[08.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.
Suppose that I were strictly contained in an ideal J. Let $I=R x$ and $J=R y$, since R is a PID. Then x is a multiple of y, say $x=r y$. That is, $r y \in I$. But y is not in I (that is, not a multiple of p), since otherwise $R y \subset R x$. Thus, since I is prime, $r \in I$, say $r=a p$. Then $p=a p y$, and (since R is a domain) $1=a y$. That is, the ideal generated by y contains 1 , so is the whole ring R. That is, I is maximal (proper).
[08.2] Let k be a field. Show that in the polynomial ring $k[x, y]$ in two variables the ideal $I=$ $k[x, y] \cdot x+k[x, y] \cdot y$ is not principal.
Suppose that there were a polynomial $P(x, y)$ such that $x=g(x, y) \cdot P(x, y)$ for some polynomial g and $y=h(x, y) \cdot P(x, y)$ for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear in $P(x, y)$ or $g(x, y)$. Similarly, since x does not appear in the polynomial y, it could not appear in $P(x, y)$ or $h(x, y)$. And, thus, $P(x, y)$ would be in k. It would have to be non-zero to yield x and y as multiples, so would be a unit in $k[x, y]$. Without loss of generality, $P(x, y)=1$. (Thus, we need to show that I is proper.)
On the other hand, since $P(x, y)$ is supposedly in the ideal I generated by x and y, it is of the form $a(x, y) \cdot x+b(x, y) \cdot y$. Thus, we would have

$$
1=a(x, y) \cdot x+b(x, y) \cdot y
$$

Mapping $x \rightarrow 0$ and $y \rightarrow 0$ (while mapping k to itself by the identity map, thus sending 1 to $1 \neq 0$), we would obtain

$$
1=0
$$

contradiction. Thus, there is no such $P(x, y)$.
We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let's show that if

$$
x=g(x, y) \cdot P(x, y)
$$

then the degree of $P(x, y)$ (and of $g(x, y)$) as a polynomial in y (with coefficients in $k[x]$) is 0 . Indeed, looking at this equality as an equality in $k(x)[y]$ (where $k(x)$ is the field of rational functions in x with coefficients in k), the fact that degrees $a d d$ in products gives the desired conclusion. Thus,

$$
P(x, y) \in k(x) \cap k[x, y]=k[x]
$$

Similarly, $P(x, y)$ lies in $k[y]$, so P is in k.
[08.3] Let k be a field, and let $R=k\left[x_{1}, \ldots, x_{n}\right]$. Show that the inclusions of ideals

$$
R x_{1} \subset R x_{1}+R x_{2} \subset \ldots \subset R x_{1}+\ldots+R x_{n}
$$

are strict, and that all these ideals are prime.
One approach, certainly correct in spirit, is to say that obviously

$$
k\left[x_{1}, \ldots, x_{n}\right] / R x_{1}+\ldots+R x_{j} \approx k\left[x_{j+1}, \ldots, x_{n}\right]
$$

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?) so the ideal was necessarily prime.

But while it is true that certainly x_{1}, \ldots, x_{j} go to 0 in the quotient, our intuition uses the explicit construction of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and immediate proof that sending x_{1}, \ldots, x_{j} to 0 does not somehow cause 1 to get mapped to 0 in k, nor
accidentally impose any relations on x_{j+1}, \ldots, x_{n}. A too classical viewpoint does not lend itself to clarifying this. The point is that, given a k-algebra homomorphism $f_{o}: k \rightarrow k$, here taken to be the identity, and given values 0 for x_{1}, \ldots, x_{j} and values x_{j+1}, \ldots, x_{n} respectively for the other indeterminates, there is a unique k-algebra homomorphism $f: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{j+1}, \ldots, x_{n}\right]$ agreeing with f_{o} on k and sending x_{1}, \ldots, x_{n} to their specified targets. Thus, in particular, we can guarantee that $1 \in k$ is not somehow accidentally mapped to 0 , and no relations among the $x_{j+1} \ldots, x_{n}$ are mysteriously introduced.
[08.4] Let k be a field. Show that the ideal M generated by x_{1}, \ldots, x_{n} in the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ is maximal (proper).

