[06.1] Given a 3 -by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ± 1 such that $A M B$ is diagonal.

Let's give an algorithmic, rather than existential, argument this time, saving the existential argument for later.

First, note that given two integers x, y, not both 0 , there are integers r, s such that $g=\operatorname{gcd}(x, y)$ is expressible as $g=r x+s y$. That is,

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
r & * \\
s & *
\end{array}\right)=\left(\begin{array}{ll}
g & *
\end{array}\right)
$$

What we want, further, is to figure out what other two entries will make the second entry 0 , and will make that 2-by-2 matrix invertible (in $G L_{2}(\mathbb{Z})$). It's not hard to guess:

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
r & -y / g \\
s & x / g
\end{array}\right)=\left(\begin{array}{ll}
g & 0
\end{array}\right)
$$

Thus, given $(x y z)$, there is an invertible 2-by-2 integer matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that

$$
\left(\begin{array}{ll}
y & z
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\operatorname{gcd}(y, z) & 0
\end{array}\right)
$$

That is,

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right)=\left(\begin{array}{lll}
x & \operatorname{gcd}(y, z) & 0
\end{array}\right)
$$

Repeat this procedure, now applied to x and $\operatorname{gcd}(y, z)$: there is an invertible 2-by-2 integer matrix $\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ such that

$$
\left(\begin{array}{ll}
x & \operatorname{gcd}(y, z)
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=(\operatorname{gcd}(x, \operatorname{gcd}(y, z))
$$

That is,

$$
\left(\begin{array}{lll}
x & \operatorname{gcd}(y, z) & 0
\end{array}\right)\left(\begin{array}{ccc}
a^{\prime} & b^{\prime} & 0 \\
c^{\prime} & d^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
\operatorname{gcd}(x, y, z) & 0 & 0
\end{array}\right)
$$

since $g c d s$ can be computed iteratively. That is,

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right)\left(\begin{array}{ccc}
a^{\prime} & b^{\prime} & 0 \\
c^{\prime} & d^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
\operatorname{gcd}(x, y, z) & 0 & 0
\end{array}\right)
$$

Given a 3-by-3 matrix M, right-multiply by an element A_{1} of $G L_{3}(\mathbb{Z})$ to put M into the form

$$
M A_{1}=\left(\begin{array}{ccc}
g_{1} & 0 & 0 \\
* & * & * \\
* & * & *
\end{array}\right)
$$

where (necessarily!) g_{1} is the $g c d$ of the top row. Then left-multiply by an element $B_{2} \in G L_{3}(\mathbb{Z})$ to put $M A$ into the form

$$
B_{2} \cdot M A_{1}=\left(\begin{array}{ccc}
g_{2} & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)
$$

where (necessarily!) g_{2} is the $g c d$ of the left column entries of $M A_{1}$. Then right multiply by $A_{3} \in G L_{3}(\mathbb{Z})$ such that

$$
B_{2} M A_{1} \cdot A_{3}=\left(\begin{array}{ccc}
g_{3} & 0 & 0 \\
* & * & * \\
* & * & *
\end{array}\right)
$$

where g_{3} is the $g c d$ of the top row of $B_{2} M A_{1}$. Continue. Since these $g c d$ s divide each other successively

$$
\ldots\left|g_{3}\right| g_{2} \mid g_{1} \neq 0
$$

and since any such chain must be finite, after finitely-many iterations of this the upper-left entry ceases to change. That is, for some $A, B \in G L_{3}(\mathbb{Z})$ we have

$$
B M A=\left(\begin{array}{lll}
g & * & * \\
0 & x & y \\
0 & * & *
\end{array}\right)
$$

and also g divides the top row. That is,

$$
u=\left(\begin{array}{ccc}
1 & -x / g & -y / g \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in G L_{3}(\mathbb{Z})
$$

Then

$$
B M A \cdot u=\left(\begin{array}{ccc}
g & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right)
$$

