Examples 08

```
Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/
```

[08.1] Let $T \in \operatorname{Hom}_{k}(V)$ for a finite-dimensional k-vectorspace V, with k a field. Let W be a T-stable subspace. Prove that the minimal polynomial of T on W is a divisor of the minimal polynomial of T on V. Define a natural action of T on the quotient V / W, and prove that the minimal polynomial of T on V / W is a divisor of the minimal polynomial of T on V.
[08.2] Let $T \in \operatorname{Hom}_{k}(V)$ for a finite-dimensional k-vectorspace V, with k a field. Suppose that T is diagonalizable on V. Let W be a T-stable subspace of V. Show that T is diagonalizable on W.
[08.3] Let $T \in \operatorname{Hom}_{k}(V)$ for a finite-dimensional k-vectorspace V, with k a field. Suppose that T is diagonalizable on V, with distinct eigenvalues. Let $S \in \operatorname{Hom}_{k}(V)$ commute with T, in the natural sense that $S T=T S$. Show that S is diagonalizable on V.
[08.4] Let $T \in \operatorname{Hom}_{k}(V)$ for a finite-dimensional k-vectorspace V, with k a field. Suppose that T is diagonalizable on V. Show that $k[T]$ contains the projectors to the eigenspaces of T.
[08.5] Let V be a complex vector space with a (positive definite) inner product. Show that $T \in \operatorname{Hom}_{k}(V)$ cannot be a normal operator if it has any non-trivial Jordan block.
[08.6] Show that a positive-definite hermitian n-by- n matrix A has a unique positive-definite square root B (that is, $B^{2}=A$).
[08.7] Given a square n-by- n complex matrix M, show that there are unitary matrices A and B such that $A M B$ is diagonal.
[08.8] Given a square n-by- n complex matrix M, show that there is a unitary matrix A such that $A M$ is upper triangular.
[08.9] Let Z be an m-by- n complex matrix. Let Z^{*} be its conjugate-transpose. Show that

$$
\operatorname{det}\left(1_{m}-Z Z^{*}\right)=\operatorname{det}\left(1_{n}-Z^{*} Z\right)
$$

[08.10] Give an example of two commuting diagonalizable operators S, T on a 4-dimensional vectorspace V over a field k such that each operator has exactly two eigenvalues, and the eigenspaces are two-dimensional, but/and the intersection of any S-eigenspace with any T-eigenspace is just 1-dimensional. Explain why this does not contradict results about simultaneous eigenvectors
[08.11] Let T be a diagonalizable operator on a finite-dimensional vector space V over a field k. Suppose that some T-eigenspace is not one-dimensional. Exhibit a diagonalizable endomorphism S of V commuting with T not lying in $k[T]$.
[08.12] Let $\lambda_{1}, \ldots, \lambda_{n}$ be distinct elements of a field k. Let μ_{1}, \ldots, μ_{n} be arbitrary elements of k. Show that there is a unique polynomial $f(x)$ in $k[x]$ of degree $\leq n-1$ such that $f\left(\lambda_{i}\right)=\mu_{i}$ for all i.
[08.13] Let T be a diagonalizable operator on a finite-dimensional vector space V over a field k. Suppose that all the eigenspaces are one-dimensional. Prove that any endomorphism commuting with T is in $k[T]$.
[08.14] Let S, T be commuting diagonalizable endomorphisms of a finite-dimensional vector space V over

Paul Garrett: Examples 08 (April 9, 2024)

a field k. Suppose that there is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of simultaneous eigenvectors such that for $i \neq j$ the two vectors v_{i} and v_{j} either have different eigenvalues for S or have different eigenvalues for T. Show that there is a single diagonalizable operator R on V such that $k[S, T]=k[R]$.
[08.15] Give an example of a diagonalizable operator T on a 2-dimensional complex vector space V (with hermitian inner product \langle,$\rangle) with eigenvectors v, w$ such that application of the Gram-Schmidt process does not yield two orthonormal eigenvectors.
[08.16] Let S be a hermitian operator on a finite-dimensional complex vector space V with hermitian inner product \langle,$\rangle . Let W$ be a S-stable subspace of V. Show that S is hermitian on W.
[08.17] Let S, T be commuting hermitian operators on a finite-dimensional complex vector space V with hermitian inner product \langle,$\rangle . Show that there is an orthonormal basis for V$ consisting of simultaneous eigenvectors for both S and T.
[08.18] Let k be a field, and V a finite-dimensional k vectorspace. Let Λ be a subset of the dual space V^{*}, with $|\Lambda|<\operatorname{dim} V$. Show that the homogeneous system of equations

