[03.1] Let $R=\mathbb{Z} / 13$ and $S=\mathbb{Z} / 221$. Show that the map

$$
f: R \rightarrow S
$$

defined by $f(n)=170 \cdot n$ is well-defined and is a ring homomorphism. (Observe that it does not map $1 \in R$ to $1 \in S$.)

The point is that $170=1 \bmod 13$ and $170=17 \cdot 10=0 \bmod 17$, and $221=13 \cdot 17$. Thus, for $n^{\prime}=n+13 \ell$,

$$
170 \cdot n^{\prime}=17 \cdot 10 \cdot n+10 \cdot 17 \cdot 13=17 \cdot 10 \cdot n \bmod 13 \cdot 17
$$

so the map is well-defined. Certainly the map respects addition, since

$$
170\left(n+n^{\prime}\right)=170 n+170 n^{\prime}
$$

That it respects multiplication is slightly subtler, but we verify this separately modulo 13 and modulo 17 , using unique factorization to know that if $13 \mid N$ and $17 \mid N$ then $(13 \cdot 17) \mid N$. Thus, since $170=1 \bmod 13$,

$$
170\left(n n^{\prime}\right)=1 \cdot\left(n n^{\prime}\right)=n n^{\prime}=(170 n) \cdot\left(170 n^{\prime}\right) \bmod 13
$$

And, since $17=0 \bmod 17$,

$$
170\left(n n^{\prime}\right)=0 \cdot\left(n n^{\prime}\right)=0=(170 n) \cdot\left(170 n^{\prime}\right) \bmod 17
$$

Putting these together gives the multiplicativity.
[03.2] Let p and q be distinct prime numbers. Show directly that there is no field with $p q$ elements.
There are several possible approaches. One is to suppose there exists such a field k, and first invoke Sylow (or even more elementary results) to know that there exist (non-zero!) elements x, y in k with (additive) orders p, q, respectively. That is, $p \cdot x=0$ (where left multiplication by an ordinary integer means repeated addition). Then claim that $x y=0$, contradicting the fact that a field (or even integral domain) has no proper zero divisors. Indeed, since p and q are distinct primes, $\operatorname{gcd}(p, q)=1$, so there are integers r, s such that $r p+s q=1$. Then

$$
x y=1 \cdot x y=(r p+s q) \cdot x y=r y \cdot p x+s x \cdot q y=r y \cdot 0+s x \cdot 0=0
$$

[03.3] Find all the idempotent elements in \mathbb{Z} / n.
The idempotent condition $r^{2}=r$ becomes $r(r-1)=0$. For each prime p dividing n, let p^{e} be the exact power of p dividing n. For the image in \mathbb{Z} / n of an ordinary integer b to be idempotent,, it is necessary and sufficient that $p^{e} \mid b(b-1)$ for each prime p. Note that p cannot divide both b and $b-1$, since $b-(b-1)=1$. Thus, the condition is $p^{e} \mid b$ or $p^{e} \mid b-1$, for each prime p dividing n. Sun-Ze's theorem assures that we can choose either of these two conditions for each p as p various over primes dividing n, and be able to find a simultaneous solution for the resulting family of congruences. That is, let p_{1}, \ldots, p_{t} be the distinct primes dividing n, and let $p_{i}^{e_{i}}$ be the exact power of p_{i} dividing n. For each p_{i} choose $\varepsilon_{i} \in\{0,1\}$. Given a sequence $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{t}\right)$ of 0 s and 1 s , consider the collection of congruences $p_{i}^{e_{i}} \mid\left(b-\varepsilon_{i}\right)$, for $i=1, \ldots, t$. Sun-Ze guarantees that there is a solution, and that it is unique mod n. Thus, each of the 2^{t} choices of sequences of 0 s and 1 s gives an idempotent.
[03.4] Find all the nilpotent elements in \mathbb{Z} / n.
For each prime p dividing n, let p^{e} be the exact power of p dividing n. For the image in \mathbb{Z} / n of an ordinary integer b to be nilpotent, it is necessary and sufficient that for some n sufficiently large $p^{e} \mid b^{n}$ for each prime p. Then surely $p \mid b^{n}$, and since p is prime $p \mid b$. And, indeed, if every prime dividing n divides b, then a
sufficiently large power of b will be 0 modulo p^{e}, hence (by unique factorization, etc.) modulo n. That is, for b to be nilpotent it is necessary and sufficient that every prime dividing n divides b.
[03.5] Let $R=\mathbb{Q}[x] /\left(x^{2}-1\right)$. Find e and f in R, neither one 0 , such that

$$
e^{2}=e \quad f^{2}=f \quad e f=0 \quad e+f=1
$$

(Such e and f are orthogonal idempotents.) Show that the maps $p_{e}(r)=r e$ and $p_{f}(r)=r f$ are ring homomorphisms of R to itself.