Continue in the same fashion, operating on the lower right 2-by-2 block, to obtain a form

$$
\left(\begin{array}{ccc}
g & 0 & 0 \\
0 & g_{2} & 0 \\
0 & 0 & g_{3}
\end{array}\right)
$$

Note that since the r, s such that $\operatorname{gcd}(x, y)=r x+s y$ can be found via Euclid, this whole procedure is effective. And it certainly applies to larger matrices, not necessarily square.
[06.2] Given a row vector $x=\left(x_{1}, \ldots, x_{n}\right)$ of integers whose $g c d$ is 1 , prove that there exists an n-by- n integer matrix M with determinant ± 1 such that $x M=(0, \ldots, 0,1)$.
(The iterative/algorithmic idea of the previous solution applies here, moving the gcd to the right end instead of the left.)
[06.3] Given a row vector $x=\left(x_{1}, \ldots, x_{n}\right)$ of integers whose $g c d$ is 1 , prove that there exists an n-by- n integer matrix M with determinant ± 1 whose bottom row is x.

This is a corollary of the previous exercise. Given A such that

$$
x A=\left(\begin{array}{llll}
0 & \ldots & 0 & \operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)=\left(\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right)
$$

note that this is saying

$$
\left(\begin{array}{ccc}
* & \ldots & * \\
\vdots & & \vdots \\
* & \ldots & * \\
x_{1} & \ldots & x_{n}
\end{array}\right) \cdot A=\left(\begin{array}{cccc}
* & \ldots & * & * \\
\vdots & & \vdots & \vdots \\
* & \ldots & * & * \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

or

$$
\left(\begin{array}{ccc}
* & \ldots & * \\
\vdots & & \vdots \\
* & \ldots & * \\
x_{1} & \ldots & x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
* & \ldots & * & * \\
\vdots & & \vdots & \vdots \\
* & \ldots & * & * \\
0 & \ldots & 0 & 1
\end{array}\right) \cdot A^{-1}
$$

This says that x is the bottom row of the invertible A^{-1}, as desired.
[06.4] Show that $G L\left(2, \mathbb{F}_{2}\right)$ is isomorphic to the permutation group S_{3} on three letters.
There are exactly 3 non-zero vectors in the space \mathbb{F}_{2}^{2} of column vectors of size 2 with entries in \mathbb{F}_{2}. Left multiplication by elements of $G L_{2}\left(\mathbb{F}_{2}\right)$ permutes them, since the invertibility assures that no non-zero vector is mapped to zero. If $g \in G L_{2}\left(\mathbb{F}_{2}\right)$ is such that $g v=v$ for all non-zero vectors v, then $g=1_{2}$. Thus, the map

$$
\varphi: G L_{2}\left(\mathbb{F}_{2}\right) \rightarrow \text { permutations of the set } N \text { of non-zero vectors in } \mathbb{F}_{2}^{2}
$$

is injective. It is a group homomorphism because of the associativity of matrix multiplication:

$$
\varphi(g h)(v)=(g h) v=g(h v)=\varphi(g)(\varphi(h)(v))
$$

Last, we can confirm that the injective group homomorphism φ is also surjective by showing that the order of $G L_{2}\left(\mathbb{F}_{2}\right)$ is the order of S_{3}, namely, 6 , as follows. An element of $G L_{2}\left(\mathbb{F}_{2}\right)$ can send any basis for \mathbb{F}_{2}^{2} to any other basis, and, conversely, is completely determined by telling what it does to a basis. Thus, for example, taking the first basis to be the standard basis $\left\{e_{1}, e_{2}\right\}$ (where e_{i} has a 1 at the $i^{\text {th }}$ position and 0 s elsewhere), an element g can map e_{1} to any non-zero vector, for which there are $2^{2}-1$ choices, counting all less 1 for the zero-vector. The image of e_{2} under g must be linearly independent of e_{1} for g to be invertible, and conversely, so there are $2^{2}-2$ choices for $g e_{2}$ (all less 1 for 0 and less 1 for $g e_{1}$). Thus,

$$
\left|G L_{2}\left(\mathbb{F}_{2}\right)\right|=\left(2^{2}-1\right)\left(2^{2}-2\right)=6
$$

