a division algebra. We must verify that x → x\ is
an involution, that is, that

((απi) (βπj))\ = (βπj)\ (απi)\

Since a factor of α\ comes out on the right, and a factor of πj comes out on the left, it suffices to check the
somewhat simpler version

(πiβ)\ = β\ (πi)\

30



Paul Garrett: Algebras and Involutions (February 19, 2005)

First, with β = 1 and i = n (so that πi = γ) we find the condition γτ = γ, that is, that γ ∈ ko, which we
have also taken as a hypothesis. For 0 ≤ i < n, the right hand side of the desired quality is

(πiβ)\ = (βσi

πi)\ = πi βσiτ = βσiτσi

πi

On the other hand, by the definition of \ applied to the left-hand side of the desired equality, we obtain
βτπi. Thus, we want

τ = σi τ σi

which indeed follows immediately from τστ = σ−1. ///

We can find a situation meeting the hypotheses of the proposition as follows. Fix an integer n, let ζn be a
primitive nth root of unity, and let ξn = ζn + ζ−1

n , k = Q(ζn), ko = Q(ξn). Let p be a rational prime which
splits completely in k, that is, p = 1 mod n. (By Dirichlet’s theorem on primes in arithmetic progressions
there are infinitely-many such.) Let D be a squarefree rational integer which is a primitive root modulo p,
and which is relatively prime to n. Let

K = k(D1/n)

We claim that K is a dihedral extension of ko, and that the cyclic algebra A(p) = A(k,K, f) given by cocycle

f(σi, σj) =
{

1 for i+ j <
p for i+ j ≥ n

as above is a division algebra.

To see that K is a dihedral extension of ko, first not that p splits completely in the extension k of Q. Then the
hypothesis that D is a primitive root modulo p guarantees that D1n generates a residue class field extension
of degree n over any prime pi lying over p in k. Thus, the field extension K/k is of degree at least n, hence
of degree n. Then the Galois action over k multiplies D1/n by powers of ζn. The Galois action over ko sends
ζn → ζ−1

n , so the Galois group of K/ko is dihedral as desired.

To see that A(p) is a division algebra, as above we must verify that pi is not a norm from K to k for
1 ≤ i < n. Recall that we chose p depending on n so that p splits completely into prime ideals pi in k/Q
each of which has residue class field Z/p. And the choice of D is designed to assure that D1/n generates a
residue class field extension of Z/p of degree n. Thus, the primes p lying over p in k remain prime in K.
For there to exist β ∈ K so that pi = NormK/kβ it is necessary (though not sufficient) that there be a prime
ideal in K lying over p with residue class field extension of degree i over Z/p, but we have arranged that the
residue class field extension degree is n. Thus, pi is not a norm for 1 ≤ i < n, and A(p) is a division algebra.

Thus, by the proposition, A(p) has involution of second kind with central fixed field ko.

Remark: The above construction of non-trivial division algebras with involutions of second kind fails over
local fields such as Qp, since for p = 1 mod n the nth roots of unity already lie inside Qp, so we do not obtain
a dihedral Galois extension in the first place.

14. Unramified extensions of local fields

Here and in the sequel by ‘local field’ we mean a local field in the usual number-theoretic sense, namely a
locally compact (but not discrete) field. It is a standard result that the class of such things consists exactly of
finite algebraic extensions of a completion of Q and finite algebraic extensions of function fields Fp(x) in one
variable x over finite fields Fp. In particular, we include R and C as ‘archimedean’ local fields, although these
sometimes require separate treatment. When necessary, ‘non-archimedean local field’ or ‘ultrametric local
field’ will refer to all local fields other than R and C. Note that this usage excludes more general fraction
fields of complete discrete valuation rings. For ultrametric local fields, local compactness is equivalent to
finiteness of residue class fields. The local compactness (or finiteness of residue class fields) is essential for
many topological arguments, and for use of Haar measure, which we will need in the sequel.
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The following well-known result is sufficiently important that we include it.

Theorem: Let k be an ultrametric local field, and fix a positive integer n. Then there is a unique unramified
(separable) extension K of k of degree n, which is cyclic Galois and generated by suitable roots of unity.
Further, the norm from K to k is a surjection on the local units.

