[01.1] Let $D$ be an integer that is not the square of an integer. Prove that there is no $\sqrt{D}$ in $\mathbb{Q}$.
Suppose that $a, b$ were integers $(b \neq 0)$ such that $(a / b)^{2}=D$. The fact/principle we intend to invoke here is that fractions can be put in lowest terms, in the sense that the numerator and denominator have greatest common divisor 1. This follows from existence of the $g c d$, and from the fact that, if $\operatorname{gcd}(a, b)>1$, then let $c=a / \operatorname{gcd}(a, b)$ and $d=b / \operatorname{gcd}(a, b)$ and we have $c / d=a / b$. Thus, still $c^{2} / d^{2}=D$. One way to proceed is to prove that $c^{2} / d^{2}$ is still in lowest terms, and thus cannot be an integer unless $d= \pm 1$. Indeed, if $\operatorname{gcd}\left(c^{2}, d^{2}\right)>1$, this $g c d$ would have a prime factor $p$. Then $p \mid c^{2}$ implies $p \mid c$, and $p \mid d^{2}$ implies $p \mid d$, by the critical proven property of primes. Thus, $\operatorname{gcd}(c, d)>1$, contradiction.
[01.2] Let $p$ be prime, $n>1$ an integer. Show (directly) that the equation $x^{n}-p x+p=0$ has no rational root (where $n>1$ ).

Suppose there were a rational root $a / b$, without loss of generality in lowest terms. Then, substituting and multiplying through by $b^{n}$, one has

$$
a^{n}-p b^{n-1} a+p b^{n}=0
$$

Then $p \mid a^{n}$, so $p \mid a$ by the property of primes. But then $p^{2}$ divides the first two terms, so must divide $p b^{n}$, so $p \mid b^{n}$. But then $p \mid b$, by the property of primes, contradicting the lowest-common-terms hypothesis.
[01.3] Let $p$ be prime, $b$ an integer not divisible by $p$. Show (directly) that the equation $x^{p}-x+b=0$ has no rational root.

Suppose there were a rational root $c / d$, without loss of generality in lowest terms. Then, substituting and multiplying through by $d^{p}$, one has

$$
c^{p}-d^{p-1} c+b d^{p}=0
$$

If $d \neq \pm 1$, then some prime $q$ divides $d$. From the equation, $q \mid c^{p}$, and then $q \mid c$, contradiction to the lowest-terms hypothesis. So $d=1$, and the equation is

$$
c^{p}-c+b=0
$$

By Fermat's Little Theorem, $p \mid c^{p}-c$, so $p \mid b$, contradiction.
[01.4] Let $r$ be a positive integer, and $p$ a prime such that $\operatorname{gcd}(r, p-1)=1$. Show that every $b$ in $\mathbb{Z} / p$ has a unique $r^{t h}$ root $c$, given by the formula

$$
c=b^{s} \bmod p
$$

where $r s=1 \bmod (p-1)$. [Corollary of Fermat's Little Theorem.]
[01.5] Show that $R=\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ are Euclidean.
First, we consider $R=\mathbb{Z}[\sqrt{-D}]$ for $D=1,2, \ldots$. Let $\omega=\sqrt{-D}$. To prove Euclidean-ness, note that the Euclidean condition that, given $\alpha \in \mathbb{Z}[\omega]$ and non-zero $\delta \in \mathbb{Z}[\omega]$, there exists $q \in \mathbb{Z}[\omega]$ such that

$$
|\alpha-q \cdot \delta|<|\delta|
$$

is equivalent to

$$
|\alpha / \delta-q|<|1|=1
$$

Thus, it suffices to show that, given a complex number $\alpha$, there is $q \in \mathbb{Z}[\omega]$ such that

$$
|\alpha-q|<1
$$

Every complex number $\alpha$ can be written as $x+y \omega$ with real $x$ and $y$. The simplest approach to analysis of this condition is the following. Let $m, n$ be integers such that $|x-m| \leq 1 / 2$ and $|y-n| \leq 1 / 2$. Let $q=m+n \omega$. Then $\alpha-q$ is of the form $r+s \omega$ with $|r| \leq 1 / 2$ and $|s| \leq 1 / 2$. And, then,

$$
|\alpha-q|^{2}=r^{2}+D s^{2} \leq \frac{1}{4}+\frac{D}{4}=\frac{1+D}{4}
$$

For this to be strictly less than 1 , it suffices that $1+D<4$, or $D<3$. This leaves us with $\mathbb{Z}[\sqrt{-1}]$ and $\mathbb{Z}[\sqrt{-2}]$.

