Discussion 07b

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ ~garrett/
[07b.1] Let k be a field of characteristic 0 . Let f be an irreducible polynomial in $k[x]$. Prove that f has no repeated factors, even over an algebraic closure of k.

Discussion: If f has a factor P^{2} where P is irreducible in $k[x]$, then P divides $\operatorname{gcd}\left(f, f^{\prime}\right) \in k[x]$. Since f was monic, and since the characteristic is 0 , the derivative of the highest-degree term is of the form $n x^{n-1}$, and the coefficient is non-zero. Since f^{\prime} is not 0 , the degree of $\operatorname{gcd}\left(f, f^{\prime}\right)$ is at most $\operatorname{deg} f^{\prime}$, which is strictly less than $\operatorname{deg} f$. Since f is irreducible, this $g c d$ in $k[x]$ must be 1 . Thus, there are polynomials a, b such that $a f+b f^{\prime}=1$. The latter identity certainly persists in $K[x]$ for any field extension K of k.
[07b.2] Let K be a finite extension of a field k of characteristic 0 . Prove that K is separable over k.
Discussion: Since K is finite over k, there is a finite list of elements $\alpha_{1}, \ldots, \alpha_{n}$ in K such that $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. From the previous example, the minimal polynomial f of α_{1} over k has no repeated roots in an algebraic closure \bar{k} of k, so $k\left(\alpha_{1}\right)$ is separable over k.

We recall ${ }^{[1]}$ the fact that we can map $k\left(\alpha_{1}\right) \rightarrow \bar{k}$ by sending α_{1} to any of the $\left[k\left(\alpha_{1}\right): k\right]=\operatorname{deg} f$ distinct roots of $f(x)=0$ in \bar{k}. Thus, there are $\left[k\left(\alpha_{1}\right): k\right]=\operatorname{deg} f$ distinct distinct imbeddings of $k\left(\alpha_{1}\right)$ into \bar{k}, so $k\left(\alpha_{1}\right)$ is separable over k.

Next, observe that for any imbedding $\sigma: k\left(\alpha_{1}\right) \rightarrow \bar{k}$ of $k\left(\alpha_{1}\right)$ into an algebraic closure \bar{k} of k, by proven properties of \bar{k} we know that \bar{k} is an algebraic closure of $\sigma\left(k\left(\alpha_{1}\right)\right)$. Further, if $g(x) \in k\left(\alpha_{1}\right)[x]$ is the minimal polynomial of α_{2} over $k\left(\alpha_{1}\right)$, then $\sigma(g)(x)$ (applying σ to the coefficients) is the minimal polynomial of α_{2} over $\sigma\left(k\left(\alpha_{1}\right)\right)$. Thus, by the same argument as in the previous paragraph we have $\left[k\left(\alpha_{1}, \alpha_{2}\right): k\left(\alpha_{1}\right)\right]$ distinct imbeddings of $k\left(\alpha_{1}, \alpha_{2}\right)$ into \bar{k} for a given imbedding of $k\left(\alpha_{1}\right)$. Then use induction.
[07b.3] Let k be a field of characteristic $p>0$. Suppose that k is perfect, meaning that for any $a \in k$ there exists $b \in k$ such that $b^{p}=a$. Let $f(x)=\sum_{i} c_{i} x^{i}$ in $k[x]$ be a polynomial such that its (algebraic) derivative

$$
f^{\prime}(x)=\sum_{i} c_{i} i x^{i-1}
$$

is the zero polynomial. Show that there is a unique polynomial $g \in k[x]$ such that $f(x)=g(x)^{p}$.
Discussion: For the derivative to be the 0 polynomial it must be that the characteristic p divides the exponent of every term (with non-zero coefficient). That is, we can rewrite

$$
f(x)=\sum_{i} c_{i p} x^{i p}
$$

Let $b_{i} \in k$ such that $b_{i}^{p}=c_{i p}$, using the perfect-ness. Since p divides all the inner binomial coefficients $p^{!} / i!(p-i)!$,

$$
\left(\sum_{i} b_{i} x^{i}\right)^{p}=\sum_{i} c_{i p} x^{i p}
$$

as desired.

[^0][07b.4] Let k be a perfect field of characteristic $p>0$, and f an irreducible polynomial in $k[x]$. Show that f has no repeated factors (even over an algebraic closure of k).

Discussion: If f has a factor P^{2} where P is irreducible in $k[x]$, then P divides $\operatorname{gcd}\left(f, f^{\prime}\right) \in k[x]$. If $\operatorname{deg} \operatorname{gcd}\left(f, f^{\prime}\right)<\operatorname{deg} f$ then the irreducibility of f in $k[x]$ implies that the $g c d$ is 1 , so no such P exists. If $\operatorname{deg} \operatorname{gcd}\left(f, f^{\prime}\right)=\operatorname{deg} f$, then $f^{\prime}=0$, and (from above) there is a polynomial $g(x) \in k[x]$ such that $f(x)=g(x)^{p}$, contradicting the irreducibility in $k[x]$.
[07b.5] Show that all finite fields $\mathbb{F}_{p^{n}}$ with p prime and $1 \leq n \in \mathbb{Z}$ are perfect.
Discussion: Again because the inner binomial coefficients $p!/ i!(p-i)!$ are 0 in characteristic p, the (Frobenius) map $\alpha \rightarrow \alpha^{p}$ is not only (obviously) multiplicative, but also additive, so is a ring homomorphism of $\mathbb{F}_{p^{n}}$ to itself. Since $\mathbb{F}_{p^{n}}^{\times}$is cyclic (of order p^{n}), for any $\alpha \in \mathbb{F}_{p^{n}}$ (including 0)