Proof: For existence, let ζ be a pth root of unity with p a rational prime not the characteristic of k,
and p = 1 mod n (invoking Dirichlet’s theorem). Elementary algebraic number theory shows that k(ζ) is
unramified (separable) over k, is cyclic Galois, and thus has a subfield of degree n over k.

For uniqueness, let K be an unramified (separable) extension of k. Then, by algebraic number theory, the
Galois closure of K over K is also unramified over k, so without loss of generality we may consider the case
that K is unramified and Galois over k. Then by algebraic number theory, using the unramified-ness, the
Galois group of K over k is the decomposition group of P over p, where p is the prime in k and P is the
prime lying over it in K. The finiteness of the residue class fields assures that this Galois group is cyclic,
so the Galois group of K over k is cyclic. Let m be the cardinality of the finite group (O/P )×, where O is
the ring of integers in K. Let ϕ be the mth cyclotomic polynomial. Necessarily m is prime to the residue
characteristic of k, so ϕ factors modulo p as

∏
i ϕi where each ϕi is of degree n. By Hensel’s lemma, ϕ

factors in such manner over k. That is, a Galois unramified extension of k is cyclic and is generated over k
by a root of unity. Thus, every unramified extension of k is in fact cyclic. And then recapitulation of this
argument shows that K is generated by a root of unity.

To show that the norm from K to k is surjective when restricted to a map O× → o× on the local units,
where O and o are the local rings of integers, We first reprove the even more elementary fact that norms
O/P → o/p are surjective on finite fields. Let q be the cardinality of o/p, and n the degree of the field
extension. Then the finite-field norm has an explicit expression in terms of powers of the Frobenius β → βq,
given by

Norm(β) = β · βq · βq2
· . . . · βqn−2

· βqn−1

= β1+q+q2+...+qn−1
= β

qn−1
q−1

The whole group (O/P)× is cyclic of order qn − 1, so the image has order q − 1. The image also is inside
(o/p)×, so must be the whole thing. This proves surjectivity of norms on finite fields. Similarly, trace on
finite fields is surjective.

Given the latter result, to prove surjectivity of the norm O× → o× it would suffice to prove surjectivity to
the subgroup

{α ∈ o : α = 1 mod p}

To this end, let $ be a local parameter in o, and observe that for x ∈ O we have

Norm(1 + x$i) = 1 + tr (x) ·$i mod $i+1

for i > 0, where tr is trace. Since trace is surjective on finite fields, this shows the surjectivity modulo pi

for every i, and, by taking limits, proves the surjectivity. ///

15. Division algebras over local fields, Brauer groups

The previous discussion of simple algebras was entirely algebraic, not relying upon any special properties
of the central field k. By contrast, now we will make use of topological aspects of the central field. First
we dispatch the archimedean cases, R, C, and the Hamiltonian quaternions H, and then treat the more
interesting non-archimedean case.

Since C is algebraically closed, the only finite-dimensional central division algebra over C is just C itself.

The only proper algebraic extension of R is C. Since every n2-dimensional central division algebra over R
is split by a finite field extension of R of degree n, the only candidate for n (other than 1) is 2. The latter
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is a necessarily a cyclic algebra, constructed via the quadratic extension C of R. Since the norms from C
to R are of index 2, there is a unique isomorphism class of quaternion division algebras with center R. The
cyclic algebra description is

A = C · 1⊕C · π

where for β ∈ C
π · β = β̄π

where the overbar is complex conjugation. This construction yields the usual Hamiltonian quaternions H.

Now consider an ultrametric (locally compact, not discrete) field k, with ring of integers o and maximal
ideal p. Let p be the characteristic of o/p, and let q be the cardinality of o/p. Let A be a finite-dimensional
central simple algebra over k, of dimension d2. Let µ be a fixed additive Haar measure on A, and define the
modular function ∆ on α ∈ A by

µ(αE) = ∆(α) · µ(E)

for every measurable set E in A. From the definition, for any x, y ∈ A

∆(xy) = ∆(x) ·∆(y)

Define
O = {β ∈ A : ∆(β) ≤ 1}

P = {β ∈ A : ∆(β) < 1}

U = {β ∈ A : ∆(β) = 1}

For any subfield K of A (containing k), the algebra A is a finite-dimensional K-vectorspace, so is isomorphic
as topological vectorspace to a cartesian product of some number m of copies of K. Thus, the Haar measure
on A is (the completion of) the product measure on these copies of K. Thus, for β ∈ K,

∆(β) = ∆K(β)m

where ∆K(β) is the modular function on K. From elementary algebraic number theory the latter is an
ultrametric metric on K.