Thus, the map of $G L_{2}\left(\mathbb{F}_{2}\right)$ to permutations of non-zero vectors gives an isomorphism to S_{3}.
[06.5] Determine all conjugacy classes in $G L\left(2, \mathbb{F}_{3}\right)$.
First, $G L_{2}\left(\mathbb{F}_{3}\right)$ is simply the group of invertible k-linear endomorphisms of the \mathbb{F}_{3}-vectorspace \mathbb{F}_{3}^{2}. As observed earlier, conjugacy classes of endomorphisms are in bijection with $\mathbb{F}_{3}[x]$-module structures on \mathbb{F}_{3}^{2}, which we know are given by elementary divisors, from the Structure Theorem. That is, all the possible structures are parametrized by monic polynomials $d_{1}|\ldots| d_{t}$ where the sum of the degrees is the dimension of the vector space \mathbb{F}_{3}^{2}, namely 2 . Thus, we have a list of irredundant representatives

$$
\left\{\begin{array}{cc}
\mathbb{F}_{3}[x] /\langle Q\rangle & Q \text { monic quadratic in } \mathbb{F}_{3}[x] \\
\mathbb{F}_{3}[x] /\langle x-\lambda\rangle \oplus \mathbb{F}_{3}[x] /\langle x-\lambda\rangle & \lambda \in \mathbb{F}_{3}^{\times}
\end{array}\right.
$$

We can write the first case in a so-called rational canonical form, that is, choosing basis $1, x \bmod Q$, so we have two families

$$
\left\{\begin{array}{ll}
(1) & \left(\begin{array}{cc}
0 & -b \\
1 & -a
\end{array}\right)
\end{array} \quad b \in \mathbb{F}_{3}, a \in \mathbb{F}_{3}^{\times}, ~\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right) \quad \lambda \mathbb{F}_{3}^{\times} .\right.
$$

But the first family can be usefully broken into 3 sub-cases, namely, depending upon the reducibility of the quadratic, and whether or not there are repeated roots: there are 3 cases

$$
\begin{aligned}
& Q(x)=\quad \text { irreducible } \\
& Q(x)=\quad(x-\lambda)(x-\mu) \quad(\text { with } \lambda \neq \mu) \\
& Q(x)=\quad(x-\lambda)^{2}
\end{aligned}
$$

And note that if $\lambda \neq \mu$ then (for a field k)

$$
k[x] /\langle(x-\lambda)(x-\mu)\rangle \approx k[x] /\langle x-\lambda\rangle \oplus k[x] /\langle x-\mu\rangle
$$

Thus, we have

$$
\left\{\begin{array}{lcc}
(1 a) & \left(\begin{array}{cc}
0 & b \\
1 & a
\end{array}\right) & x^{2}+a x+b \text { irreducible in } \mathbb{F}_{3}[x] \\
(1 b) & \left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right) & \lambda \neq \mu \text { both nonzero } \\
(1 b) & \left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right) & \lambda \in \mathbb{F}_{3}^{2} \\
(2) & \left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right) & \lambda \in \mathbb{F}_{3}^{\times}
\end{array} \text {(modulo interchange of } \lambda, \mu\right)
$$

One might, further, list the irreducible quadratics in $\mathbb{F}_{3}[x]$. By counting, we know there are $\left(3^{2}-3\right) / 2=3$ irreducible quadratics, and, thus, the guesses $x^{2}-2, x^{2}+x+1$, and $x^{2}-x+1$ (the latter two being cyclotomic, the first using the fact that 2 is not a square $\bmod 3$) are all of them.
[06.6] Determine all conjugacy classes in $G L\left(3, \mathbb{F}_{2}\right)$.
Again, $G L_{3}\left(\mathbb{F}_{2}\right)$ is the group of invertible k-linear endomorphisms of the \mathbb{F}_{2}-vectorspace \mathbb{F}_{2}^{3}, and conjugacy classes of endomorphisms are in bijection with $\mathbb{F}_{2}[x]$-module structures on \mathbb{F}_{2}^{3}, which are given by elementary divisors. So all possibilities are parametrized by monic polynomials $d_{1}|\ldots| d_{t}$ where the sum of the degrees is the dimension of the vector space \mathbb{F}_{2}^{3}, namely 3. Thus, we have a list of irredundant representatives

