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[03.1] Let R = Z/13 and S = Z/221. Show that the map

f : R→ S

defined by f(n) = 170 · n is well-defined and is a ring homomorphism. (Observe that it does not map 1 ∈ R
to 1 ∈ S.)

The point is that 170 = 1 mod 13 and 170 = 17 · 10 = 0 mod 17, and 221 = 13 · 17. Thus, for n′ = n+ 13`,

170 · n′ = 17 · 10 · n+ 10 · 17 · 13 = 17 · 10 · n mod 13 · 17

so the map is well-defined. Certainly the map respects addition, since

170(n+ n′) = 170n+ 170n′

That it respects multiplication is slightly subtler, but we verify this separately modulo 13 and modulo 17,
using unique factorization to know that if 13|N and 17|N then (13 · 17)|N . Thus, since 170 = 1 mod 13,

170(nn′) = 1 · (nn′) = nn′ = (170n) · (170n′) mod 13

And, since 17 = 0 mod 17,

170(nn′) = 0 · (nn′) = 0 = (170n) · (170n′) mod 17

Putting these together gives the multiplicativity.

[03.2] Let p and q be distinct prime numbers. Show directly that there is no field with pq elements.

There are several possible approaches. One is to suppose there exists such a field k, and first invoke Sylow
(or even more elementary results) to know that there exist (non-zero!) elements x, y in k with (additive)
orders p, q, respectively. That is, p · x = 0 (where left multiplication by an ordinary integer means repeated
addition). Then claim that xy = 0, contradicting the fact that a field (or even integral domain) has no
proper zero divisors. Indeed, since p and q are distinct primes, gcd(p, q) = 1, so there are integers r, s such
that rp+ sq = 1. Then

xy = 1 · xy = (rp+ sq) · xy = ry · px+ sx · qy = ry · 0 + sx · 0 = 0

[03.3] Find all the idempotent elements in Z/n.

The idempotent condition r2 = r becomes r(r − 1) = 0. For each prime p dividing n, let pe be the exact
power of p dividing n. For the image in Z/n of an ordinary integer b to be idempotent,, it is necessary and
sufficient that pe|b(b− 1) for each prime p. Note that p cannot divide both b and b− 1, since b− (b− 1) = 1.
Thus, the condition is pe|b or pe|b − 1, for each prime p dividing n. Sun-Ze’s theorem assures that we can
choose either of these two conditions for each p as p various over primes dividing n, and be able to find a
simultaneous solution for the resulting family of congruences. That is, let p1, . . . , pt be the distinct primes
dividing n, and let pei

i be the exact power of pi dividing n. For each pi choose εi ∈ {0, 1}. Given a sequence
ε = (ε1, . . . , εt) of 0s and 1s, consider the collection of congruences pei

i |(b − εi), for i = 1, . . . , t. Sun-Ze
guarantees that there is a solution, and that it is unique mod n. Thus, each of the 2t choices of sequences
of 0s and 1s gives an idempotent.

[03.4] Find all the nilpotent elements in Z/n.

For each prime p dividing n, let pe be the exact power of p dividing n. For the image in Z/n of an ordinary
integer b to be nilpotent,, it is necessary and sufficient that for some n sufficiently large pe|bn for each prime
p. Then surely p|bn, and since p is prime p|b. And, indeed, if every prime dividing n divides b, then a
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sufficiently large power of b will be 0 modulo pe, hence (by unique factorization, etc.) modulo n. That is,
for b to be nilpotent it is necessary and sufficient that every prime dividing n divides b.

[03.5] Let R = Q[x]/(x2 − 1). Find e and f in R, neither one 0, such that

e2 = e f2 = f ef = 0 e+ f = 1

(Such e and f are orthogonal idempotents.) Show that the maps pe(r) = re and pf (r) = rf are ring
homomorphisms of R to itself.

Let ξ be the image of x in the quotient. Then (ξ − 1)(ξ + 1) = 0. Also note that

(ξ − 1)2 = ξ2 − 2ξ + 1 = (ξ2 − 1)− 2ξ + 2 = −2ξ + 2

so (
ξ − 1

2

)2

=
ξ2 − 2ξ + 1

4
=

(ξ2 − 1)− 2ξ + 2
4

=
−ξ + 1

2

Similarly, (
ξ + 1

2

)2

=
ξ2 + 2ξ + 1

4
=

(ξ2 − 1) + 2ξ + 2
4

=
ξ + 1

2

Thus, e = (−ξ + 1)/2 and f = (ξ + 1)/2 are the desired orthogonal idempotents.

[03.6] Prove that in (Z/p)[x] we have the factorization

xp − x =
∏

a∈Z/p

(x− a)

By Fermat’s Little Theorem, the left-hand side is 0 when x is replaced by any of 0, 1, 2, . . . , p− 1. Thus, by
unique factorization in k[x] for k a field (which applies to Z/p since p is prime), all the factors x− 0, x− 1,
x − 2, . . ., x − (p − 1) divide the left-hand side, and (because these are mutually relatively prime) so does
their product. Their product is the right hand side, which thus at least divides the left hand side. Since
degrees add in products, we see that the right hand side and left hand side could differ at most by a unit (a
polynomial of degree 0), but both are monic, so they are identical, as claimed.