The following result uses ∆ to distinguish division algebras from general simple algebras.

Proposition: The ultrametric property

∆(x+ y) ≤ max(∆(x),∆(y))

holds if and only if A is a division algebra. In that case, O is the unique maximal compact subring of A,
U = Q×, and P is the unique maximal left ideal in O. Also, P is the unique maximal two-sided (and right)
ideal in O. The quotient O/P is a finite field extension of o/p. There is a local parameter $ ∈ O so that
P = $O = O$.

Proof: The local compactness of k and the finite-dimensionality of A assures that A is locally compact. The
algebra A is a division algebra if and only if for every α ∈ A the ring k(α) is a field. In that case, as observed
above, ∆ restricted to k(α) is necessarily an ultrametric absolute value, so for all x, y ∈ A×

∆(x+ y) = ∆(x(1 + x−1y)) = ∆(x) ∆(1 + x−1y) ≤ ∆(x) max(∆(1),∆(x−1y))

= max(∆(x),∆(x)∆(x−1y)) = max(∆(x),∆(y))

using the ultrametric property in k(x−1y). (If A is not a division algebra, it is easy to give counterexamples
to the ultrametric property for ∆.)

The ultrametric inquality (together with multiplicativity) assures that O is a ring. It is easy to verify that the
function ∆ is continuous on A, so is bounded on any compact subring R of A. Since ∆ is also multiplicative,
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any compact subring must be contained in O. To see that O is compact, note that for α ∈ O the restriction
of ∆ to k(α) shows that α lies in the integers of k(α), which is a compact subring of A.

If ∆(α) = 1, then α 6= 0, so α is invertible in A, and ∆(α−1) = 1 by multiplicativity. Thus, α ∈ O×.

Thus, any proper left (or right, or two-sided) ideal J in O cannot contain any element α with ∆(α) = 1.
The ultrametric property shows that P is an additive subgroup of O, and then the multiplicative property
shows that it is an ideal in O. Thus, P is the unique maximal left, right, or two-sided ideal.

Then O/P is a division ring. The open-ness of P implies that O/P is discrete. The compactness of O implies
that O/P is compact. Together, we find that O/P is finite. Since finite division rings are fields, O/P is a
field.

Since k is ultrametric and locally compact, for every α ∈ A ∆ restricted to k(α) is discretely valued, and
the set of values on k(α) is contained in the eth roots of the values of ∆ on k for some divisor e of [k(α) : k],
by basic number theory. If dimk A = n2, then all these field extension degrees [k(α) : k] are divisors of n, so
the set of non-zero values of ∆ is a discrete (closed) subset of (0,∞). We note that any (non-trivial) such
group is a free group on one generator.

Let $ be in O with maximal value ∆($) less than 1. Given x 6= 0 in A there is a unique integer ` so that

∆(x) = ∆($)`

Then $−`x ∈ O×. In particular, P = $O = O$. ///

Theorem: Let D be a finite-dimensional central division algebras over an ultrametric field k. The limit

ω(x) = lim
n→∞

xqn

exists for x ∈ O. The set M = ω(Oto, es) is a cyclic subgroup of D× order q − 1 where q = cardO/P. The
group M is a maximal finite abelian subgroup of D×. The set M ∪ {0} is a set of representatives for O/P.
There is a generator $ for P so that $M$−1 = M .

Proof: First, for x ∈ O×, we claim that the limit

ω(x) = lim
n→∞

xqn

exists. Write
ω(x) = x+ (xq − x) + (xq2

− xq) + (xq3
− xq2

) + . . .

Since the absolute value is ultrametic, the series on the right-hand side converges if the terms go to 0. And

xqn+1
− xqn

= xqn

· (xqn+1−qn

− 1) = xqn

·
(
(xq−1)qn

− 1
)

Since O/P is a finite field with q elements

xq−1 = 1 mod P

Let xq−1 = 1 + y$i with y ∈ O and i ≥ 1. By the binomial theorem

(xq−1)q − 1 = qy$i mod $2i

Whether the base field k is of characteristic 0 or is of characteristic p dividing q, $ divides q, and we have

(xq−1)q = 1 mod $i+1

Thus, as n→∞,
(xq−1)qn

→ 1
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Thus, the limit ω(x) exists for x ∈ O, and the expression above also shows that ω(x) = x mod P.