In the second case, consider $Z[\omega]$ where $\omega=(1+\sqrt{-D}) / 2$ and $D=3 \bmod 4$. (The latter condition assures that $\mathbb{Z}[x]$ works the way we hope, namely that everything in it is expressible as $a+b \omega$ with $a, b \in \mathbb{Z}$.) For $\mathrm{D}=3$ (the Eisenstein integers) the previous approach still works, but fails for $D=7$ and for $D=11$. Slightly more cleverly, realize that first, given complex $\alpha$, integer $n$ can be chosen such that

$$
-\sqrt{D} / 4 \leq \text { imaginary } \operatorname{part}(\alpha-n \omega) \leq+\sqrt{D} / 4
$$

since the imaginary part of $\omega$ is $\sqrt{D} / 2$. Then choose integer $m$ such that

$$
-1 / 2 \leq \text { real } \operatorname{part}(\alpha-n \omega-m) \leq 1 / 2
$$

Then take $q=m+n \omega$. We have chosen $q$ such that $\alpha-q$ is in the rectangular box of complex numbers $r+s \sqrt{-7}$ with

$$
|r| \leq 1 / 2 \quad \text { and } \quad|s| \leq 1 / 4
$$

Yes, $1 / 4$, not $1 / 2$. Thus, the size of $\alpha-q$ is at most

$$
1 / 4+D / 16
$$

The condition that this be strictly less than 1 is that $4+D<16$, or $D<12($ and $D=1 \bmod 4)$. This gives $D=3,7,11$.
[01.6] Let $f: X \rightarrow Y$ be a function from a set $X$ to a set $Y$. Show that $f$ has a left inverse if and only if it is injective. Show that $f$ has a right inverse if and only if it is surjective. (Note where, if anywhere, the Axiom of Choice is needed.)
[01.7] Let $h: A \rightarrow B, g: B \rightarrow C, f: C \rightarrow D$. Prove the associativity

$$
(f \circ g) \circ h=f \circ(g \circ h)
$$

Two functions are equal if and only if their values (for the same inputs) are the same. Thus, it suffices to evaluate the two sides at $a \in A$, using the definition of composite:

$$
((f \circ g) \circ h)(a)=(f \circ g)(h(a))=f(g((h(a)))=f((g \circ h)(a))=(f \circ(g \circ h))(a)
$$

[01.8] Show that a set is infinite if and only if there is an injection of it to a proper subset of itself. Do not set this up so as to trivialize the question.

The other definition of finite we'll take is that a set $S$ is finite if there is a surjection to it from one of the sets

$$
\},\{1\},\{1,2\},\{1,2,3\}, \ldots
$$

And a set is infinite if it has no such surjection.
We find a denumerable subset of an infinite set $S$, as follows. For infinite $S$, since $S$ is not empty (or there'd be a surjection to it from $\left\}\right.$ ), there is an element $s_{1}$. Define

$$
f_{1}:\{1\} \rightarrow S
$$

by $f(1)=s_{1}$. This cannot be surjective, so there is $s_{2} \neq s_{1}$. Define

$$
f_{2}:\{1,2\} \rightarrow S
$$

by $f(1)=s_{1}, f(2)=s_{2}$. By induction, for each natural number $n$ we obtain an injection $f_{n}:\{1, \ldots\} \rightarrow S$, and distinct elements $s_{1}, 2_{2}, \ldots$. Let $S^{\prime}$ be the complement to $\left\{s_{1}, s_{2}, \ldots\right\}$ in $S$. Then define $F: S \rightarrow S$ by

$$
F\left(s_{i}\right)=s_{i+1} \quad F\left(s^{\prime}\right)=s^{\prime}\left(\text { for } s^{\prime} \in S^{\prime}\right)
$$

This is an injection to the proper subset $S-\left\{s_{1}\right\}$.
On the other hand, we claim that no set $\{1, \ldots, n\}$ admits an injection to a proper subset of itself. If there were such, by Well-Ordering there would be a least $n$ such that this could happen. Let $f$ be an injection of $S=\{1, \ldots, n\}$ to a proper subset of itself.

By hypothesis, $f$ restricted to $S^{\prime}=\{1,2, \ldots, n-1\}$ does not map $S^{\prime}$ to a proper subset of itself. The restriction of an injective function is still injective. Thus, either $f(i)=n$ for some $1 \leq i<n$, or $f\left(S^{\prime}\right)$ is the whole set $S^{\prime}$. In the former case, let $j$ be the least element not in the image $f(S)$. (Since $f(i)=n, j \neq n$, but this doesn't matter.) Replace $f$ by $\pi \circ f$ where $\pi$ is the permutation of $\{1, \ldots, n\}$ that interchanges $j$ and $n$ and leaves everything else fixed. Since permutations are bijections, this $\pi \circ f$ is still an injection of $S$ to a proper subset. Thus, we have reduced to the second case, that $f\left(S^{\prime}\right)=S^{\prime}$. By injectivity, $f(n)$ can't be in $S^{\prime}$, but then $f(n)=n$, and the image $f(S)$ is not a proper subset of $S$ after all, contradiction. ///

In a similar vein, one can prove the Pigeon-Hole Principle, namely, that for $m<n$ a function

$$
f:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}
$$

cannot be injective. Suppose this is false. Let $n$ be the smallest such that there is $m<n$ with an injective map as above. The restriction of an injective map is still injective, so $f$ on $\{1, \ldots, n-1\}$ is still injective. By the minimality of $n$, it must be that $n-1=m$, and that $f$ restricted to $\{1, \ldots, m\}$ is a bijection of that set to itself. But then there is no possibility for $f(n)$ in $\{1, \ldots, m\}$ without violating the injectivity. Contradiction. Thus, there is no such injection to a smaller set.