[03.7] Show that Z[x] has non-maximal non-zero prime ideals.

(See Notes for examples and discussion.)

[03.8] Show that C[x, y] has non-maximal non-zero prime ideals.

(See Notes for examples and discussion.)

[03.9] Let ω = (−1 +
√
−3)/2. Prove that

Z[ω]/pZ[ω] ≈ (Z/p)[x]/(x2 + x+ 1)(Z/p)[x]

and, as a consequence, that a prime p in Z is expressible as x2 + xy + y2 with integers x, y if and only if
p = 1 mod 3 (apart from the single anomalous case p = 3).

If a prime is expressible as p = a2+ab+b2, then, modulo 3, the possibilities for p modulo 3 can be enumerated
by considering a = 0,±1 and b = 0,±1 mod 3. Noting the symmetry that (a, b)→ (−a,−b) does not change
the output (nor does (a, b)→ (b, a)) we reduce from 3 · 3 = 9 cases to a smaller number:

p = a2 + ab+ b2 =

 02 + 0 · 0 + 02 = 1 mod 3
12 + 1 · 1 + 12 = 0 mod 3

12 + 1 · (−1) + (−1)2 = 1 mod 3
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Thus, any prime p expressible as p = a2 + ab+ b2 is either 3 or is 1 mod 3.

On the other hand, suppose that p = 1 mod 3. If p were expressible as p = a2 + ab+ b2 then

p = (a+ bω)(a+ bω)

where ω = (−1 +
√
−3)/2. That is, p is expressible as a2 + ab + b2 if and only if p factors in a particular

manner in Z[ω].

Let N(a + bω) = a2 + ab + b2 be the usual (square-of) norm. To determine the units in Z[ω], note that
α · β = 1 implies that

1 = N(α) ·N(β)

, and these norms from Z[ω] are integers, so units have norm 1. By looking at the equation a2 + ab+ b2 = 1
with integers a, b, a little fooling around shows that the only units in Z[ω] are ±1, ±ω and ±ω2. And norm
0 occurs only for 0.

If p = α · β is a proper factorization, then by the multiplicative property of N

p2 = N(p) = N(α) ·N(β)

Thus, since neither α nor β is a unit, it must be that

N(α) = p = N(β)

Similarly, α and β must both be irreducibles in Z[ω], since applying N to any proper factorization would
give a contradiction. Also, since p is its own complex conjugate,

p = α · β

implies
p = p = α · β

Since we know that the (Eisenstein) integers Z[ω] are Euclidean and, hence, have unique factorization, it
must be that these two prime factors are the same up to units.

Thus, either α = ±α and β = ±β (with matching signs), or α = ±ωα and β = ±ω2β, or α = ±ω2α and
β = ±ωβ, or α = uβ with u among ±1,±ω,±ω2. If α = ±α, then α is either in Z or of the form t ·

√
−3

with t ∈ Z. In the former case its norm is a square, and in the latter its norm is divisible by 3, neither of
which can occur. If α = ωα, then α = t ·ω for some t ∈ Z, and its norm is a square, contradiction. Similarly
for α = ±ω2α.

Thus, α = uβ for some unit u, and p = uN(β). Since p > 0, it must be that u = 1. Letting α = a+ bω, we
have recovered an expression

p = a2 + ab+ b2

with neither a nor b zero.

Thus, a prime integer p > 3 is expressible (properly) as a2 + ab + b2 of two squares if and only if it is not
prime in Z[ω]. From above, this is equivalent to

Z[ω]/〈p〉 is not an integral domain

We grant that for p = 1 mod 3 there is an integer α such that α2 + alf + 1 = 0 mod p. [1] That is, (the
image of) the polynomial x2 + x+ 1 factors in (Z/p)[x].

[1] If we grant that there are primitive roots modulo primes, that is, that (Z/p)× is cyclic, then this assertion follows

from basic and general properties of cyclic groups. Even without knowledge of primitive roots, we can still give a

special argument in this limited case, as follows. Let G = (Z/p)×. This group is abelian, and has order divisible by

3. Thus, for example by Sylow theorems, there is a 3-power-order subgroup A, and, thus, at least one element of

order exactly 3.
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Note that we can rewrite Z[ω] as
Z[x]/〈x2 + x+ 1〉

Then
Z[ω]/〈p〉 ≈

(
Z[x]/〈x2 + 1〉

)
/〈p〉 ≈ (Z[x]/〈p〉) /〈x2 + 1〉 ≈ (Z/p)[x]/〈x2 + 1〉

and the latter is not an integral domain, since

x2 + x+ 1 = (x− α)(x− α2)

is not irreducible in (Z/p)[x]. That is, Z[ω]/〈p〉 is not an integral domain when p is a prime with p = 1 mod 3.
That is, p is not irreducible in Z[ω], so factors properly in Z[ω], thus, as observed above, p is expressible as
a2 + ab+ b2. ///
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