For x ∈ P the limit is obviously 0, and for x ∈ 1 + P it is obviously 1. If x, y ∈ O commute, then also

ω(xy) = ω(x)ω(y)

In particular, for x ∈ O×
ω(x)q−1 = ω(xq−1) = 1

From these facts, the collection {ω(x) : x ∈ O×} of images by ω is a cyclic group M of order q − 1 inside
O×.

On the other hand, if G were any finite subgroup of D×, then G ⊂ O×, since ∆ is multiplicative. For G of
order m prime to p, let q be of order N in (Z/m)×. Then gm = 1 for g ∈ G (by Lagrange’s theorem) implies
that for every k ∈ Z we have qkN = 1 mod m, so

gqkN

= g

Thus, by the series expression for it, ω(g) = g. In particular, g = 1 mod P implies g = 1, and thus the
quotient map from G to (O/P)× is injective. This proves the indicated maximality of M .

Last, we must find a local parameter normalizing M . For any α ∈ D× the map x→ αxα−1 stabilizes O and
P, so gives an automorphism λ(α) of the finite field O/P. If α ∈ O×, then for x ∈ O

λ(α)(x+ P) = αxα−1 + P = (α+ P)(x+ P)(α+ P)−1 = x+ P

since O/P is commutative. From this,
λ(α) = λ($ordα)

where ordα is the integer so that α ∈ $`P. Since the field P/P is finite, there is an integer m such that for
all x ∈ O

λ($)x = $x$−1 = xpm

mod P

That is,
$x = xpm

$ mod P2

Then define
π =

∑
µ∈M

αpm

$α−1 =
∑
µ∈M

$αα−1 = (q − 1)$ = −$ mod P2

So π is also a local parameter, λ(π) = λ($), and π normalizes M . ///

Corollary: With M and π as in the theorem, every x ∈ D× has a unique expression of the form

x =
∑
i≥m

αi π
i

with αi ∈M , and where m is the uniquely determined integer so that

x ∈ πm · O×

Proof: If x ∈ O×, then αo = ω(x) ∈ M satisfies α = x mod P, and by the theorem is uniquely determined
in M by this property. Thus, generally, if x ∈ πmO× then π−mx ∈ Otimes has αm uniquely determined.
Induction gives the result. ///

Theorem: Let D be a finite-dimensional central division algebra over k for an ultrametric local field k.
Let D be of dimension d2 over k. Let o be the local integers in k, and O the maximal compact subring in
D. There is a subfield K of D of degree d and unramified over k. Let õ be the local integers in K. There
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is a local parameter π in O so that πd is a local parameter in k, so that {1, π, . . . , πd−1} generates O as an
õ-module, and so that the map α→ παπ−1 stabilizes K and generates the Galois group action on K over k.

Remark: Thus, D is a cyclic algebra A(k,K, f) over k, since the unique unramified extension of k of degree
d is cyclic over k. And the theorem says that the cocycle is

f(σi, σj) =
{

1 for i+ j < d
πd for i+ j ≥ d

for suitable generator σ of the Galois group of K over k. Note that πd is some prime element in k. Also
note that implicit in this is a specification of generator σ for the Galois group. Finally, a converse to this
theorem is clear, namely that every such cocycle yields a division algebra.

Proof: Let M be the finite cyclic group inside O× as in the theorem above. Let K = k(M), and let
n = [K : k]. Since this field extension is generated by roots of unity of order prime to the residue field
characteristic, by elementary algebraic number theory it is unramified, and the ring of integers in K is
õ = o[M ]. (We will prove that K is a maximal subfield of D.)

From the previous corollary expressing elements of D as infinite sums
∑

i αiπ
i with αi ∈ M , an element

y ∈ D is in the center k of D if and only if it commutes with every element of M , and with π. Because
M is finite, conjugation with some positive power πν is the trivial automorphism on M . Let ν be the least
such positive integer. Then πν commutes with π and with every element of M , so lies in k. For any smaller
power π` of π to lie in k would entail that π` commute with all elements of M , but ν was taken to be the
smallest. Thus, ν is also definable as being the smallest positive integer so that πν lies in k.