$$
\lambda(v)=0 \quad(\text { for all } \lambda \in \Lambda)
$$

has a non-trivial (that is, non-zero) solution $v \in V$ (meeting all these conditions).
[08.19] Let k be a field, and V a finite-dimensional k vectorspace. Let Λ be a linearly independent subset of the dual space V^{*}. Let $\lambda \rightarrow a_{\lambda}$ be a set map $\Lambda \rightarrow k$. Show that an inhomogeneous system of equations

$$
\lambda(v)=a_{\lambda}(\text { for all } \lambda \in \Lambda)
$$

has a solution $v \in V$ (meeting all these conditions).
[08.20] Let T be a k-linear endomorphism of a finite-dimensional k-vectorspace V. For an eigenvalue λ of T, let V_{λ} be the generalized λ-eigenspace

$$
V_{\lambda}=\left\{v \in V:(T-\lambda)^{n} v=0 \text { for some } 1 \leq n \in \mathbb{Z}\right\}
$$

Show that the projector P of V to V_{λ} (commuting with T) lies inside $k[T]$.
[08.21] Let T be a matrix in Jordan normal form with entries in a field k. Let $T_{s s}$ be the matrix obtained by converting all the off-diagonal 1's to 0's, making T diagonal. Show that $T_{\text {ss }}$ is in $k[T]$.
[08.22] Let $M=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)$ be a matrix in a block decomposition, where A is m-by- m and D is n-by- n. Show that

$$
\operatorname{det} M=\operatorname{det} A \cdot \operatorname{det} D
$$

[08.23] The so-called Kronecker product ${ }^{[1]}$ of an m-by- m matrix A and an n-by- n matrix B is

$$
A \otimes B=\left(\begin{array}{cccc}
A_{11} \cdot B & A_{12} \cdot B & \ldots & A_{1 m} \cdot B \\
A_{21} \cdot B & A_{22} \cdot B & \ldots & A_{2 m} \cdot B \\
& \vdots & & \\
A_{m 1} \cdot B & A_{m 2} \cdot B & \ldots & A_{m m} \cdot B
\end{array}\right)
$$