We prove the maximality by showing that R / M is a field. The universality of the polynomial algebra implies that, given a k-algebra homomorphism such as the identity $f_{o}: k \rightarrow k$, and given $\alpha_{i} \in k$ (take $\alpha_{i}=0$ here), there exists a unique k-algebra homomorphism $f: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k$ extending f_{o}. The kernel of f certainly contains M, since M is generated by the x_{i} and all the x_{i} go to 0 .

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the quotient map $R \rightarrow R / M$ we might not have $1 \rightarrow 1$. If we do know that M is a proper ideal, then by the uniqueness of the map f we know that $R \rightarrow R / M$ is (up to isomorphism) exactly f, so M is maximal proper.

Given a relation

$$
1=\sum_{i} f_{i} \cdot x_{i}
$$

with polynomials f_{i}, using the universal mapping property send all x_{i} to 0 by a k-algebra homomorphism to k that does send 1 to 1 , obtaining $1=0$, contradiction.
[0.0.1] Remark: One surely is inclined to allege that obviously $R / M \approx k$. And, indeed, this quotient is at most k, but one should at least acknowledgeconcern that it not be accidentally 0 . Making the point that not only can the images of the x_{i} be chosen, but also the k-algebra homomorphism on k, decisively eliminates this possibility.
[08.5] Show that the maximal ideals in $R=\mathbb{Z}[x]$ are all of the form

$$
I=R \cdot p+R \cdot f(x)
$$

where p is a prime and $f(x)$ is a monic polynomial which is irreducible modulo p.
Suppose that no non-zero integer n lies in the maximal ideal I in R. Then \mathbb{Z} would inject to the quotient R / I, a field, which then would be of characteristic 0 . Then R / I would contain a canonical copy of \mathbb{Q}. Let α be the image of x in K. Then $K=\mathbb{Z}[\alpha]$, so certainly $K=\mathbb{Q}[\alpha]$, so α is algebraic over \mathbb{Q}, say of degree n. Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be a polynomial with rational coefficient such that $f(\alpha)=0$, and with all denominators multiplied out to make the coefficients integral. Then let $\beta=c_{n} \alpha$: this β is still algebraic over \mathbb{Q}, so $\mathbb{Q}[\beta]=\mathbb{Q}(\beta)$, and certainly $\mathbb{Q}(\beta)=\mathbb{Q}(\alpha)$, and $\mathbb{Q}(\alpha)=\mathbb{Q}[\alpha]$. Thus, we still have $K=\mathbb{Q}[\beta]$, but now things have been adjusted so that β satisfies a monic equation with coefficients in \mathbb{Z} : from

$$
0=f(\alpha)=f\left(\frac{\beta}{c_{n}}\right)=c_{n}^{1-n} \beta^{n}+c_{n-1} c_{n}^{1-n} \beta^{n-1}+\ldots+c_{1} c_{n}^{-1} \beta+c_{0}
$$

we multiply through by c_{n}^{n-1} to obtain

$$
0=\beta^{n}+c_{n-1} \beta^{n-1}+c_{n-2} c_{n} \beta^{n-2}+c_{n-3} c_{n}^{2} \beta^{n-3}+\ldots+c_{2} c_{n}^{n-3} \beta^{2}+c_{1} c_{n}^{n-2} \beta+c_{0} c_{n}^{n-1}
$$