Then any expression
∑

i αi(πν)i with αi ∈ M ∪ {0} is in K, since the powers (πν)i of πν are in k, and
K = k(M). Then ∑

i

αiπ
i =

∑
0≤j<ν

(∑
i

αj+iν (πν)i

)
πj

expresses any element of D as a linear combination over K = k(M) of the elements 1, π, π2, . . . , πν−1.

By the uniqueness of the expansions β =
∑

i αiπ
i for β ∈ D, conjugation by π shows that β is in k if and

only if the expansion is actually of the form

β =
∑

i

αi(πν)i

and with all αi ∈ (M ∪ {0}) ∩ k. In particular, this shows that ∆(πν) = ∆(π)ν is largest value of ∆ on k
less than 1, so πν is a local parameter in k. From this (and from the ultrametric property) it follows that
1, π, π2, . . . , πν−1 are linearly independent over k. Thus, k(π) is a subfield of D, with [k(π) : k] = ν. Since
any subfield of D has degree over k less than or equal d, we find ν ≤ d. For the same reason, [K : k] ≤ d.
At the same time, the existence of expressions

∑
i αiπ

i for elements of D shows that nν ≥ d2. Thus,

n = ν = d

That is, K is indeed a maximal subfield of D. ///

Corollary: Over a non-archimedean local field k there is a unique quaternion division algebra up to
isomorphism.

Proof: We know that any quaternion division algebra is obtained as a cyclic algebra over the unique
unramified quadratic extension K of k, with cocycle

f(σi, σj) =
{

1 for i+ j < 2
$ for i+ j ≥ 2
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where $ is a local parameter in k. The parameter γ must not be a norm from K, and it is only the
equivalence class of $ modulo norms from K that determines the isomorphism class of the division algebra.
Since the extension is unramified, the norm is onto the local units (as recalled earlier), and, further, since
the extension is quadratic the index k×/NormK/k(K×) is exactly 2. Thus, up to norms, there is a unique
non-norm. ///

Corollary: A quaternion division algebraD over a non-archimedean local field k is split by every (separable)
quadratic extension E of k.

Proof: We use the fact proven earlier that a field extension of degree n splits a division algebra of dimension
n2 if and only if the field imbeds as a (maximal) subfield of the division algebra. Thus, E splits D if and
only if it imbeds in D. If E is the unramified quadratic extension, then we have already constructed D as
a cyclic algebra over E, so E imbeds into D. If, on the other hand, E is ramified over k, then E is linearly
disjoint from the unramified quadratic extension K. Thus, E ⊗k K is a field isomorphic to a compositum
KE of E and K, and D ⊗k E is a cyclic algebra defined via the unramified quadratic extension KE of E.
But now the parameter γ occurring in the cocycle

f(σi, σj) =
{

1 for i+ j < 2
$ for i+ j ≥ 2

has order 2 in E, due to the ramification of E over K. Thus, by the surjectivity of norms on local units, γ
is a norm from KE to E, and the algebra is split by E. ///

Corollary: In the situation of the theorem, let o be the integers of k. Define the dual module O∗ to O
with respect to reduced trace tr by

O∗ = {x ∈ D : tr (xO) ⊂ o}

Then
O∗ = π1−d · O = ·Oπ1−d

Proof: Since {1 pi, π2, . . . , πd−1} is a K-basis for D, and since πi ∈ k if and only if i = 0 mod d, for 1 ≤ i < d
we have

(full trace of left multiplication by απi on D = 0

Thus, the reduced trace is also 0 on such elements. On the other hand, the restriction of the reduced trace
on D to K is equal to the Galois trace from K to k. For x ∈ D, we may write

x =
∑

0≤i<d

αi π
−i

with αi ∈ K. Then for β in the ring of integers õ of K, and with 0 ≤ j < d,

tr (x · βπj) = tr (
∑

i

αiπ
−iβπj) = tr (

∑
i

αiπ
−iβπiπj−i) = tr (αjπ

−jβπj)

The latter is a Galois trace, and K is unramified over k, so the trace is in the integers of k if and only if
αj ∈ õ. Thus,

O∗ = {
∑

0≤i<d

αi π
−i : αj ∈ õ}

which is what the corollary asserts. ///

Corollary: Let A be a finite-dimensional central simple algebra over k, isomorphic to a matrix algebra
over a central division algebra D over k of dimension d2. Let π be a prime element of the maximal compact