[^0]where, as it may appear, the matrix B is inserted as n-by- n blocks, multiplied by the respective entries $A_{i j}$ of A. Prove that
$$
\operatorname{det}(A \otimes B)=(\operatorname{det} A)^{n} \cdot(\operatorname{det} B)^{m}
$$
at least for $m=n=2$.
[08.24] For distinct primes p, q, compute
$$
\mathbb{Z} / p \otimes_{\mathbb{Z} / p q} \mathbb{Z} / q
$$
where for a divisor d of an integer n the abelian group \mathbb{Z} / d is given the \mathbb{Z} / n-module structure by
$$
(r+n \mathbb{Z}) \cdot(x+d \mathbb{Z})=r x+d \mathbb{Z}
$$
[08.25] Compute $\mathbb{Z} / n \otimes_{\mathbb{Z}} \mathbb{Q}$ with $0<n \in \mathbb{Z}$.
[08.26] Compute $\mathbb{Z} / n \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$ with $0<n \in \mathbb{Z}$.
[08.27] Compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Q} / \mathbb{Z})$ for $0<n \in \mathbb{Z}$.
[08.28] Compute $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$.
[08.29] Compute $(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$.
[08.30] Compute $(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})$.
[08.31] Prove that for a subring R of a commutative ring S, with $1_{R}=1_{S}$, polynomial rings $R[x]$ behave well with respect to tensor products, namely that (as rings)
$$
R[x] \otimes_{R} S \approx S[x]
$$
[08.32] Let K be a field extension of a field k. Let $f(x) \in k[x]$. Show that
$$
k[x] / f \otimes_{k} K \approx K[x] / f
$$
where the indicated quotients are by the ideals generated by f in $k[x]$ and $K[x]$, respectively.
[08.33] Let K be a field extension of a field k. Let V be a finite-dimensional k-vectorspace. Show that $V \otimes_{k} K$ is a good definition of the extension of scalars of V from k to K, in the sense that for any K-vectorspace W
$$
\operatorname{Hom}_{K}\left(V \otimes_{k} K, W\right) \approx \operatorname{Hom}_{k}(V, W)
$$
where in $\operatorname{Hom}_{k}(V, W)$ we forget that W was a K-vectorspace, and only think of it as a k-vectorspace.
[08.34] Let M and N be free R-modules, where R is a commutative ring with identity. Prove that $M \otimes_{R} N$ is free and
$$
\operatorname{rank} M \otimes_{R} N=\operatorname{rank} M \cdot \operatorname{rank} N
$$
[08.35] Let M be a free R-module of rank r, where R is a commutative ring with identity. Let S be a commutative ring with identity containing R, such that $1_{R}=1_{S}$. Prove that as an S module $M \otimes_{R} S$ is free of rank r.
[08.36] For finite-dimensional vectorspaces V, W over a field k, prove that there is a natural isomorphism
$$
\left(V \otimes_{k} W\right)^{*} \approx V^{*} \otimes W^{*}
$$
where $X^{*}=\operatorname{Hom}_{k}(X, k)$ for a k-vectorspace X.
[08.37] For a finite-dimensional k-vectorspace V, prove that the bilinear map
$$
B: V \times V^{*} \rightarrow \operatorname{End}_{k}(V)
$$
by
$$
B(v \times \lambda)(x)=\lambda(x) \cdot v
$$
gives an isomorphism $V \otimes_{k} V^{*} \rightarrow \operatorname{End}_{k}(V)$. Further, show that the composition of endormorphisms is the same as the map induced from the map on
$$
\left(V \otimes V^{*}\right) \times\left(V \otimes V^{*}\right) \rightarrow V \otimes V^{*}
$$
given by
$$
(v \otimes \lambda) \times(w \otimes \mu) \rightarrow \lambda(w) v \otimes \mu
$$
[08.38] Under the isomorphism of the previous problem, show that the linear map
$$
\operatorname{tr}: \operatorname{End}_{k}(V) \rightarrow k
$$
is the linear map
$$
V \otimes V^{*} \rightarrow k
$$
induced by the bilinear map $v \times \lambda \rightarrow \lambda(v)$.
[08.39] Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for two endomorphisms of a finite-dimensional vector space V over a field k, with trace defined as just above.
[08.40] Prove the expansion by minors formula for determinants, namely, for an n-by- n matrix A with entries $a_{i j}$, letting $A^{i j}$ be the matrix obtained by deleting the $i^{t h}$ row and $j^{\text {th }}$ column, for any fixed row index i,
$$
\operatorname{det} A=(-1)^{i} \sum_{j=1}^{n}(-1)^{j} a_{i j} \operatorname{det} A^{i j}
$$
and symmetrically for expansion along a column.
[08.41] Let M and N be free R-modules, where R is a commutative ring with identity. Prove that $M \otimes_{R} N$ is free and
$$
\operatorname{rank} M \otimes_{R} N=\operatorname{rank} M \cdot \operatorname{rank} N
$$
[08.42] Let M be a free R-module of rank r, where R is a commutative ring with identity. Let S be a commutative ring with identity containing R, such that $1_{R}=1_{S}$. Prove that as an S module $M \otimes_{R} S$ is free of rank r.
[08.43] For finite-dimensional vectorspaces V, W over a field k, prove that there is a natural isomorphism
$$
\left(V \otimes_{k} W\right)^{*} \approx V^{*} \otimes W^{*}
$$
where $X^{*}=\operatorname{Hom}_{k}(X, k)$ for a k-vectorspace X.
[08.44] For a finite-dimensional k-vectorspace V, prove that the bilinear map
$$
B: V \times V^{*} \rightarrow \operatorname{End}_{k}(V)
$$
by
$$
B(v \times \lambda)(x)=\lambda(x) \cdot v
$$
gives an isomorphism $V \otimes_{k} V^{*} \rightarrow \operatorname{End}_{k}(V)$. Further, show that the composition of endormorphisms is the same as the map induced from the map on
$$
\left(V \otimes V^{*}\right) \times\left(V \otimes V^{*}\right) \rightarrow V \otimes V^{*}
$$
given by
$$
(v \otimes \lambda) \times(w \otimes \mu) \rightarrow \lambda(w) v \otimes \mu
$$
[08.45] Via the isomorphism $\operatorname{End}_{k}(V) \approx V \otimes_{k} V^{*}$, show that the linear map
$$
\operatorname{tr}: \operatorname{End}_{k}(V) \rightarrow k
$$
is the linear map
$$
V \otimes V^{*} \rightarrow k
$$
induced by the bilinear map $v \times \lambda \rightarrow \lambda(v)$.
[08.46] Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for two endomorphisms of a finite-dimensional vector space V over a field k, with trace defined as just above.
[08.47] Prove that tensor products are associative, in the sense that, for R-modules A, B, C, we have a natural isomorphism
$$
A \otimes_{R}\left(B \otimes_{R} C\right) \approx\left(A \otimes_{R} B\right) \otimes_{R} C
$$