$$
\left\{\begin{array}{ccc}
(1) & \mathbb{F}_{2}[x] /\langle Q\rangle & Q \text { monic cubic in } \mathbb{F}_{2}[x] \\
(2) & \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\left\langle(x-1)^{2}\right\rangle & \\
(3) & \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle &
\end{array}\right.
$$

since the only non-zero element of \mathbb{F}_{2} is $\lambda=1$. We can write the first case in a so-called rational canonical form, that is, choosing basis $1, x, x^{2} \bmod Q$, there are three families

$$
\left\{\begin{array}{l}
(1)\left(\begin{array}{llc}
0 & 0 & 1 \\
1 & 0 & -b \\
0 & 1 & -a
\end{array}\right) x^{3}+a x^{2}+b x+1 \text { in } \mathbb{F}_{2}[x] \\
(2) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
(3) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right.
$$

It is useful to look in detail at the possible factorizations in case 1, breaking up the single summand into more summands according to relatively prime factors, giving cases

$$
\left\{\begin{array}{cc}
(1 a) & \mathbb{F}_{2}[x] /\left\langle x^{3}+x+1\right\rangle \\
\left(1 a^{\prime}\right) & \mathbb{F}_{2}[x] /\left\langle x^{3}+x^{2}+1\right\rangle \\
(1 b) & \mathbb{F}_{2}[x] /\left\langle(x-1)\left(x^{2}+x+1\right)\right\rangle \\
(1 c) & \mathbb{F}_{2}[x] /\left\langle(x-1)^{3}\right\rangle
\end{array}\right.
$$

since there are just two irreducible cubics $x^{3}+x+1$ and $x^{3}+x^{2}+1$, and a unique irreducible quadratic, $x^{2}+x+1$. (The counting above tells the number, so, after any sort of guessing provides us with the right number of check-able irreducibles, we can stop.) Thus, the 6 conjugacy classes have irredundant matrix representatives
(1a) $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$\left(1 a^{\prime}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$
(1b) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$
(1c) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$
(2) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$
(3) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
[06.7] Determine all conjugacy classes in $G L\left(4, \mathbb{F}_{2}\right)$.
Again, $G L_{4}\left(\mathbb{F}_{2}\right)$ is invertible k-linear endomorphisms of \mathbb{F}_{2}^{4}, and conjugacy classes are in bijection with $\mathbb{F}_{2}[x]$-module structures on \mathbb{F}_{2}^{4}, given by elementary divisors. So all possibilities are parametrized by monic polynomials $d_{1}|\ldots| d_{t}$ where the sum of the degrees is the dimension of the vector space \mathbb{F}_{2}^{4}, namely 4 . Thus, we have a list of irredundant representatives

$$
\left\{\begin{array}{cc}
\mathbb{F}_{2}[x] /\langle Q\rangle & Q \text { monic quartic } \\
\mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle(x-1) Q(x)\rangle & Q \text { monic quadratic } \\
\mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\left\langle(x-1)^{2}\right\rangle & \\
\mathbb{F}_{2}[x] /\langle Q\rangle \oplus \mathbb{F}_{2}[x] /\langle Q\rangle & Q \text { monic quadratic } \\
\mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle &
\end{array}\right.
$$

since the only non-zero element of \mathbb{F}_{2} is $\lambda=1$. We could write all cases using rational canonical form, but will not, deferring matrix forms till we've further decomposed the modules. Consider possible factorizations
into irreducibles, giving cases