37



Paul Garrett: Algebras and Involutions (February 19, 2005)

subring O of D, and let R be the subring of A consisting of matrices with entries in O. Let tr be reduced
trace. Let o be the integers in k. Then

{x ∈ A : tr (xO) ⊂ o} = π1−dR = π1−dR

Proof: This follows from the previous corollary by simple matrix computations. ///

Now we can use the general algebraic results on cyclic algebras to give a complete description of the Brauer
group of a non-archimedean local field. We recall that the cyclic Galois group of an unramified extension K
of a non-archimedean local field k, where the latter’s residue class field has q elements, is generated by the
Frobenius automorphism σ defined by

ασ = αq mod m

where m is the maximal ideal in the integers o of k.

Theorem: The Brauer group Br(k) of a non-archimedean local field k is canonically isomorphic to Q/Z.
Elements of Br(k) of order n are represented by division algebras of dimension n2 over k.

Proof: We have already seen that every division algebra is split by an unramified extension, and that the
subgroup Br(k,Kn) of Br(k) consisting of algebras split by the unique unramified extension Kn of degree
n over k is isomorphic to k×/NormKn/kK

×
n as follows. Let σ be the Frobenious automorphism of Kn over

k. (As n varies, all these are compatible!) We use cocycle f = fγ on the Galois group of Kn over k given
(as above) by

f(σi, σj) =
{

1 for i+ j < n
$ for i+ j ≥ n

Let A(γ) be the cyclic algebra so specified. Then the map

A(γ) → γ · (NormKn/kK
×
n )

is an isomorphism of the group Br(k,Kn) to k×/NormKn/kK
×
n .

Recall also that such a norm map is a surjection to local units o× in k, for any finite unramified extension.
Thus, any one of these quotients k×/NormKn/kK

×
n is a quotient of k×/o× ≈ Z. Choose a local parameter

$ in k (This choice is not canonical, but the image in k×/o× ≈ Z is canonical.) Then

Br(k,Kn) ≈ k×/NormKn/kK
×
n ≈ $Z/$nZ ≈ Z/nZ ≈ n−1Z /Z ⊂ Z/Z

The injections Br(k,Kn) → Br(k,KN ) for n|N all fit together to give

Br(k) ≈
⋃
n

n−1Z /Z = Q/Z

as claimed. ///

16. Local splitting almost everywhere

The important result here is easy in the context of facts developed above. The converse, while true, is
significantly deeper and difficult to prove.

Recall that a number field is a finite field extension of the rationals Q, while a function field (in this
context) is a finite field extension of a function field in one variable Fp(T ) over a finite field Fp. A global
field is either a number field or a function field.

Theorem: Let A be a finite-dimensional central simple algebra over a global field k. For all but finitely
many places v of k, the completion kv splits A. That is, for almost all places v,

A⊗k kv ≈ a matrix algebra over kv
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Further, let ei be a k-basis for A. Then, for almost all (non-archimedean) places v of k, the set Ov =
∑

i ov ·ei

is a maximal compact subring of A⊗k kv, where ov is the ring of local integers in the completion kv.

Proof: Let O =
∑

i o · ei. This set will not necessarily be a subring of the algebra A, but that is irrelevant.
Let tr be reduced trace, and define a dual module

O′ = {x ∈ A : tr (xy) ∈ o for all y ∈ O}

This dual module is certainly a finitely-generated o module inside A (although it need not be a free o-module).

For almost all (finite) places v, the finitely many structure constants cijµ describing the multiplication in A
in the coordinates ei, given by

ei · ej =
∑

µ

cijµ eµ

are locally integral at v. Thus, at such v, O⊗o ov is contained in a compact subring Rv of A⊗k kv. Further,
for almost all finite places v we have the self-duality

O′ ⊗o ov = O ⊗o ov

because the o generators for O′ are expressed in terms of the ei with a finite set of coefficients all integral
at v.

Since always
O ⊗o ov ⊂ Rv ⊂ O′ ⊗o ov

we conclude that at almost all v we have equality

O ⊗o ov = Rv = O′ ⊗o ov

That is, O⊗o ov is a maximal compact subring and is self-dual with respect to trace. From the last corollary
in the previous section, this is impossible unless the algebra A ⊗k kv is split. That is, almost everywhere
locally A is split. ///

17. Involutions on division algebras over local fields

Now we classify involutions on finite-dimensional central division algebras over local fields of characteristic
not 2.