Let ξ be the image of x in the quotient. Then $(\xi-1)(\xi+1)=0$. Also note that

$$
(\xi-1)^{2}=\xi^{2}-2 \xi+1=\left(\xi^{2}-1\right)-2 \xi+2=-2 \xi+2
$$

so

$$
\left(\frac{\xi-1}{2}\right)^{2}=\frac{\xi^{2}-2 \xi+1}{4}=\frac{\left(\xi^{2}-1\right)-2 \xi+2}{4}=\frac{-\xi+1}{2}
$$

Similarly,

$$
\left(\frac{\xi+1}{2}\right)^{2}=\frac{\xi^{2}+2 \xi+1}{4}=\frac{\left(\xi^{2}-1\right)+2 \xi+2}{4}=\frac{\xi+1}{2}
$$

Thus, $e=(-\xi+1) / 2$ and $f=(\xi+1) / 2$ are the desired orthogonal idempotents.
[03.6] Prove that in $(\mathbb{Z} / p)[x]$ we have the factorization

$$
x^{p}-x=\prod_{a \in \mathbb{Z} / p}(x-a)
$$

By Fermat's Little Theorem, the left-hand side is 0 when x is replaced by any of $0,1,2, \ldots, p-1$. Thus, by unique factorization in $k[x]$ for k a field (which applies to \mathbb{Z} / p since p is prime), all the factors $x-0, x-1$, $x-2, \ldots, x-(p-1)$ divide the left-hand side, and (because these are mutually relatively prime) so does their product. Their product is the right hand side, which thus at least divides the left hand side. Since degrees add in products, we see that the right hand side and left hand side could differ at most by a unit (a polynomial of degree 0), but both are monic, so they are identical, as claimed.
[03.7] Show that $\mathbb{Z}[x]$ has non-maximal non-zero prime ideals.
(See Notes for examples and discussion.)
[03.8] Show that $\mathbb{C}[x, y]$ has non-maximal non-zero prime ideals.
(See Notes for examples and discussion.)
[03.9] Let $\omega=(-1+\sqrt{-3}) / 2$. Prove that

$$
\mathbb{Z}[\omega] / p \mathbb{Z}[\omega] \approx(\mathbb{Z} / p)[x] /\left(x^{2}+x+1\right)(\mathbb{Z} / p)[x]
$$

and, as a consequence, that a prime p in \mathbb{Z} is expressible as $x^{2}+x y+y^{2}$ with integers x, y if and only if $p=1 \bmod 3$ (apart from the single anomalous case $p=3$).
If a prime is expressible as $p=a^{2}+a b+b^{2}$, then, modulo 3 , the possibilities for p modulo 3 can be enumerated by considering $a=0, \pm 1$ and $b=0, \pm 1 \bmod 3$. Noting the symmetry that $(a, b) \rightarrow(-a,-b)$ does not change the output (nor does $(a, b) \rightarrow(b, a)$) we reduce from $3 \cdot 3=9$ cases to a smaller number:

$$
p=a^{2}+a b+b^{2}=\left\{\begin{array}{clc}
0^{2}+0 \cdot 0+0^{2} & =1 & \bmod 3 \\
1^{2}+1 \cdot 1+1^{2} & =0 & \bmod 3 \\
1^{2}+1 \cdot(-1)+(-1)^{2} & =1 & \bmod 3
\end{array}\right.
$$

Thus, any prime p expressible as $p=a^{2}+a b+b^{2}$ is either 3 or is $1 \bmod 3$.
On the other hand, suppose that $p=1 \bmod 3$. If p were expressible as $p=a^{2}+a b+b^{2}$ then

$$
p=(a+b \omega)(a+b \bar{\omega})
$$

where $\omega=(-1+\sqrt{-3}) / 2$. That is, p is expressible as $a^{2}+a b+b^{2}$ if and only if p factors in a particular manner in $\mathbb{Z}[\omega]$.
Let $N(a+b \omega)=a^{2}+a b+b^{2}$ be the usual (square-of) norm. To determine the units in $\mathbb{Z}[\omega]$, note that $\alpha \cdot \beta=1$ implies that

$$
1=N(\alpha) \cdot N(\beta)
$$

, and these norms from $\mathbb{Z}[\omega]$ are integers, so units have norm 1 . By looking at the equation $a^{2}+a b+b^{2}=1$ with integers a, b, a little fooling around shows that the only units in $\mathbb{Z}[\omega]$ are $\pm 1, \pm \omega$ and $\pm \omega^{2}$. And norm 0 occurs only for 0 .

