
(January 14, 2009)

[08.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.

Suppose that I were strictly contained in an ideal J . Let I = Rx and J = Ry, since R is a PID. Then x is
a multiple of y, say x = ry. That is, ry ∈ I. But y is not in I (that is, not a multiple of p), since otherwise
Ry ⊂ Rx. Thus, since I is prime, r ∈ I, say r = ap. Then p = apy, and (since R is a domain) 1 = ay. That
is, the ideal generated by y contains 1, so is the whole ring R. That is, I is maximal (proper).

[08.2] Let k be a field. Show that in the polynomial ring k[x, y] in two variables the ideal I =
k[x, y] · x+ k[x, y] · y is not principal.

Suppose that there were a polynomial P (x, y) such that x = g(x, y) · P (x, y) for some polynomial g and
y = h(x, y) · P (x, y) for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear
in P (x, y) or g(x, y). Similarly, since x does not appear in the polynomial y, it could not appear in P (x, y)
or h(x, y). And, thus, P (x, y) would be in k. It would have to be non-zero to yield x and y as multiples, so
would be a unit in k[x, y]. Without loss of generality, P (x, y) = 1. (Thus, we need to show that I is proper.)

On the other hand, since P (x, y) is supposedly in the ideal I generated by x and y, it is of the form
a(x, y) · x+ b(x, y) · y. Thus, we would have

1 = a(x, y) · x+ b(x, y) · y

Mapping x → 0 and y → 0 (while mapping k to itself by the identity map, thus sending 1 to 1 6= 0), we
would obtain

1 = 0

contradiction. Thus, there is no such P (x, y).

We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let’s
show that if

x = g(x, y) · P (x, y)

then the degree of P (x, y) (and of g(x, y)) as a polynomial in y (with coefficients in k[x]) is 0. Indeed, looking
at this equality as an equality in k(x)[y] (where k(x) is the field of rational functions in x with coefficients
in k), the fact that degrees add in products gives the desired conclusion. Thus,

P (x, y) ∈ k(x) ∩ k[x, y] = k[x]

Similarly, P (x, y) lies in k[y], so P is in k.

[08.3] Let k be a field, and let R = k[x1, . . . , xn]. Show that the inclusions of ideals

Rx1 ⊂ Rx1 +Rx2 ⊂ . . . ⊂ Rx1 + . . .+Rxn

are strict, and that all these ideals are prime.

One approach, certainly correct in spirit, is to say that obviously

k[x1, . . . , xn]/Rx1 + . . .+Rxj ≈ k[xj+1, . . . , xn]

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?)
so the ideal was necessarily prime.

But while it is true that certainly x1, . . . , xj go to 0 in the quotient, our intuition uses the explicit construction
of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and
immediate proof that sending x1, . . . , xj to 0 does not somehow cause 1 to get mapped to 0 in k, nor
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accidentally impose any relations on xj+1, . . . , xn. A too classical viewpoint does not lend itself to clarifying
this. The point is that, given a k-algebra homomorphism fo : k → k, here taken to be the identity, and given
values 0 for x1, . . . , xj and values xj+1, . . . , xn respectively for the other indeterminates, there is a unique
k-algebra homomorphism f : k[x1, . . . , xn] → k[xj+1, . . . , xn] agreeing with fo on k and sending x1, . . . , xn

to their specified targets. Thus, in particular, we can guarantee that 1 ∈ k is not somehow accidentally
mapped to 0, and no relations among the xj+1 . . . , xn are mysteriously introduced.

[08.4] Let k be a field. Show that the ideal M generated by x1, . . . , xn in the polynomial ring
R = k[x1, . . . , xn] is maximal (proper).

We prove the maximality by showing that R/M is a field. The universality of the polynomial algebra implies
that, given a k-algebra homomorphism such as the identity fo : k → k, and given αi ∈ k (take αi = 0 here),
there exists a unique k-algebra homomorphism f : k[x1, . . . , xn]→ k extending fo. The kernel of f certainly
contains M , since M is generated by the xi and all the xi go to 0.

