[09.1] Show that a finite integral domain is necessarily a field.
Let R be the integral domain. The integral domain property can be immediately paraphrased as that for $0 \neq x \in R$ the map $y \rightarrow x y$ has trivial kernel (as R-module map of R to itself, for example). Thus, it is injective. Since R is a finite set, an injective map of it to itself is a bijection. Thus, there is $y \in R$ such that $x y=1$, proving that x is invertible.
[09.2] Let $P(x)=x^{3}+a x+b \in k[x]$. Suppose that $P(x)$ factors into linear polynomials $P(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. Give a polynomial condition on a, b for the α_{i} to be distinct.
(One might try to do this as a symmetric function computation, but it's a bit tedious.)
If $P(x)=x^{3}+a x+b$ has a repeated factor, then it has a common factor with its derivative $P^{\prime}(x)=3 x^{2}+a$.
If the characteristic of the field is 3 , then the derivative is the constant a. Thus, if $a \neq 0, \operatorname{gcd}\left(P, P^{\prime}\right)=a \in k^{\times}$ is never 0 . If $a=0$, then the derivative is 0 , and all the α_{i} are the same.

Now suppose the characteristic is not 3. In effect applying the Euclidean algorithm to P and P^{\prime},

$$
\left(x^{3}+a x+b\right)-\frac{x}{3} \cdot\left(3 x^{2}+a\right)=a x+b-\frac{x}{3} \cdot a=\frac{2}{3} a x+b
$$

If $a=0$ then the Euclidean algorithm has already terminated, and the condition for distinct roots or factors is $b \neq 0$. Also, possibly surprisingly, at this point we need to consider the possibility that the characteristic is 2 . If so, then the remainder is b, so if $b \neq 0$ the roots are always distinct, and if $b=0$

Now suppose that $a \neq 0$, and that the characteristic is not 2 . Then we can divide by $2 a$. Continue the algorithm

$$
\left(3 x^{2}+a\right)-\frac{9 x}{2 a} \cdot\left(\frac{2}{3} a x+b\right)=a+\frac{27 b^{2}}{4 a^{2}}
$$

Since $4 a^{2} \neq 0$, the condition that P have no repeated factor is

$$
4 a^{3}+27 b^{2} \neq 0
$$

[09.3] The first three elementary symmetric functions in indeterminates x_{1}, \ldots, x_{n} are

$$
\begin{gathered}
\sigma_{1}=\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}=\sum_{i} x_{i} \\
\sigma_{2}=\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
\sigma_{3}=\sigma_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<\ell} x_{i} x_{j} x_{\ell}
\end{gathered}
$$

Express $x_{1}^{3}+x_{2}^{3}+\ldots+x_{n}^{3}$ in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
Execute the algorithm given in the proof of the theorem. Thus, since the degree is 3 , if we can derive the right formula for just 3 indeterminates, the same expression in terms of elementary symmetric polynomials will hold generally. Thus, consider $x^{3}+y^{3}+z^{3}$. To approach this we first take $y=0$ and $z=0$, and consider x^{3}. This is $s_{1}(x)^{3}=x^{3}$. Thus, we next consider

$$
\left(x^{3}+y^{3}\right)-s_{1}(x, y)^{3}=3 x^{2} y+3 x y^{2}
$$

As the algorithm assures, this is divisible by $s_{2}(x, y)=x y$. Indeed,

$$
\left(x^{3}+y^{3}\right)-s_{1}(x, y)^{3}=(3 x+3 y) s_{2}(x, y)=3 s_{1}(x, y) s_{2}(x, y)
$$

Then consider

$$
\left(x^{3}+y^{3}+z^{3}\right)-\left(s_{1}(x, y, z)^{3}-3 s_{2}(x, y, z) s_{1}(x, y, z)\right)=3 x y z=3 s_{3}(x, y, z)
$$

Thus, again, since the degree is 3 , this formula for 3 variables gives the general one:

$$
x_{1}^{3}+\ldots+x_{n}^{3}=s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}
$$

where $s_{i}=s_{i}\left(x_{1}, \ldots, x_{n}\right)$.
[09.4] Express $\sum_{i \neq j} x_{i}^{2} x_{j}$ as a polynomial in the elementary symmetric functions of x_{1}, \ldots, x_{n}.
We could (as in the previous problem) execute the algorithm that proves the theorem asserting that every symmetric (that is, S_{n}-invariant) polynomial in x_{1}, \ldots, x_{n} is a polynomial in the elementary symmetric functions.

