Examples 07

```
Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/
```

[07.1] Let k be a field of characteristic 0 . Let f be an irreducible polynomial in $k[x]$. Prove that f has no repeated factors, even over an algebraic closure of k.
[07.2] Let K be a finite extension of a field k of characteristic 0 . Prove that K is separable over k.
[07.3] Let k be a field of characteristic $p>0$. Suppose that k is perfect, meaning that for any $a \in k$ there exists $b \in k$ such that $b^{p}=a$. Let $f(x)=\sum_{i} c_{i} x^{i}$ in $k[x]$ be a polynomial such that its (algebraic) derivative

$$
f^{\prime}(x)=\sum_{i} c_{i} i x^{i-1}
$$

is the zero polynomial. Show that there is a unique polynomial $g \in k[x]$ such that $f(x)=g(x)^{p}$.
[07.4] Let k be a perfect field of characteristic $p>0$, and f an irreducible polynomial in $k[x]$. Show that f has no repeated factors (even over an algebraic closure of k).
[07.5] Show that all finite fields $\mathbb{F}_{p^{n}}$ with p prime and $1 \leq n \in \mathbb{Z}$ are perfect.
[07.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.
[07.7] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}(\zeta)$ where ζ is a primitive $17^{\text {th }}$ root of unity.
[07.8] Let f, g be relatively prime polynomials in n indeterminates t_{1}, \ldots, t_{n}, with g not 0 . Suppose that the ratio $f\left(t_{1}, \ldots, t_{n}\right) / g\left(t_{1}, \ldots, t_{n}\right)$ is invariant under all permutations of the t_{i}. Show that both f and g are polynomials in the elementary symmetric functions in the t_{i}.