Since $K=\mathbb{Q}[\beta]$ is an n-dimensional Q-vectorspace, we can find rational numbers b_{i} such that

$$
\alpha=b_{0}+b_{1} \beta+b_{2} \beta^{2}+\ldots+b_{n-1} \beta^{n-1}
$$

Let N be a large-enough integer such that for every index i we have $b_{i} \in \frac{1}{N} \cdot \mathbb{Z}$. Note that because we made β satisfy a monic integer equation, the set

$$
\Lambda=\mathbb{Z}+\mathbb{Z} \cdot \beta+\mathbb{Z} \cdot \beta^{2}+\ldots+\mathbb{Z} \cdot \beta^{n-1}
$$

is closed under multiplication: β^{n} is a \mathbb{Z}-linear combination of lower powers of β, and so on. Thus, since $\alpha \in N^{-1} \Lambda$, successive powers α^{ℓ} of α are in $N^{-\ell} \Lambda$. Thus,

$$
\mathbb{Z}[\alpha] \subset \bigcup_{\ell \geq 1} N^{-\ell} \Lambda
$$

But now let p be a prime not dividing N. We claim that $1 / p$ does not lie in $\mathbb{Z}[\alpha]$. Indeed, since $1, \beta, \ldots, \beta^{n-1}$ are linearly independent over \mathbb{Q}, there is a unique expression for $1 / p$ as a \mathbb{Q}-linear combination of them, namely the obvious $\frac{1}{p}=\frac{1}{p} \cdot 1$. Thus, $1 / p$ is not in $N^{-\ell} \cdot \Lambda$ for any $\ell \in \mathbb{Z}$. This (at last) contradicts the supposition that no non-zero integer lies in a maximal ideal I in $\mathbb{Z}[x]$.
Note that the previous argument uses the infinitude of primes.
Thus, \mathbb{Z} does not inject to the field R / I, so R / I has positive characteristic p, and the canonical \mathbb{Z}-algebra homomorphism $\mathbb{Z} \rightarrow R / I$ factors through \mathbb{Z} / p. Identifying $\mathbb{Z}[x] / p \approx(\mathbb{Z} / p)[x]$, and granting (as proven in an earlier homework solution) that for $J \subset I$ we can take a quotient in two stages

$$
R / I \approx(R / J) /(\text { image of } J \text { in } R / I)
$$

Thus, the image of I in $(\mathbb{Z} / p)[x]$ is a maximal ideal. The ring $(\mathbb{Z} / p)[x]$ is a PID, since \mathbb{Z} / p is a field, and by now we know that the maximal ideals in such a ring are of the form $\langle f\rangle$ where f is irreducible and of positive degree, and conversely. Let $F \in \mathbb{Z}[x]$ be a polynomial which, when we reduce its coefficients modulo p, becomes f. Then, at last,

$$
I=\mathbb{Z}[x] \cdot p+\mathbb{Z}[x] \cdot f(x)
$$

as claimed.
[08.6] Let R be a PID, and x, y non-zero elements of R. Let $M=R /\langle x\rangle$ and $N=R /\langle y\rangle$. Determine $\operatorname{Hom}_{R}(M, N)$.

Any homomorphism $f: M \rightarrow N$ gives a homomorphism $F: R \rightarrow N$ by composing with the quotient map $q: R \rightarrow M$. Since R is a free R-module on one generator 1 , a homomorphism $F: R \rightarrow N$ is completely determined by $F(1)$, and this value can be anything in N. Thus, the homomorphisms from R to N are exactly parametrized by $F(1) \in N$. The remaining issue is to determine which of these maps F factor through M, that is, which such F admit $f: M \rightarrow N$ such that $F=f \circ q$. We could try to define (and there is no other choice if it is to succeed)

$$
f(r+R x)=F(r)
$$

but this will be well-defined if and only if $\operatorname{ker} F \supset R x$.
Since $0=y \cdot F(r)=F(y r)$, the kernel of $F: R \rightarrow N$ invariably contains $R y$, and we need it to contain $R x$ as well, for F to give a well-defined map $R / R x \rightarrow R / R y$. This is equivalent to

$$
\operatorname{ker} F \supset R x+R y=R \cdot \operatorname{gcd}(x, y)
$$

or

$$
F(\operatorname{gcd}(x, y))=\{0\} \subset R / R y=N
$$

By the R-linearity,

$$
R / R y \ni 0=F(\operatorname{gcd}(x, y))=\operatorname{gcd}(x, y) \cdot F(1)
$$