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the
quotient map R → R/M we might not have 1 → 1. If we do know that M is a proper ideal, then by the
uniqueness of the map f we know that R→ R/M is (up to isomorphism) exactly f , so M is maximal proper.

Given a relation
1 =

∑
i

fi · xi

with polynomials fi, using the universal mapping property send all xi to 0 by a k-algebra homomorphism
to k that does send 1 to 1, obtaining 1 = 0, contradiction.

[0.0.1] Remark: One surely is inclined to allege that obviously R/M ≈ k. And, indeed, this quotient
is at most k, but one should at least acknowledgeconcern that it not be accidentally 0. Making the point
that not only can the images of the xi be chosen, but also the k-algebra homomorphism on k, decisively
eliminates this possibility.

[08.5] Show that the maximal ideals in R = Z[x] are all of the form

I = R · p+R · f(x)

where p is a prime and f(x) is a monic polynomial which is irreducible modulo p.

Suppose that no non-zero integer n lies in the maximal ideal I in R. Then Z would inject to the quotient
R/I, a field, which then would be of characteristic 0. Then R/I would contain a canonical copy of Q. Let
α be the image of x in K. Then K = Z[α], so certainly K = Q[α], so α is algebraic over Q, say of degree
n. Let f(x) = anx

n + . . .+ a1x+ a0 be a polynomial with rational coefficient such that f(α) = 0, and with
all denominators multiplied out to make the coefficients integral. Then let β = cnα: this β is still algebraic
over Q, so Q[β] = Q(β), and certainly Q(β) = Q(α), and Q(α) = Q[α]. Thus, we still have K = Q[β], but
now things have been adjusted so that β satisfies a monic equation with coefficients in Z: from

0 = f(α) = f(
β

cn
) = c1−n

n βn + cn−1c
1−n
n βn−1 + . . .+ c1c

−1
n β + c0

we multiply through by cn−1
n to obtain

0 = βn + cn−1β
n−1 + cn−2cnβ

n−2 + cn−3c
2
nβ

n−3 + . . .+ c2c
n−3
n β2 + c1c

n−2
n β + c0c

n−1
n

Since K = Q[β] is an n-dimensional Q-vectorspace, we can find rational numbers bi such that

α = b0 + b1β + b2β
2 + . . .+ bn−1β

n−1
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Let N be a large-enough integer such that for every index i we have bi ∈ 1
N ·Z. Note that because we made

β satisfy a monic integer equation, the set

Λ = Z+ Z · β + Z · β2 + . . .+ Z · βn−1

is closed under multiplication: βn is a Z-linear combination of lower powers of β, and so on. Thus, since
α ∈ N−1Λ, successive powers α` of α are in N−`Λ. Thus,

Z[α] ⊂
⋃
`≥1

N−`Λ

But now let p be a prime not dividing N . We claim that 1/p does not lie in Z[α]. Indeed, since 1, β, . . . , βn−1

are linearly independent over Q, there is a unique expression for 1/p as a Q-linear combination of them,
namely the obvious 1

p = 1
p · 1. Thus, 1/p is not in N−` · Λ for any ` ∈ Z. This (at last) contradicts the

supposition that no non-zero integer lies in a maximal ideal I in Z[x].

Note that the previous argument uses the infinitude of primes.

Thus, Z does not inject to the field R/I, so R/I has positive characteristic p, and the canonical Z-algebra
homomorphism Z → R/I factors through Z/p. Identifying Z[x]/p ≈ (Z/p)[x], and granting (as proven in
an earlier homework solution) that for J ⊂ I we can take a quotient in two stages

R/I ≈ (R/J)/(image of J in R/I)

Thus, the image of I in (Z/p)[x] is a maximal ideal. The ring (Z/p)[x] is a PID, since Z/p is a field, and
by now we know that the maximal ideals in such a ring are of the form 〈f〉 where f is irreducible and of
positive degree, and conversely. Let F ∈ Z[x] be a polynomial which, when we reduce its coefficients modulo
p, becomes f . Then, at last,

I = Z[x] · p+ Z[x] · f(x)

as claimed.

