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[10.1] Prove that a finite division ring D (a not-necessarily commutative ring with 1 in which any non-zero
element has a multiplicative inverse) is commutative. (This is due to Wedderburn.) (Hint: Check that the
center k of D is a field, say of cardinality q. Let D× act on D by conjugation, namely α · β = αβα−1, and
count orbits, to obtain an equality of the form

|D| = qn = q +
∑
d

qn − 1
qd − 1

where d is summed over some set of integers all strictly smaller than n. Let Φn(x) be the nth cyclotomic
polynomial. Show that, on one hand, Φn(q) divides qn − q, but, on the other hand, this is impossible unless
n = 1. Thus D = k. )

First, the center k of D is defined to be

k = center D = {α ∈ D : αx = xα for all x ∈ D}

We claim that k is a field. It is easy to check that k is closed under addition, multiplication, and contains 0
and 1. Since −α = (−1) · α, it is closed under taking additive inverses. There is a slight amount of interest
in considering closure under taking multiplicative inverses. Let 0 6= α ∈ k, and x ∈ D. Then left-multiply
and right- multiply αx = xα by α−1 to obtain xα−1 = α−1x. This much proves that k is a division ring.
Since its elements commute with every x ∈ D certainly k is commutative. This proves that k is a field.

The same argument shows that for any x ∈ D the centralizer

Dx = centralizer of x = {α ∈ D : αx = xα}

is a division ring, though possibly non-commutative. It certainly contains the center k, so is a k-vectorspace.
Noting that αx = xα is equivalent to αxα−1 = x for α invertible, we see that D×x is the pointwise fixer of x
under the conjugation action.

Thus, the orbit-counting formula gives

|D| = |k|+
∑

non-central orbits Ox

[D× : D×x ]

where the center k is all singleton orbits and Ox is summed over orbits of non-central elements, choosing
representatives x for Ox. This much did not use finiteness of D.

Let q = |k|, and n = dimkD. Suppose n > 1. Let nx = dimkDx. Then

qn = q +
∑

non-central orbits Ox

qn − 1
qnx − 1

In all the non-central orbit summands, n > nx. Rearranging,

q − 1 = −(qn − 1) +
∑

non-central orbits Ox

qn − 1
qnx − 1

Let Φn(x) be the nth cyclotomic polynomial, viewed as an element of Z[x]. Then, from the fact that the
recursive definition of Φn(x) really does yield a monic polynomial of positive degree with integer coefficients
(and so on), and since nx < n for all non-central orbits, the integer Φn(q) divides the right-hand side, so
divides q − 1.

We claim that as a complex number |Φn(q)| > q − 1 for n > 1. Indeed, fix a primitive nth root of unity
ζ ∈ C. The set of all primitive nth roots of unity is {ζa} where 1 ≤ a ≤ p prime to p. Then

|Φn(q)|2 =
∏

a: gcd(a,n)=1

|q − ζa|2 =
∏

a: gcd(a,n)=1

[
(q − Re(ζa))2 + (Im(ζa))2

]
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Since |ζ| = 1, the real part is certainly between −1 and +1, so q −Re(ζa) > q− 1 unless Re(ζa) = 1, which
happens only for ζa = 1, which can happen only for n = 1. That is, for n > 1, the integer Φn(q) is a product
of complex numbers each larger than q − 1, contradicting the fact that Φn(q)|(q − 1). That is, n = 1. That
is, there are no non-central orbits, and D is commutative.

[10.2] Let q = pn be a (positive integer) power of a prime p. Let F : Fq → Fq by F (α) = αp be the
Frobenius map over Fp. Let S be a set of elements of Fq stable under F (that is, F maps S to itself). Show
that the polynomial ∏

α∈S
(x− α)

has coefficients in the smaller field Fp.

Since the set S is Frobenius-stable, application of the Frobenius to the polynomial merely permutes the linear
factors, thus leaving the polynomial unchanged (since the multiplication of the linear factors is insensitive
to ordering.) Thus, the coefficients of the (multiplied-out) polynomial are fixed by the Frobenius. That is,
the coefficients are roots of the equation xp − x = 0. On one hand, this polynomial equation has at most p
roots in a given field (from unique factorization), and, on the other hand, Fermat’s Little Theorem assures
that the elements of the field Fp are roots of that equation. Thus, any element fixed under the Frobenius
lies in the field Fp, as asserted.

