(January 14, 2009)

[08.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is mazimal.

Suppose that I were strictly contained in an ideal J. Let I = Rz and J = Ry, since R is a PID. Then x is
a multiple of y, say @ = ry. That is, ry € I. But y is not in I (that is, not a multiple of p), since otherwise
Ry C Rx. Thus, since I is prime, r € I, say r = ap. Then p = apy, and (since R is a domain) 1 = ay. That
is, the ideal generated by y contains 1, so is the whole ring R. That is, I is maximal (proper).

[08.2] Let k be a field. Show that in the polynomial ring k[z,y] in two variables the ideal I =
klz,y] - ¢ + k[z,y] - y is not principal.

Suppose that there were a polynomial P(z,y) such that x = g(z,y) - P(z,y) for some polynomial g and
y = h(x,y) - P(z,y) for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear
in P(x,y) or g(x,y). Similarly, since z does not appear in the polynomial y, it could not appear in P(x,y)
or h(z,y). And, thus, P(z,y) would be in k. It would have to be non-zero to yield z and y as multiples, so
would be a unit in k[z,y]. Without loss of generality, P(x,y) = 1. (Thus, we need to show that I is proper.)

On the other hand, since P(xz,y) is supposedly in the ideal I generated by z and y, it is of the form
a(z,y) -« + b(z,y) - y. Thus, we would have

l=a(z,y) z+b(z,y) y

Mapping z — 0 and y — 0 (while mapping k to itself by the identity map, thus sending 1 to 1 # 0), we
would obtain
1=0

contradiction. Thus, there is no such P(z,y).

We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let’s
show that if

x=g(x,y) Plz,y)
then the degree of P(z,y) (and of g(z,y)) as a polynomial in y (with coefficients in k[z]) is 0. Indeed, looking
at this equality as an equality in k(x)[y] (where k(x) is the field of rational functions in z with coefficients
in k), the fact that degrees add in products gives the desired conclusion. Thus,
P(x,y) € k(x) N kl[z,y] = k[z]
Similarly, P(z,y) lies in k[y], so P is in k.
[08.3] Let k be a field, and let R = k[z1,...,x,]. Show that the inclusions of ideals
Rxi1 C Rr1+RxsC...C Rx1+...+ Rx,

are strict, and that all these ideals are prime.

One approach, certainly correct in spirit, is to say that obuviously
k[l‘l, ce ,$n]/R1‘1 +... +Rl‘] ~ ]{i[l‘j+1, ce ,.Ifn]

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?)
so the ideal was necessarily prime.

But while it is true that certainly z1,...,2; go to 0 in the quotient, our intuition uses the explicit construction
of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and
immediate proof that sending zi,...,z; to 0 does not somehow cause 1 to get mapped to 0 in £, nor
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accidentally impose any relations on zj41,...,%,. A too classical viewpoint does not lend itself to clarifying
this. The point is that, given a k-algebra homomorphism f, : k — k, here taken to be the identity, and given
values 0 for z1,...,2; and values x;11,...,x, respectively for the other indeterminates, there is a unique
k-algebra homomorphism f : k[z1,...,2,] — k[z;+1,...,2,] agreeing with f, on k and sending z1,..., 2z,
to their specified targets. Thus, in particular, we can guarantee that 1 € k is not somehow accidentally
mapped to 0, and no relations among the x;1 ..., 2, are mysteriously introduced.

[08.4] Let k be a field. Show that the ideal M generated by w1,...,7, in the polynomial ring
R = E[xy,...,x,] is mazimal (proper).

We prove the maximality by showing that R/M is a field. The universality of the polynomial algebra implies
that, given a k-algebra homomorphism such as the identity f, : k — k, and given «; € k (take «; = 0 here),
there exists a unique k-algebra homomorphism f : k[z1,...,2z,] — k extending f,. The kernel of f certainly
contains M, since M is generated by the x; and all the x; go to 0.

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the
quotient map R — R/M we might not have 1 — 1. If we do know that M is a proper ideal, then by the
uniqueness of the map f we know that R — R/M is (up to isomorphism) exactly f, so M is maximal proper.

1:Zfi'xi

with polynomials f;, using the universal mapping property send all z; to 0 by a k-algebra homomorphism
to k that does send 1 to 1, obtaining 1 = 0, contradiction.

Given a relation

[0.0.1] Remark: One surely is inclined to allege that obviously R/M =~ k. And, indeed, this quotient
is at most k, but one should at least acknowledgeconcern that it not be accidentally 0. Making the point
that not only can the images of the x; be chosen, but also the k-algebra homomorphism on k, decisively
eliminates this possibility.

[08.5] Show that the maximal ideals in R = Z[z] are all of the form
I=R-p+R-f()

where p is a prime and f(z) is a monic polynomial which is irreducible modulo p.