$$
\left\{\begin{array}{cc}
(1 a) & \mathbb{F}_{2}[x] /\left\langle x^{4}+x+1\right\rangle \\
\left(1 a^{\prime}\right) & \mathbb{F}_{2}[x] /\left\langle x^{4}+x^{3}+1\right\rangle \\
\left(1 a^{\prime \prime}\right) & \mathbb{F}_{2}[x] /\left\langle x^{4}+x^{3}+x^{2}+x+1\right\rangle \\
(1 b) & \mathbb{F}_{2}[x] /\left\langle(x-1)\left(x^{3}+x+1\right)\right\rangle \\
\left(1 b^{\prime}\right) & \mathbb{F}_{2}[x] /\left\langle(x-1)\left(x^{3}+x^{2}+1\right)\right\rangle \\
(1 c) & \mathbb{F}_{2}[x] /\left\langle(x-1)^{2}\left(x^{2}+x+1\right)\right\rangle \\
(1 d) & \mathbb{F}_{2}[x] /\left\langle\left(x^{2}+x+1\right)^{2}\right\rangle \\
(1 e) & \mathbb{F}_{2}[x] /\left\langle(x-1)^{4}\right\rangle \\
(2 a) & \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\left\langle(x-1)\left(x^{2}+x+1\right)\right\rangle \\
(2 b) & \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\left\langle(x-1)^{3}\right\rangle \\
(3) & \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\left\langle(x-1)^{2}\right\rangle \\
(4 a) & \mathbb{F}_{2}[x] /\left\langle x^{2}+x+1\right\rangle \oplus \mathbb{F}_{2}[x] /\left\langle x^{2}+x+1\right\rangle \\
(4 b) & \mathbb{F}_{2}[x] /\left\langle(x-1)^{2}\right\rangle \oplus \mathbb{F}_{2}[x] /\left\langle(x-1)^{2}\right\rangle \\
(5) & \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle \oplus \mathbb{F}_{2}[x] /\langle x-1\rangle
\end{array}\right.
$$

since there are exactly three irreducible quartics (as indicated), two irreducible cubics, and a single irreducible quadratic. Matrices are, respectively, and unilluminatingly,

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

[06.8] Tell a p-Sylow subgroup in $G L\left(3, \mathbb{F}_{p}\right)$.
To compute the order of this group in the first place, observe that an automorphism (invertible endomorphism) can take any basis to any other. Thus, letting e_{1}, e_{2}, e_{3} be the standard basis, for an automorphism g the image $g e_{1}$ can be any non-zero vector, of which there are $p^{3}-1$. The image $g e_{2}$ can be anything not in the span of $g e_{1}$, of which there are $p^{3}=p$. The image $g e_{3}$ can be anything not in the span
of $g e_{1}$ and $g e_{2}$, of which, because those first two were already linearly independent, there are $p^{3}-p^{2}$. Thus, the order is

$$
\left|G L_{3}\left(\mathbb{F}_{p}\right)\right|=\left(p^{3}-1\right)\left(p^{3}-p\right)\left(p^{3}-p^{2}\right)
$$

The power of p that divides this is p^{3}. Upon reflection, a person might hit upon considering the subgroup of upper triangular unipotent (eigenvalues all 1) matrices

$$
\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)
$$

where the super-diagonal entries are all in \mathbb{F}_{p}. Thus, there would be p^{3} choices for super-diagonal entries, the right number. By luck, we are done.
[06.9] Tell a 3-Sylow subgroup in $G L\left(3, \mathbb{F}_{7}\right)$.
As earlier, the order of the group is

$$
\left(7^{3}-1\right)\left(7^{3}-7\right)\left(7^{3}-7^{2}\right)=2^{6} \cdot 3^{4} \cdot 7^{3} \cdot 19
$$

Of course, since \mathbb{F}_{7}^{\times}is cyclic, for example, it has a subgroup T of order 3. Thus, one might hit upon the subgroup

$$
H=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right): a, b, c \in T\right\}
$$

is a subgroup of order 3^{3}. Missing a factor of 3 . But all the permutation matrices (with exactly one non-zero entry in each row, and in each column, and that non-zero entry is 1)