[10.3] Let q = pn be a power of a prime p. Let F : Fq → Fq by F (α) = αp be the Frobenius map over Fp.
Show that for every divisor d of n that the fixed points of F d form the unique subfield Fpd of Fq of degree
d over the prime field Fp.

This is similar to the previous example, but emphasizing a different part. Fixed points of the dth power F d

of the Frobenius F are exactly the roots of the equation xp
d − x = 0 of x(xp

d−1 − 1) = 0. On one hand, a
polynomial has at most as many roots (in a field) as its degree. On the other hand, F×

pd is of order pd − 1,
so every element of Fpd is a root of our equation. There can be no more, so Fpd is exactly the set of roots.

[10.4] Let f(x) be a monic polynomial with integer coefficients. Show that f is irreducible in Q[x] if it is
irreducible in (Z/p)[x] for some p.

First, claim that if f(x) is irreducible in some (Z/p)[x], then it is irreducible in Z[x]. A factorization
f(x) = g(x)·h(x) in Z[x] maps, under the natural Z-algebra homomorphism to (Z/p)[x], to the corresponding
factorization f(x) = g(x) · h(x) in (Z/p)[x]. (There’s little reason to invent a notation for the reduction
modulo p of polynomials as long as we are clear what we’re doing.) A critical point is that since f is
monic both g and h can be taken to be monic also (multiplying by −1 if necessary), since the highest-
degree coefficient of a product is simply the product of the highest-degree coefficients of the factors. The
irreducibility over Z/p implies that the degree of one of g and h modulo p is 0. Since they are monic,
reduction modulo p does not alter their degrees. Since f is monic, its content is 1, so, by Gauss’ lemma, the
factorization in Z[x] is not proper, in the sense that either g or h is just ±1.

That is, f is irreducible in the ring Z[x]. Again by Gauss’ lemma, this implies that f is irreducible in Q[x].

[10.5] Let n be a positive integer such that (Z/n)× is not cyclic. Show that the nth cyclotomic polynomial
Φn(x) factors properly in Fp[x] for any prime p not dividing n.

(See subsequent text for systematic treatment of the case that p divides n.) Let d be a positive integer such
that pd−1 = 0 mod n. Since we know that F×

pd is cyclic, Φn(x) = 0 has a root in Fpd when pd−1 = 0 mod n.
For Φn(x) to be irreducible in Fp[x], it must be that d = ϕ(n) (Euler’s totient function ϕ) is the smallest
exponent which achieves this. That is, Φn(x) will be irreducible in Fp[x] only if pϕ(n) = 1 mod n but no
smaller positive exponent achieves this effect. That is, Φn(x) is irreducible in Fp[x] only if p is of order ϕ(n)
in the group (Z/n)×. We know that the order of this group is ϕ(n), so any such p would be a generator for
the group (Z/n)×. That is, the group would be cyclic.
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[10.6] Show that the 15th cyclotomic polynomial Φ15(x) is irreducible in Q[x], despite being reducible in
Fp[x] for every prime p.

First, by Sun-Ze
(Z/15)× ≈ (Z/3)× × (Z/5)× ≈ Z/2⊕ Z/4

This is not cyclic (there is no element of order 8, as the maximal order is 4). Thus, by the previous problem,
there is no prime p such that Φ15(x) is irreducible in Fp[x].

To prove that Φ15 is irreducible in Q[x], it suffices to show that the field extension Q(ζ) of Q generated by
any root ζ of Φ15(x) = 0 (in some algebraic closure of Q, if one likes) is of degree equal to the degree of
the polynomial Φ15, namely ϕ(15) = ϕ(3)ϕ(5) = (3 − 1)(5 − 1) = 8. We already know that Φ3 and Φ5 are
irreducible. And one notes that, given a primitive 15th root of unity ζ, η = ζ3 is a primitive 5th root of unity
and ω = ζ5 is a primitive third root of unity. And, given a primitive cube root of unity ω and a primitive
5th root of unity η, ζ = ω2 · η−3 is a primitive 15th root of unity: in fact, if ω and η are produced from ζ,
then this formula recovers ζ, since

2 · 5− 3 · 3 = 1

Thus,
Q(ζ) = Q(ω)(η)

By the multiplicativity of degrees in towers of fields

[Q(ζ) : Q] = [Q(ζ) : Q(ω)] · [Q(ω) : Q] = [Q(ζ) : Q(ω)] · 2 = [Q(ω, η) : Q(ω)] · 2

Thus, it would suffice to show that [Q(ω, η) : Q(ω)] = 4.