$$
\alpha^{\left(p^{n}\right)}=\alpha
$$

Thus, since the map $\alpha \rightarrow \alpha^{p}$ has the (two-sided) inverse $\alpha \rightarrow \alpha^{p^{n-1}}$, it is a bijection. That is, everything has a $p^{\text {th }}$ root.
[07b.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.
Discussion: That is, we want to prove that the number of distinct imbeddings σ of K into a fixed algebraic closure \bar{k} is $[K: k]$. Let $\alpha \in K$ be a generator for the cyclic group K^{\times}. Then $K=k(\alpha)=k[\alpha]$, since powers of α already give every element but 0 in K. Thus, from basic field theory, the degree of the minimal polynomial $f(x)$ of α over k is $[K: k]$. The previous example shows that k is perfect, and the example before that showed that irreducible polynomials over a perfect field have no repeated factors. Thus, $f(x)$ has no repeated factors in any field extension of k.

We have also already seen that for algebraic α over k, we can map $k(\alpha)$ to \bar{k} to send α to any root β of $f(x)=0$ in \bar{k}. Since $f(x)$ has not repeated factors, there are $[K: k]$ distinct roots β, so $[K: k]$ distinct imbeddings.
[07b.7] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}(\zeta)$ where ζ is a primitive $17^{\text {th }}$ root of unity.
Discussion: Since 17 is prime, $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \approx(\mathbb{Z} / 17)^{\times}$is cyclic (of order 16), and we know that a cyclic group has a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate fields corresponding to the proper divisors $2,4,8$ of 16 . Let σ_{a} be the automorphism $\sigma_{a} \zeta=\zeta^{a}$.

By a little trial and error, 3 is a generator for the cyclic group $(\mathbb{Z} / 17)^{\times}$, so σ_{3} is a generator for the automorphism group. Thus, one reasonably considers

$$
\begin{array}{ll}
\alpha_{8}=\zeta+\zeta^{3^{2}}+\zeta^{3^{4}}+\zeta^{3^{6}}+\zeta^{3^{8}}+\zeta^{3^{10}}+\zeta^{3^{12}}+\zeta^{3^{14}} \\
\alpha_{4}= & \zeta+\zeta^{3^{4}}+\zeta^{3^{8}}+\zeta^{3^{12}} \\
\alpha_{2}= & \zeta+\zeta^{3^{8}}=\zeta+\zeta^{-1}
\end{array}
$$

The α_{n} is visibly invariant under the subgroup of $(\mathbb{Z} / 17)^{\times}$of order n. The linear independence of $\zeta, \zeta^{2}, \zeta^{3}, \ldots, \zeta^{16}$ shows α_{n} is not by accident invariant under any larger subgroup of the Galois group. Thus, $\mathbb{Q}\left(\alpha_{n}\right)$ is (by Galois theory) the unique intermediate field of degree $16 / n$ over \mathbb{Q}.

We can also give other characterizations of some of these intermediate fields. First, we have already seen (in discussion of Gauss sums) that

$$
\sum_{a \bmod 17}\binom{a}{17}_{2} \cdot \zeta^{a}=\sqrt{17}
$$

where $\binom{a}{17}_{2}$ is the quadratic symbol. Thus,

$$
\begin{gathered}
\alpha_{8}-\sigma_{3} \alpha_{8}=\sqrt{17} \\
\alpha_{8}+\sigma_{3} \alpha_{8}=0
\end{gathered}
$$

so α_{8} and $\sigma_{3} \alpha_{8}$ are $\pm \sqrt{17} / 2$. Further computation can likewise express all the intermediate fields as being obtained by adjoining square roots to the next smaller one.
[07b.8] Let f, g be relatively prime polynomials in n indeterminates t_{1}, \ldots, t_{n}, with g not 0 . Suppose that the ratio $f\left(t_{1}, \ldots, t_{n}\right) / g\left(t_{1}, \ldots, t_{n}\right)$ is invariant under all permutations of the t_{i}. Show that both f and g are polynomials in the elementary symmetric functions in the t_{i}.