[08.6] Let R be a PID, and x, y non-zero elements of R. Let M = R/〈x〉 and N = R/〈y〉. Determine
HomR(M,N).

Any homomorphism f : M → N gives a homomorphism F : R → N by composing with the quotient map
q : R → M . Since R is a free R-module on one generator 1, a homomorphism F : R → N is completely
determined by F (1), and this value can be anything in N . Thus, the homomorphisms from R to N are
exactly parametrized by F (1) ∈ N . The remaining issue is to determine which of these maps F factor
through M , that is, which such F admit f : M → N such that F = f ◦ q. We could try to define (and there
is no other choice if it is to succeed)

f(r +Rx) = F (r)

but this will be well-defined if and only if kerF ⊃ Rx.

Since 0 = y · F (r) = F (yr), the kernel of F : R → N invariably contains Ry, and we need it to contain Rx
as well, for F to give a well-defined map R/Rx→ R/Ry. This is equivalent to

kerF ⊃ Rx+Ry = R · gcd(x, y)

or
F (gcd(x, y)) = {0} ⊂ R/Ry = N

By the R-linearity,
R/Ry 3 0 = F (gcd(x, y)) = gcd(x, y) · F (1)
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Thus, the condition for well-definedness is that

F (1) ∈ R · y

gcd(x, y)
⊂ R/Ry

Therefore, the desired homomorphisms f are in bijection with

F (1) ∈ R · y

gcd(x, y)
/Ry ⊂ R/Ry

where
f(r +Rx) = F (r) = r · F (1)

[08.7] (A warm-up to Hensel’s lemma) Let p be an odd prime. Fix a 6≡ 0 mod p and suppose x2 = a mod p
has a solution x1. Show that for every positive integer n the congruence x2 = a mod pn has a solution xn.
(Hint: Try xn+1 = xn + pny and solve for y mod p).

Induction, following the hint: Given xn such that x2
n = a mod pn, with n ≥ 1 and p 6= 2, show that there

will exist y such that xn+1 = xn + ypn gives x2
n+1 = a mod pn+1. Indeed, expanding the desired equality, it

is equivalent to
a = x2

n+1 = x2
n + 2xnp

ny + p2ny2 mod pn+1

Since n ≥ 1, 2n ≥ n+ 1, so this is
a = x2

n + 2xnp
ny mod pn+1

Since a− x2
n = k · pn for some integer k, dividing through by pn gives an equivalent condition

k = 2xny mod p

Since p 6= 2, and since x2
n = a 6= 0 mod p, 2xn is invertible mod p, so no matter what k is there exists y to

meet this requirement, and we’re done.

[08.8] (Another warm-up to Hensel’s lemma) Let p be a prime not 3. Fix a 6= 0 mod p and suppose
x3 = a mod p has a solution x1. Show that for every positive integer n the congruence x3 = a mod pn has a
solution xn. (Hint: Try xn+1 = xn + pny and solve for y mod p).]

Induction, following the hint: Given xn such that x3
n = a mod pn, with n ≥ 1 and p 6= 3, show that there

will exist y such that xn+1 = xn + ypn gives x3
n+1 = a mod pn+1. Indeed, expanding the desired equality, it

is equivalent to
a = x3

n+1 = x3
n + 3x2

np
ny + 3xnp

2ny2 + p3ny3 mod pn+1

Since n ≥ 1, 3n ≥ n+ 1, so this is
a = x3

n + 3x2
np

ny mod pn+1

Since a− x3
n = k · pn for some integer k, dividing through by pn gives an equivalent condition

k = 3x2
ny mod p

Since p 6= 3, and since x3
n = a 6= 0 mod p, 3x2

n is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we’re done.
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