We should not forget that we have shown that Z[ω] is Euclidean, hence a PID, hence a UFD. Thus, we
are entitled to use Eisenstein’s criterion and Gauss’ lemma. Thus, it would suffice to prove irreducibility of
Φ5(x) in Z[ω][x]. As in the discussion of Φp(x) over Z with p prime, consider f(x) = Φ5(x + 1). All its
coefficients are divisible by 5, and the constant coefficient is exactly 5 (in particular, not divisible by 52).
We can apply Eisenstein’s criterion and Gauss’ lemma if we know, for example, that 5 is a prime in Z[ω].
(There are other ways to succeed, but this would be simplest.)

To prove that 5 is prime in Z[ω], recall the norm

N(a+ bω) = (a+ bω)(a+ bω) = (a+ bω)(a+ bω2) = a2 − ab+ b2

already used in discussing the Euclidean-ness of Z[ω]. One proves that the norm takes non-negative integer
values, is 0 only when evaluated at 0, is multiplicative in the sense that N(αβ) = N(α)N(β), and N(α) = 1
if and only if α is a unit in Z[ω]. Thus, if 5 were to factor 5 = αβ in Z[ω], then

25 = N(5) = N(α) ·N(β)

For a proper factorization, meaning that neither α nor β is a unit, neither N(α) nor N(β) can be 1. Thus,
both must be 5. However, the equation

5 = N(a+ bω) = a2 − ab+ b2 = (a− b

2
)2 +

3
4
b2 =

1
4
(
(2a− b)2 + 3b2

)
has no solution in integers a, b. Indeed, looking at this equation mod 5, since 3 is not a square mod 5 it must
be that b = 0 mod 5. Then, further, 4a2 = 0 mod 5, so a = 0 mod 5. That is, 5 divides both a and b. But
then 25 divides the norm N(a+ bω) = a2 − ab+ b2, so it cannot be 5.

Thus, in summary, 5 is prime in Z[ω], so we can apply Eisenstein’s criterion to Φ5(x + 1) to see that it is
irreducible in Z[ω][x]. By Gauss’ lemma, it is irreducible in Q(ω)[x], so [Q(ω, η) : Q(ω)] = ϕ(5) = 4. And
this proves that [Q(ζ) : Q)] = 8, so Φ15(x) is irreducible over Q.
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[10.7] Let p be a prime. Show that every degree d irreducible in Fp[x] is a factor of xp
d−1 − 1. Show that

that the (pd − 1)th cyclotomic polynomial’s irreducible factors in Fp[x] are all of degree d.

Let f(x) be a degree d irreducible in Fp[x]. For a linear factor x− α with α in some field extension of Fp,
we know that

[Fp(α) : Fp] = degree of minimal poly of α = deg f = d

Since there is a unique (up to isomorphism) field extension of degree d of Fp, all roots of f(x) = 0 lie in
that field extension Fpd . Since the order of the multiplicative group F×

pd is pd − 1, by Lagrange the order of

any non-zero element α of Fpd is a divisor of pd − 1. That is, α is a root of xp
d−1 − 1 = 0, so x− α divides

xp
d−1 − 1 = 0. Since f is irreducible, f has no repeated factors, so f(x) = 0 has no repeated roots. By

unique factorization (these linear factors are mutually distinct irreducibles whose least common multiple is
their product), the product of all the x− α divides xp

d−1 − 1.