If $p=\alpha \cdot \beta$ is a proper factorization, then by the multiplicative property of N

$$
p^{2}=N(p)=N(\alpha) \cdot N(\beta)
$$

Thus, since neither α nor β is a unit, it must be that

$$
N(\alpha)=p=N(\beta)
$$

Similarly, α and β must both be irreducibles in $\mathbb{Z}[\omega]$, since applying N to any proper factorization would give a contradiction. Also, since p is its own complex conjugate,

$$
p=\alpha \cdot \beta
$$

implies

$$
p=\bar{p}=\bar{\alpha} \cdot \bar{\beta}
$$

Since we know that the (Eisenstein) integers $\mathbb{Z}[\omega]$ are Euclidean and, hence, have unique factorization, it must be that these two prime factors are the same up to units.
Thus, either $\alpha= \pm \bar{\alpha}$ and $\beta= \pm \bar{\beta}$ (with matching signs), or $\alpha= \pm \omega \bar{\alpha}$ and $\beta= \pm \omega^{2} \bar{\beta}$, or $\alpha= \pm \omega^{2} \bar{\alpha}$ and $\beta= \pm \omega \bar{\beta}$, or $\alpha=u \bar{\beta}$ with u among $\pm 1, \pm \omega, \pm \omega^{2}$. If $\alpha= \pm \bar{\alpha}$, then α is either in \mathbb{Z} or of the form $t \cdot \sqrt{-3}$ with $t \in \mathbb{Z}$. In the former case its norm is a square, and in the latter its norm is divisible by 3 , neither of which can occur. If $\bar{\alpha}=\omega \alpha$, then $\alpha=t \cdot \omega$ for some $t \in \mathbb{Z}$, and its norm is a square, contradiction. Similarly for $\alpha= \pm \omega^{2} \bar{\alpha}$.
Thus, $\alpha=u \bar{\beta}$ for some unit u, and $p=u N(\beta)$. Since $p>0$, it must be that $u=1$. Letting $\alpha=a+b \omega$, we have recovered an expression

$$
p=a^{2}+a b+b^{2}
$$

with neither a nor b zero.
Thus, a prime integer $p>3$ is expressible (properly) as $a^{2}+a b+b^{2}$ of two squares if and only if it is not prime in $\mathbb{Z}[\omega]$. From above, this is equivalent to

$$
\mathbb{Z}[\omega] /\langle p\rangle \text { is not an integral domain }
$$

We grant that for $p=1 \bmod 3$ there is an integer α such that $\alpha^{2}+a l f+1=0 \bmod p .^{[1]} \quad$ That is, (the image of) the polynomial $x^{2}+x+1$ factors in $(\mathbb{Z} / p)[x]$.

[^0]Note that we can rewrite $\mathbb{Z}[\omega]$ as

$$
\mathbb{Z}[x] /\left\langle x^{2}+x+1\right\rangle
$$

Then

$$
\mathbb{Z}[\omega] /\langle p\rangle \approx\left(\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle\right) /\langle p\rangle \approx(\mathbb{Z}[x] /\langle p\rangle) /\left\langle x^{2}+1\right\rangle \approx(\mathbb{Z} / p)[x] /\left\langle x^{2}+1\right\rangle
$$

and the latter is not an integral domain, since

$$
x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right)
$$

is not irreducible in $(\mathbb{Z} / p)[x]$. That is, $\mathbb{Z}[\omega] /\langle p\rangle$ is not an integral domain when p is a prime with $p=1 \bmod 3$. That is, p is not irreducible in $\mathbb{Z}[\omega]$, so factors properly in $\mathbb{Z}[\omega]$, thus, as observed above, p is expressible as $a^{2}+a b+b^{2}$.

[^0]: ${ }^{[1]}$ If we grant that there are primitive roots modulo primes, that is, that $(\mathbb{Z} / p)^{\times}$is cyclic, then this assertion follows from basic and general properties of cyclic groups. Even without knowledge of primitive roots, we can still give a special argument in this limited case, as follows. Let $G=(\mathbb{Z} / p)^{\times}$. This group is abelian, and has order divisible by 3. Thus, for example by Sylow theorems, there is a 3 -power-order subgroup A, and, thus, at least one element of order exactly 3 .