As usual, the case of an archimedean local field k is very easy. If k = C, then there are no proper finite-
dimensional division algebras anyway. If k = R, then there is a unique proper finite-dimensional central
division algebra, the ring of Hamiltonian quaternions, which has its main involution (which is of first kind).

Theorem: Let D be a finite-dimensional central division algebra over a non-archimedean local field k.
Suppose that D has an involution θ. Then one of the following cases occurs:
• D = k and θ is trivial.
• D = k and θ is a field automorphism of order 2.
• D is the unique quaternion algebra over k, and θ is of first kind (so from the main involution by a
conjugation) That is, a non-commutative division algebra with involution over a local field must be four-
dimensional, and the involution is of first kind. There are no non-commutative division algebras with
involutions of second kind in this context.

Proof: We use the earlier discussion of division rings over local fields. We must recall some of the details of
the situation. Let D be an n2-dimensional central division algebra over k, with matximal compact subring
O and maximal (left, right, and two-sided) ideal P. Let K be the unique unramified field extension of k of
degree n. The quotient O/P is a (commutative) field extension of degree n of the finite field o/p, where o is
the local ring of integers in k and p is the maximal ideal in o. For any generator π for P, the automorphism
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α → παπ−1 stabilizes both O and P, so gives an automorphism λ of O/P over o/p independent of the
choices of π. For q being the cardinality of o/p, λ is of the form x → xqm

for some m relatively prime to
n. That is, α→ παπ−1 is a power σm of the Frobenius σ of K over k. This integer m uniquely determines
the structure of D, and does not depend upon the k-algebra structure. This is exploited in the following
proposition which is of some interest in its own right.

Proposition: Let τ be an automorphism of the non-archimedean local field k, and define a second k-
vectorspace structure Dτ on a finite-dimensional central division algebra D over k by

α(x) = ατ · x

where α·x is the original k-vectorspace structure, with α ∈ k and x ∈ D. Then Dτ ≈ D as central k-algebras.

Proof: (of proposition) Certainly D ≈ Dτ as rings, and this is a topological isomorphism as well. Let
dimk D = n2. The (unique) unramified extension K of k of degree n splits both D and Dτ , and the (unique)
maximal compact subring O of D is a maximal compact subring of Dτ as well. The unique maximal ideal in
O is still maximal in O in Dτ . (Indeed, all these things depend only upon the topological algebra structure
of D, not upon the k-vectorspace structure.) Certainly α → παπ−1 is the same map in either D or Dτ , so
modulo P gives the same map on the quotient O/P. For some integer m the latter map is xτ qm

, where q is
the cardinality of O/P. Thus, the invariant m is the same in both cases, so (from the earlier discussion of
structure) D ≈ Dτ as central k-algebra. ///

Now we return to the proof of the theorem. Let τ be the restriction to k of the involution θ. As usual,
the existence of the involution gives an isomorphism Dopp ≈ Dτ of k-algebras, where now (unlike an earlier
discussion) we allow for the possibility that θ is not trivial on the center k. By the proposition, D ≈ Dτ as
k-algebras, so we conclude that D ≈ Dopp as k-algebras. By the structure of the Brauer group, this implies
that the similariy class of D in the Brauer group Br(k) is of order a divisor of 2. That is, from the structure
theory of division algebras over local fields, D is of dimension 1 = 12 or 4 = 22. If D = k we are done. This
leaves the unique quaternion division algebra D to be considered.

The case that the involution θ on the quaternion division algebra D is of first kind is easy, since we already
know that D has a main involution, so by Skolem-Noether any other involution of first kind differs by a
conjugation.

Now suppose that θ is of second kind. Let \alf → α] be the main involution. Then α → (αθ)] is an
automorphism of order 2 of D and gives a non-trivial automorphism τ on k. The set

Do = {x ∈ D : xθ]}

is a subring of D containing the subfield ko of k fixed by τ . Because the characteristic is not 2, there is an
element ω in k so that ωτ = −ω 6= ω and which generates k over ko. Thus, we find that Do is central simple
over ko, and

D = Do ⊗ko
k

But we saw that every (separable) quadratic extension of a local field ko splits every quaternion algebra over
ko, so D cannot be a division ring, contradiction. Thus, in the case of an involution of second kind, the
division ring must be a field. ///
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