For the second part, similarly, look at the linear factors x−α of Φpd−1(x) in a sufficiently large field extension
of Fp. Since p does not divide n = pd−1 there are no repeated factors. The multiplicative group of the field
Fpd is cyclic, so contains exactly ϕ(pd − 1) elements of (maximal possible) order pd − 1, which are roots of
Φpd−1(x) = 0. The degree of Φpd−1 is ϕ(pd − 1), so there are no other roots. No proper subfield Fpe of Fpd

contains any elements of order pd − 1, since we know that e|d and the multiplicative group F×pe is of order
pe − 1 < pd − 1. Thus, any linear factor x− α of Φpd−1(x) has [Fp(α) : Fp] = d, so the minimal polynomial
f(x) of α over Fp is necessarily of degree d. We claim that f divides Φpd−1. Write

Φpd−1 = q · f + r

where q, r are in Fp[x] and deg r < deg f . Evaluate both sides to find r(α) = 0. Since f was minimal over
Fp for α, necessarily r = 0 and f divides the cyclotomic polynomial.

That is, any linear factor of Φpd−1 (over a field extension) is a factor of a degree d irreducible polynomial in
Fp[x]. That is, that cyclotomic polynomial factors into degree d irreducibles in Fp[x].

[10.8] Fix a prime p, and let ζ be a primitive pth root of 1 (that is, ζp = 1 and no smaller exponent will
do). Let

V = det



1 1 1 1 . . . 1
1 ζ ζ2 ζ3 . . . ζp−1

1 ζ2 (ζ2)2 (ζ2)3 . . . (ζ2)p−1

1 ζ3 (ζ3)2 (ζ3)3 . . . (ζ3)p−1

1 ζ4 (ζ4)2 (ζ4)3 . . . (ζ4)p−1

...
...

1 ζp−1 (ζp−1)2 (ζp−1)3 . . . (ζp−1)p−1


Compute the rational number V 2.

There are other possibly more natural approaches as well, but the following trick is worth noting. The ijth

entry of V is ζ(i−1)(j−1). Thus, the ijth entry of the square V 2 is

∑
`

ζ(i−1)(`−1) · ζ(`−1)(j−1) =
∑
`

ζ(i−1+j−1)(`−1) =
{

0 if (i− 1) + (j − 1) 6= 0 mod p
p if (i− 1) + (j − 1) = 0 mod p

since ∑
0≤`<p

ω` = 0
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for any pth root of unity ω other than 1. Thus,

V 2 =


p 0 0 . . . 0 0
0 0 0 . . . 0 p
0 0 0 . . . p 0

. . .

0 0 p . . . 0 0
0 p 0 . . . 0 0


That is, there is a p in the upper left corner, and p’s along the anti-diagonal in the lower right (n−1)-by-(n−1)
block. Thus, granting that the determinant squared is the square of the determinant,

(detV )2 = det(V 2) = pp · (−1)(p−1)(p−2)/2

Note that this did not, in fact, depend upon p being prime.

[10.9] Let K = Q(ζ) where ζ is a primitive 15th root of unity. Find 4 fields k strictly between Q and K.

Let ζ be a primitive 15th root of unity. Then ω = ζ5 is a primitive cube root of unity, and η = ζ3 is a
primitive fifth root of unity. And Q(ζ) = Q(ω)(η).

Thus, Q(ω) is one intermediate field, of degree 2 over Q. And Q(η) is an intermediate field, of degree 4 over
Q (so certainly distinct from Q(ω).)

By now we know that
√

5 ∈ Q(η), so Q(
√

5) suggests itself as a third intermediate field. But one must
be sure that Q(ω) 6= Q(

√
5). We can try a direct computational approach in this simple case: suppose

(a+ bω)2 = 5 with rational a, b. Then

5 = a2 + 2abω + b2ω2 = a2 + 2abω − b2 − b2ω = (a2 − b2) + ω(2ab− b2)

Thus, 2ab − b2 = 0. This requires either b = 0 or 2a − b = 0. Certainly b cannot be 0, or 5 would be the
square of a rational number (which we have long ago seen impossible). Try 2a = b. Then, supposedly,

5 = a2 − 2(2a)2 = −3a2

which is impossible. Thus, Q(
√

5) is distinct from Q(ω).

We know that Q(ω) = Q(
√
−3). This might suggest

Q(
√
−3 ·
√

5) = Q(
√
−15)

as the fourth intermediate field. We must show that it is distinct from Q(
√
−3) and Q(

√
5). If it were equal

to either of these, then that field would also contain
√

5 and
√
−3, but we have already checked that (in

effect) there is no quadratic field extension of Q containing both these.

Thus, there are (at least) intermediate fields Q(η), Q(
√
−3), Q(

√
5, and Q(

√
−15).

5