But, also, sometimes ad hoc manipulations can yield short-cuts, depending on the context. Here,

$$
\sum_{i \neq j} x_{i}^{2} x_{j}=\sum_{i, j} x_{i}^{2} x_{j}-\sum_{i=j} x_{i}^{2} x_{j}=\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{j} x_{j}\right)-\sum_{i} x_{i}^{3}
$$

An easier version of the previous exercise gives

$$
\sum_{i} x_{i}^{2}=s_{1}^{2}-2 s_{2}
$$

and the previous exercise itself gave

$$
\sum_{i} x_{i}^{3}=s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}
$$

Thus,

$$
\sum_{i \neq j} x_{i}^{2} x_{j}=\left(s_{1}^{2}-2 s_{2}\right) s_{1}-\left(s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}\right)=s_{1}^{3}-2 s_{1} s_{2}-s_{1}^{3}+3 s_{1} s_{2}-3 s_{3}=s_{1} s_{2}-3 s_{3}
$$

[09.5] Suppose the characteristic of the field k does not divide n. Let $\ell>2$. Show that

$$
P\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{n}+\ldots+x_{\ell}^{n}
$$

is irreducible in $k\left[x_{1}, \ldots, x_{\ell}\right]$.
First, treating the case $\ell=2$, we claim that $x^{n}+y^{n}$ is not a unit and has no repeated factors in $k(y)[x]$. (We take the field of rational functions in y so that the resulting polynomial ring in a single variable is Euclidean, and, thus, so that we understand the behavior of its irreducibles.) Indeed, if we start executing the Euclidean algorithm on $x^{n}+y^{n}$ and its derivative $n x^{n-1}$ in x, we have

$$
\left(x^{n}+y^{n}\right)-\frac{x}{n}\left(n x^{n-1}\right)=y^{n}
$$

Note that n is invertible in k by the characteristic hypothesis. Since y is invertible (being non-zero) in $k(y)$, this says that the $g c d$ of the polynomial in x and its derivative is 1 , so there is no repeated factor. And the degree in x is positive, so $x^{n}+y^{n}$ has some irreducible factor (due to the unique factorization in $k(y)[x]$, or, really, due indirectly to its Noetherian-ness).

Thus, our induction (on n) hypothesis is that $x_{2}^{n}+x_{3}^{n}+\ldots+x_{\ell}^{n}$ is a non-unit in $k\left[x_{2}, x_{3}, \ldots, x_{n}\right]$ and has no repeated factors. That is, it is divisible by some irreducible p in $k\left[x_{2}, x_{3}, \ldots, x_{n}\right]$. Then in

$$
k\left[x_{2}, x_{3}, \ldots, x_{n}\right]\left[x_{1}\right] \approx k\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]
$$

Eisenstein's criterion applied to $x_{1}^{n}+\ldots$ as a polynomial in x_{1} with coefficients in $k\left[x_{2}, x_{3}, \ldots, x_{n}\right]$ and using the irreducible p yields the irreducibility.
[09.6] Find the determinant of the circulant matrix

$$
\left(\begin{array}{cccccc}
x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} & x_{n} \\
x_{n} & x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_{n} & x_{1} & x_{2} & \ldots & x_{n-2} \\
\vdots & & & \ddots & & \vdots \\
x_{3} & & & & x_{1} & x_{2} \\
x_{2} & x_{3} & \ldots & & x_{n} & x_{1}
\end{array}\right)
$$

(Hint: Let ζ be an $n^{\text {th }}$ root of 1 . If $x_{i+1}=\zeta \cdot x_{i}$ for all indices $i<n$, then the $(j+1)^{t h}$ row is ζ times the $j^{t h}$, and the determinant is 0 .)