Suppose that no non-zero integer n lies in the maximal ideal I in R. Then Z would inject to the quotient
R/I, a field, which then would be of characteristic 0. Then R/I would contain a canonical copy of Q. Let
a be the image of  in K. Then K = Z[a], so certainly K = Q[a], so « is algebraic over Q, say of degree
n. Let f(z) = apz™ + ... 4+ a12 + ag be a polynomial with rational coefficient such that f(«) = 0, and with
all denominators multiplied out to make the coefficients integral. Then let 8 = c,a: this § is still algebraic

over Q, so Q[F] = Q(B), and certainly Q(F) = Q(«), and Q(«) = Q[a]. Thus, we still have K = Q[F], but

now things have been adjusted so that § satisfies a monic equation with coefficients in Z: from
)=t T"B dep1c BT L e, B+ o

we multiply through by ¢?~! to obtain
0=0"+cr 10"+ en o 2+ cn 33 4. o 332 128 + coc
Since K = Q[f] is an n-dimensional Q-vectorspace, we can find rational numbers b; such that
a=by+b1f+b5 + ...+ b1
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Let N be a large-enough integer such that for every index i we have b; € % - Zi. Note that because we made
0 satisfy a monic integer equation, the set

AN=Z+7-B+Z -3*+.. . +7Z-p"!

is closed under multiplication: 8" is a Z-linear combination of lower powers of 3, and so on. Thus, since
a € N™TA, successive powers af of o are in N~¢A. Thus,

Zlo] c | N7A
>1

But now let p be a prime not dividing N. We claim that 1/p does not lie in Z[a]. Indeed, since 1,4, ..., 3"

are linearly independent over @, there is a unique expression for 1/p as a Q-linear combination of them,
namely the obvious % = % -1. Thus, 1/p is not in N=¢. A for any ¢ € Z. This (at last) contradicts the

supposition that no non-zero integer lies in a maximal ideal I in Z[z].
Note that the previous argument uses the infinitude of primes.

Thus, Z does not inject to the field R/I, so R/I has positive characteristic p, and the canonical Z-algebra
homomorphism Z — R/I factors through Z/p. Identifying Z[z]/p = (Z/p)[x], and granting (as proven in
an earlier homework solution) that for J C I we can take a quotient in two stages

R/I ~ (R/J)/(image of J in R/I)

Thus, the image of I in (Z/p)[z] is a maximal ideal. The ring (Z/p)[z] is a PID, since Z/p is a field, and
by now we know that the maximal ideals in such a ring are of the form (f) where f is irreducible and of
positive degree, and conversely. Let F' € Z[z] be a polynomial which, when we reduce its coefficients modulo
p, becomes f. Then, at last,

I =7[z] - p+Zlx] - f(x)

as claimed.

[08.6] Let R be a PID, and x,y non-zero elements of R. Let M = R/(z) and N = R/(y). Determine
Hompg(M, N).

Any homomorphism f : M — N gives a homomorphism F': R — N by composing with the quotient map
q: R — M. Since R is a free R-module on one generator 1, a homomorphism F' : R — N is completely
determined by F(1), and this value can be anything in N. Thus, the homomorphisms from R to N are
exactly parametrized by F(1) € N. The remaining issue is to determine which of these maps F factor
through M, that is, which such F' admit f: M — N such that F' = f o q. We could try to define (and there
is no other choice if it is to succeed)

f(r+ Ra) = F(r)

but this will be well-defined if and only if ker F' O Rzx.

Since 0 = y - F(r) = F(yr), the kernel of F : R — N invariably contains Ry, and we need it to contain Rx
as well, for F to give a well-defined map R/Rx — R/Ry. This is equivalent to

ker F D Rz + Ry = R - ged(z,y)

F(ged(z,y)) = {0} C R/Ry =N

By the R-linearity,
R/Ry > 0 = F(ged(z,y)) = ged(z, y) - F(1)
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Thus, the condition for well-definedness is that

Y

F(1)eR- 7gcd(:z:,y)

C R/Ry

Therefore, the desired homomorphisms f are in bijection with

Y

F)e R iy

/Ry C R/Ry

where
fr+Rx)=F(r)=r-F(1)

[08.7] (A warm-up to Hensel’s lemma) Let p be an odd prime. Fix a # 0 mod p and suppose 2> = @ mod p
has a solution z;. Show that for every positive integer n the congruence x? = ¢ mod p™ has a solution .
(Hint: Try xp41 = &, + p™y and solve for y mod p).

Induction, following the hint: Given x, such that 22 = a mod p”, with n > 1 and p # 2, show that there
will exist y such that z,, 41 = z,, + yp" gives 22 41 = amod p"*t1. Indeed, expanding the desired equality, it

is equivalent to

a =}, =x}+2w,p"y + p>"y”* mod p" !

Since n > 1, 2n > n + 1, so this is

a=z2 + 22,p"y mod p" !

Since a — 22 = k - p™ for some integer k, dividing through by p™ gives an equivalent condition

k = 2x,y mod p
Since p # 2, and since 22 = a # 0 mod p, 2z, is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we’re done.

[08.8] (Another warm-up to Hensel’s lemma) Let p be a prime not 3. Fix a # 0 mod p and suppose
2% = a mod p has a solution z;. Show that for every positive integer n the congruence 2> = a mod p” has a

solution x,,. (Hint: Try x,41 = 2, + p™y and solve for y mod p).]

Induction, following the hint: Given x,, such that x = a mod p™, with n > 1 and p # 3, show that there
will exist y such that z,,411 = @, + yp" gives x5 41 =amod p"t1. Indeed, expanding the desired equality, it
is equivalent to

2n, 2

a=ap, = +322p"y + 3z,p”"y* + p*"y® mod p" !

Since n > 1, 3n > n + 1, so this is
n+1

a =3 + 32%p"y mod p
Since a — o3 = k - p™ for some integer k, dividing through by p™ gives an equivalent condition

k = 322y mod p

Since p # 3, and since 23 = a # 0 mod p, 3z2 is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we're done.