Thus, the condition for well-definedness is that

$$
F(1) \in R \cdot \frac{y}{\operatorname{gcd}(x, y)} \subset R / R y
$$

Therefore, the desired homomorphisms f are in bijection with

$$
F(1) \in R \cdot \frac{y}{\operatorname{gcd}(x, y)} / R y \subset R / R y
$$

where

$$
f(r+R x)=F(r)=r \cdot F(1)
$$

[08.7] (A warm-up to Hensel's lemma) Let p be an odd prime. Fix $a \not \equiv 0 \bmod p$ and suppose $x^{2}=a \bmod p$ has a solution x_{1}. Show that for every positive integer n the congruence $x^{2}=a \bmod p^{n}$ has a solution x_{n}. (Hint: Try $x_{n+1}=x_{n}+p^{n} y$ and solve for $y \bmod p$).

Induction, following the hint: Given x_{n} such that $x_{n}^{2}=a \bmod p^{n}$, with $n \geq 1$ and $p \neq 2$, show that there will exist y such that $x_{n+1}=x_{n}+y p^{n}$ gives $x_{n+1}^{2}=a \bmod p^{n+1}$. Indeed, expanding the desired equality, it is equivalent to

$$
a=x_{n+1}^{2}=x_{n}^{2}+2 x_{n} p^{n} y+p^{2 n} y^{2} \bmod p^{n+1}
$$

Since $n \geq 1,2 n \geq n+1$, so this is

$$
a=x_{n}^{2}+2 x_{n} p^{n} y \bmod p^{n+1}
$$

Since $a-x_{n}^{2}=k \cdot p^{n}$ for some integer k, dividing through by p^{n} gives an equivalent condition

$$
k=2 x_{n} y \bmod p
$$

Since $p \neq 2$, and since $x_{n}^{2}=a \neq 0 \bmod p, 2 x_{n}$ is invertible $\bmod p$, so no matter what k is there exists y to meet this requirement, and we're done.
[08.8] (Another warm-up to Hensel's lemma) Let p be a prime not 3. Fix $a \neq 0 \bmod p$ and suppose $x^{3}=a \bmod p$ has a solution x_{1}. Show that for every positive integer n the congruence $x^{3}=a \bmod p^{n}$ has a solution x_{n}. (Hint: $\operatorname{Try} x_{n+1}=x_{n}+p^{n} y$ and solve for $\left.y \bmod p\right)$.]

Induction, following the hint: Given x_{n} such that $x_{n}^{3}=a \bmod p^{n}$, with $n \geq 1$ and $p \neq 3$, show that there will exist y such that $x_{n+1}=x_{n}+y p^{n}$ gives $x_{n+1}^{3}=a \bmod p^{n+1}$. Indeed, expanding the desired equality, it is equivalent to

$$
a=x_{n+1}^{3}=x_{n}^{3}+3 x_{n}^{2} p^{n} y+3 x_{n} p^{2 n} y^{2}+p^{3 n} y^{3} \bmod p^{n+1}
$$

Since $n \geq 1,3 n \geq n+1$, so this is

$$
a=x_{n}^{3}+3 x_{n}^{2} p^{n} y \bmod p^{n+1}
$$

Since $a-x_{n}^{3}=k \cdot p^{n}$ for some integer k, dividing through by p^{n} gives an equivalent condition

$$
k=3 x_{n}^{2} y \bmod p
$$

Since $p \neq 3$, and since $x_{n}^{3}=a \neq 0 \bmod p, 3 x_{n}^{2}$ is invertible $\bmod p$, so no matter what k is there exists y to meet this requirement, and we're done.