Discussion: Let s_{i} be the $i^{t h}$ elementary symmetric function in the t_{j} 's. Earlier we showed that $k\left(t_{1}, \ldots, t_{n}\right)$ has Galois group S_{n} (the symmetric group on n letters) over $k\left(s_{1}, \ldots, s_{n}\right)$. Thus, the given ratio lies in $k\left(s_{1}, \ldots, s_{n}\right)$. Thus, it is expressible as a ratio

$$
\frac{f\left(t_{1}, \ldots, t_{n}\right)}{g\left(t_{1}, \ldots, t_{n}\right)}=\frac{F\left(s_{1}, \ldots, s_{n}\right)}{G\left(s_{1}, \ldots, s_{n}\right)}
$$

of polynomials F, G in the s_{i}.
To prove the stronger result that the original f and g were themselves literally polynomials in the t_{i}, we seem to need the characteristic of k to be not 2 , and we certainly must use the unique factorization in $k\left[t_{1}, \ldots, t_{n}\right]$.

Write

$$
f\left(t_{1}, \ldots, t_{n}\right)=p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}
$$

where the e_{i} are positive integers and the p_{i} are irreducibles. Similarly, write

$$
g\left(t_{1}, \ldots, t_{n}\right)=q_{1}^{f_{1}} \ldots q_{m}^{f_{n}}
$$

where the f_{i} are positive integers and the q_{i} are irreducibles. The relative primeness says that none of the q_{i} are associate to any of the p_{i}. The invariance gives, for any permutation π of

$$
\pi\left(\frac{p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}}{q_{1}^{f_{1}} \ldots q_{m}^{f_{n}}}\right)=\frac{p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}}{q_{1}^{f_{1}} \ldots q_{m}^{f_{n}}}
$$

Multiplying out,

$$
\prod_{i} \pi\left(p_{i}^{e_{i}}\right) \cdot \prod_{i} q_{i}^{f_{i}}=\prod_{i} p_{i}^{e_{i}} \cdot \prod_{i} \pi\left(q_{i}^{f_{i}}\right)
$$

By the relative prime-ness, each p_{i} divides some one of the $\pi\left(p_{j}\right)$. These ring automorphisms preserve irreducibility, and $\operatorname{gcd}(a, b)=1$ implies $\operatorname{gcd}(\pi a, \pi b)=1$, so, symmetrically, the $\pi\left(p_{j}\right)$'s divide the p_{i} 's. And similarly for the q_{i} 's. That is, permuting the t_{i} 's must permute the irreducible factors of f (up to units k^{\times} in $k\left[t_{1}, \ldots, t_{n}\right]$) among themselves, and likewise for the irreducible factors of g.

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units, then f and g would be symmetric. However, at this point we can only be confident that they are permuted up to constants.

What we have, then, is that for a permutation π

$$
\pi(f)=\alpha_{\pi} \cdot f
$$

for some $\alpha \in k^{\times}$. For another permutation τ, certainly $\tau(\pi(f))=(\tau \pi) f$. And $\tau\left(\alpha_{\pi} f\right)=\alpha_{\pi} \cdot \tau(f)$, since permutations of the indeterminates have no effect on elements of k. Thus, we have

$$
\alpha_{\tau \pi}=\alpha_{\tau} \cdot \alpha_{\pi}
$$

That is, $\pi \rightarrow \alpha_{\pi}$ is a group homomorphism $S_{n} \rightarrow k^{\times}$.
It is very useful to know that the alternating group A_{n} is the commutator subgroup of S_{n}. Thus, if f is not actually invariant under S_{n}, in any case the group homomorphism $S_{n} \rightarrow k^{\times}$factors through the quotient
S_{n} / A_{n}, so is the sign function $\pi \rightarrow \sigma(\pi)$ that is +1 for $\pi \in A_{n}$ and -1 otherwise. That is, f is equivariant under S_{n} by the sign function, in the sense that $\pi f=\sigma(\pi) \cdot f$.

Now we claim that if $\pi f=\sigma(\pi) \cdot f$ then the square root

$$
\delta=\sqrt{\Delta}=\prod_{i<j}\left(t_{i}-t_{j}\right)
$$

of the discriminant Δ divides f. To see this, let $s_{i j}$ be the 2 -cycle which interchanges t_{i} and t_{j}, for $i \neq j$. Then

$$
s_{i j} f=-f
$$

Under any homomorphism which sends $t_{i}-t_{j}$ to 0 , since the characteristic is not $2, f$ is sent to 0 . That is, $t_{i}-t_{j}$ divides f in $k\left[t_{1}, \ldots, t_{n}\right]$. By unique factorization, since no two of the monomials $t_{i}-t_{j}$ are associate (for distinct pairs $i<j$), we see that the square root δ of the discriminant must divide f.

That is, for f with $\pi f=\sigma(\pi) \cdot f$ we know that $\delta \mid f$. For f / g to be invariant under S_{n}, it must be that also $\pi g=\sigma(\pi) \cdot g$. But then $\delta \mid g$ also, contradicting the assumed relative primeness. Thus, in fact, it must have been that both f and g were invariant under S_{n}, not merely equivariant by the sign function.

[^0]: [1] Recall the proof: Let β be a root of $f(x)=0$ in \bar{k}. Let $\varphi: k[x] \rightarrow k[\beta]$ by $x \rightarrow \beta$. The kernel of φ is the principal ideal generated by $f(x)$ in $k[x]$. Thus, the map φ factors through $k[x] /\langle f\rangle \approx k\left[\alpha_{1}\right]$.