In particular, do prove the naturality, at least the one-third part of it which asserts that, for every R-module homomorphism $f: A \rightarrow A^{\prime}$, the diagram

commutes, where the two horizontal isomorphisms are those determined in the first part of the problem. (One might also consider maps $g: B \rightarrow B^{\prime}$ and $h: C \rightarrow C^{\prime}$, but these behave similarly, so there's no real compulsion to worry about them, apart from awareness of the issue.)
[08.48] Consider the injection $\mathbb{Z} / 2 \xrightarrow{t} \mathbb{Z} / 4$ which maps

$$
t: x+2 \mathbb{Z} \rightarrow 2 x+4 \mathbb{Z}
$$

Show that the induced map

$$
t \otimes 1_{\mathbb{Z} / 2}: \mathbb{Z} / 2 \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \otimes_{\mathbb{Z}} \mathbb{Z} / 2
$$

is no longer an injection.
[08.49] Prove that if $s: M \rightarrow N$ is a surjection of \mathbb{Z}-modules and X is any other \mathbb{Z} module, then the induced map

$$
s \otimes 1_{Z}: M \otimes_{\mathbb{Z}} X \rightarrow N \otimes_{\mathbb{Z}} X
$$

is still surjective.
[08.50] Give an example of a surjection $f: M \rightarrow N$ of \mathbb{Z}-modules, and another \mathbb{Z}-module X, such that the induced map

$$
f \circ-: \operatorname{Hom}_{\mathbb{Z}}(X, M) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(X, N)
$$

(by post-composing) fails to be surjective.
[08.51] Let $G:\{\mathbb{Z}$ - modules $\} \rightarrow\{$ sets $\}$ be the functor that forgets that a module is a module, and just retains the underlying set. Let $F:\{\operatorname{sets}\} \rightarrow\{\mathbb{Z}-$ modules $\}$ be the functor which creates the free module $F S$ on the set S (and keeps in mind a map $i: S \rightarrow F S$). Show that for any set S and any \mathbb{Z}-module M

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M) \approx \operatorname{Hom}_{\text {sets }}(S, G M)
$$

Prove that the isomorphism you describe is natural in S. (It is also natural in M, but don't prove this.)
[08.52] Let $M=\left(\begin{array}{lll}m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right)$ be a 2-by-3 integer matrix, such that the $g c d$ of the three 2-by-2 minors is 1 . Prove that there exist three integers m_{11}, m_{12}, m_{33} such that

$$
\operatorname{det}\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=1
$$

[08.53] Let a, b, c be integers whose $g c d$ is 1 . Prove (without manipulating matrices) that there is a 3 -by- 3 integer matrix with top row $(a b c)$ with determinant 1.
[08.54] Let

$$
M=\left(\begin{array}{lllll}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\
m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\
m_{31} & m_{32} & m_{33} & m_{34} & m_{35}
\end{array}\right)
$$

and suppose that the $g c d$ of all determinants of 3 -by- 3 minors is 1 . Prove that there exists a 5 -by- 5 integer matrix \tilde{M} with M as its top 3 rows, such that $\operatorname{det} \tilde{M}=1$.
[08.55] Let R be a commutative ring with unit. For a finitely-generated free R-module F, prove that there is a (natural) isomorphism

$$
\operatorname{Hom}_{R}(F, R) \approx F
$$

Or is it only

$$
\operatorname{Hom}_{R}(R, F) \approx F
$$

instead? (Hint: Recall the definition of a free module.)
[08.56] Let R be an integral domain. Let M and N be free R-modules of finite ranks r, s, respectively. Suppose that there is an R-bilinear map

$$
B: M \times N \rightarrow R
$$

which is non-degenerate in the sense that for every $0 \neq m \in M$ there is $n \in N$ such that $B(m, n) \neq 0$, and vice-versa. Prove that $r=s$.
[08.57] Let $\varphi: R \rightarrow S$ be commutative rings with unit, and suppose that $\varphi\left(1_{R}\right)=1_{S}$, thus making S an R-algebra. For an R-module N prove that $\operatorname{Hom}_{R}(S, N)$ is (yet another) good definition of extension of scalars from R to S, by checking that for every S-module M there is a natural isomorphism

$$
\operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \approx \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

where $\operatorname{Res}_{R}^{S} M$ is the R-module obtained by forgetting S, and letting $r \in R$ act on M by $r \cdot m=\varphi(r) m$. (Do prove naturality in M, also.)
[08.58] Let

$$
M=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad N=\mathbb{Z} \oplus 4 \mathbb{Z} \oplus 24 \mathbb{Z} \oplus 144 \mathbb{Z}
$$

What are the elementary divisors of $\bigwedge^{2}(M / N)$?

[^0]: [1] As we will see shortly, this is really a tensor product, and we will treat this question more sensibly.