Let $C_{i j}$ be the $i j^{t h}$ entry of the circulant matrix C. The expression for the determinant

$$
\operatorname{det} C=\sum_{p \in S_{n}} \sigma(p) C_{1, p(1)} \ldots C_{n, p(n)}
$$

where $\sigma(p)$ is the sign of p shows that the determinant is a polynomial in the entries $C_{i j}$ with integer coefficients. This is the most universal viewpoint that could be taken. However, with some hindsight, some intermediate manipulations suggest or require enlarging the 'constants' to include $n^{\text {th }}$ roots of unity ω. Since we do not know that $\mathbb{Z}[\omega]$ is a UFD (and, indeed, it is not, in general), we must adapt. A reasonable adaptation is to work over $\mathbb{Q}(\omega)$. Thus, we will prove an identity in $\mathbb{Q}(\omega)\left[x_{1}, \ldots, x_{n}\right]$.

Add ω^{i-1} times the $i^{\text {th }}$ row to the first row, for $i \geq 2$. The new first row has entries, from left to right,

$$
\begin{gathered}
x_{1}+\omega x_{2}+\omega^{2} x_{3}+\ldots+\omega^{n-1} x_{n} \\
x_{2}+\omega x_{3}+\omega^{2} x_{4}+\ldots+\omega^{n-1} x_{n-1} \\
x_{3}+\omega x_{4}+\omega^{2} x_{5}+\ldots+\omega^{n-1} x_{n-2} \\
x_{4}+\omega x_{5}+\omega^{2} x_{6}+\ldots+\omega^{n-1} x_{n-3} \\
\ldots \\
x_{2}+\omega x_{3}+\omega^{2} x_{4}+\ldots+\omega^{n-1} x_{1}
\end{gathered}
$$

The $t^{t h}$ of these is

$$
\omega^{-t} \cdot\left(x_{1}+\omega x_{2}+\omega^{2} x_{3}+\ldots+\omega^{n-1} x_{n}\right)
$$

since $\omega^{n}=1$. Thus, in the ring $\mathbb{Q}(\omega)\left[x_{1}, \ldots, x_{n}\right]$,

$$
\left.x_{1}+\omega x_{2}+\omega^{2} x_{3}+\ldots+\omega^{n-1} x_{n}\right)
$$

divides this new top row. Therefore, from the explicit formula, for example, this quantity divides the determinant.

Since the characteristic is 0 , the n roots of $x^{n}-1=0$ are distinct (for example, by the usual computation of $g c d$ of $x^{n}-1$ with its derivative). Thus, there are n superficially-different linear expressions which divide $\operatorname{det} C$. Since the expressions are linear, they are irreducible elements. If we prove that they are non-associate
(do not differ merely by units), then their product must divide det C. Indeed, viewing these linear expressions in the larger ring

$$
\mathbb{Q}(\omega)\left(x_{2}, \ldots, x_{n}\right)\left[x_{1}\right]
$$

we see that they are distinct linear monic polynomials in x_{1}, so are non-associate.
Thus, for some $c \in \mathbb{Q}(\omega)$,

$$
\operatorname{det} C=c \cdot \prod_{1 \leq \ell \leq n}\left(x_{1}+\omega^{\ell} x_{2}+\omega^{2 \ell} x_{3}+\omega^{3 \ell} x_{4}+\ldots+\omega^{(n-1) \ell} x_{n}\right)
$$

Looking at the coefficient of x_{1}^{n} on both sides, we see that $c=1$.
(One might also observe that the product, when expanded, will have coefficients in \mathbb{Z}.)