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

These normalize all diagonal matrices, and also the subgroup H of diagonal matrices with entries in T. The group of permutation matrices consisting of the identity and the two 3 -cycles is order 3 , and putting it together with H (as a semi-direct product whose structure is already described for us) gives the order 3^{4} subgroup.
[06.10] Tell a 19-Sylow subgroup in $G L\left(3, \mathbb{F}_{7}\right)$.
Among the Stucture Theorem canonical forms for endomorphisms of $V=\mathbb{F}_{7}^{3}$, there are $\mathbb{F}_{7}[x]$-module structures

$$
V \approx \mathbb{F}_{7}[x] /\langle\text { irreducible cubic } C\rangle
$$

which are invertible because of the irreducibility. Let α be the image of x in $\mathbb{F}_{7}[x] /\langle C\rangle$. Note that $\mathbb{F}_{7}[\alpha]=\mathbb{F}_{7}[x] / C$ also has a natural ring structure. Then the action of any $P(x)$ in $k[x]$ on V (via this isomorphism) is, of course,

$$
P(x) \cdot Q(\alpha)=P(\alpha) \cdot Q(\alpha)=(P \cdot Q)(x) \bmod C(x)
$$

for any $Q(x) \in \mathbb{F}_{7}[x]$. Since C is irreducible, there are no non-trivial zero divisors in the ring $\mathbb{F}_{7}[\alpha]$. Indeed, it's a field. Thus, $\mathbb{F}_{7}[\alpha]^{\times}$injects to $\operatorname{End}_{\mathbb{F}_{7}} V$. The point of saying this is that, therefore, if we can find an element of $\mathbb{F}_{7}[\alpha]^{\times}$of order 19 then we have an endomorphism of order 19 , as well. And it is arguably simpler to hunt around in side $\mathbb{F}_{7^{3}}=\mathbb{F}_{7}[\alpha]$ than in groups of matrices.

To compute anything explicitly in $\mathbb{F}_{7^{3}}$ we need an irreducible cubic. Luckily, $7=1 \bmod 3$, so there are many non-cubes mod 7 . In particular, there are only 2 non-zero cubes mod $7, \pm 1$. Thus, $x^{3}-2$ has no linear factor
in $\mathbb{F}_{7}[x]$, so is irreducible. The sparseness (having not so many non-zero coefficients) of this polynomial will be convenient when computing, subsequently.

Now we must find an element of order 19 in $\mathbb{F}_{7}[x] /\left\langle x^{3}-2\right\rangle$. There seems to be no simple algorithm for choosing such a thing, but there is a reasonable probabilistic approach: since $\mathbb{F}_{7^{3}}^{\times}$is cyclic of order $7^{3}-1=19 \cdot 18$, if we pick an element g at random the probability is $(19-1) / 19$ that its order will be divisible by 19. Then, whatever its order is, g^{18} will have order either 19 or 1 . That is, if g^{18} is not 1 , then it is the desired thing. (Generally, in a cyclic group of order $p \cdot m$ with prime p and p not dividing m, a random element g has probability $(p-1) / p$ of having order divisible by p, and in any case g^{m} will be either 1 or will have order p.)

Since elements of the ground field \mathbb{F}_{7}^{\times}are all of order 6 , these would be bad guesses for the random g. Also, the image of x has cube which is 2 , which has order 6 , so x itself has order 18 , which is not what we want. What to guess next? Uh, maybe $g=x+1$? Can only try. Compute

$$
(x+1)^{18}=\left(\left((x+1)^{3}\right)^{2}\right)^{3} \bmod x^{3}-2
$$

reducing modulo $x^{3}-2$ at intermediate stages to simplify things. So

$$
g^{3}=x^{3}+3 x^{2}+3 x+1=3 x^{2}+3 x+3 \bmod x^{3}-2=3 \cdot\left(x^{2}+x+1\right)
$$

A minor piece of luck, as far as computational simplicity goes. Then, in $\mathbb{F}_{7}[x]$,

$$
\begin{gathered}
g^{6}=3^{2} \cdot\left(x^{2}+x+1\right)^{2}=2 \cdot\left(x^{4}+2 x^{3}+3 x^{2}+2 x+1\right)=2 \cdot\left(2 x+2 \cdot 2+3 x^{2}+2 x+1\right) \\
=2 \cdot\left(3 x^{2}+4 x+5\right)=6 x^{2}+x+3 \bmod x^{3}-2
\end{gathered}
$$

Finally,

$$
g^{18}=\left(g^{6}\right)^{3}=\left(6 x^{2}+x+3\right)^{3} \bmod x^{3}-2
$$

$$
\begin{gathered}
=6^{3} \cdot x^{6}+\left(3 \cdot 6^{2} \cdot 1\right) x^{5}+\left(3 \cdot 6^{2} \cdot 3+3 \cdot 6 \cdot 1^{2}\right) x^{4}+\left(6 \cdot 6 \cdot 1 \cdot 3+1^{3}\right) x^{3}+\left(3 \cdot 6 \cdot 3^{2}+3 \cdot 1^{2} \cdot 3\right) x^{2}+\left(3 \cdot 1 \cdot 3^{2}\right) x+3^{3} \\
=6 x^{6}+3 x^{5}+6 x^{4}+4 x^{3}+3 x^{2}+6 x+6=6 \cdot 4+3 \cdot 2 \cdot x^{2}+6 \cdot 2 x+4 \cdot 2+3 x^{2}+6 x+6=2 x^{2}+4 x+3
\end{gathered}
$$

Thus, if we've not made a computational error, the endomorphism given by multiplication by $2 x^{2}+4 x+3$ in $\mathbb{F}_{7}[x] /\left\langle x^{3}-2\right\rangle$ is of order 19 .

To get a matrix, use (rational canonical form) basis $e_{1}=1, e_{2}=x, e_{3}=x^{2}$. Then the matrix of the endomorphism is

$$
M=\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 3 & 4 \\
2 & 4 & 3
\end{array}\right)
$$

Pretending to be brave, we check by computing the $19^{\text {th }}$ power of this matrix, modulo 7. Squaring repeatedly, we have (with determinants computed along the way as a sort of parity-check, which in reality did discover a computational error on each step, which was corrected before proceeding)

$$
M^{2}=\left(\begin{array}{lll}
1 & 0 & 6 \\
3 & 1 & 0 \\
0 & 3 & 1
\end{array}\right) \quad M^{4}=\left(\begin{array}{lll}
6 & 3 & 2 \\
1 & 6 & 3 \\
5 & 1 & 6
\end{array}\right) \quad M^{8}=\left(\begin{array}{lll}
0 & 4 & 2 \\
1 & 0 & 4 \\
2 & 1 & 0
\end{array}\right) \quad M^{16}=\left(\begin{array}{lll}
6 & 5 & 5 \\
6 & 6 & 5 \\
6 & 6 & 6
\end{array}\right)
$$

Then

$$
\begin{gathered}
M^{18}=M^{2} \cdot M^{16}=\left(\begin{array}{lll}
1 & 0 & 6 \\
3 & 1 & 0 \\
0 & 3 & 1
\end{array}\right) \cdot M^{16}=\left(\begin{array}{lll}
6 & 5 & 5 \\
6 & 6 & 5 \\
6 & 6 & 6
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
4 & 0 & 1 \\
4 & 4 & 0
\end{array}\right) \\
M^{19}=M \cdot M^{18}=\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 3 & 4 \\
2 & 4 & 3
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 1 & 1 \\
4 & 0 & 1 \\
4 & 4 & 0
\end{array}\right)=\text { the identity }
\end{gathered}
$$

Thus, indeed, we have the order 19 element.
Note that, in reality, without some alternative means to verify that we really found an element of order 19 , we could easily be suspicious that the numbers were wrong.

