(January 14, 2009)

[15.1] Let k be a field of characteristic 0. Let f be an irreducible polynomial in k[z]. Prove that f has no
repeated factors, even over an algebraic closure of k.

If f has a factor P? where P is irreducible in k[z], then P divides ged(f, f') € k[z]. Since f was monic, and
since the characteristic is 0, the derivative of the highest-degree term is of the form nz"~!, and the coefficient
is non-zero. Since f’ is not 0, the degree of ged(f, f') is at most deg f’, which is strictly less than deg f.
Since f is irreducible, this ged in k[z] must be 1. Thus, there are polynomials a,b such that af + bf’ = 1.
The latter identity certainly persists in K |[x] for any field extension K of k. ///

[15.2] Let K be a finite extension of a field k of characteristic 0. Prove that K is separable over k.

Since K is finite over k, there is a finite list of elements aq, ..., a, in K such that K = k(aq,...,q,). From
the previous example, the minimal polynomial f of a; over k has no repeated roots in an algebraic closure
k of k, so k(ay) is separable over k.

We recall ] the fact that we can map k(a1) — k by sending a1 to any of the [k(ay) : k] = deg f distinct
roots of f(x) = 0 in k. Thus, there are [k(a1) : k] = deg f distinct distinct imbeddings of k(«1) into k, so
k(aq) is separable over k.

Next, observe that for any imbedding o : k(ay) — k of k() into an algebraic closure k of k, by proven
properties of k we know that k is an algebraic closure of o(k(a1)). Further, if g(z) € k(aq)[z] is the minimal
polynomial of ay over k(ay), then o(g)(x) (applying o to the coefficients) is the minimal polynomial of aq
over o(k(ay)). Thus, by the same argument as in the previous paragraph we have [k(a1, asz) : k(aq)] distinet
imbeddings of k(a1,as2) into k for a given imbedding of k(). Then use induction. ///

[15.3] Let k be a field of characteristic p > 0. Suppose that k is perfect, meaning that for any a € k there
exists b € k such that b* = a. Let f(xz) =, ¢;z* in k[z] be a polynomial such that its (algebraic) derivative

f(x) = Z ciiaxt™!

is the zero polynomial. Show that there is a unique polynomial g € k[z] such that f(x) = g(x)P.

For the derivative to be the 0 polynomial it must be that the characteristic p divides the exponent of every
term (with non-zero coefficient). That is, we can rewrite

fla) = Z cipa'?

Let b; € k such that b¥ = ¢;;,, using the perfect-ness. Since p divides all the inner binomial coefficients

p'/ilp =), )
(Z b; :cz> = Z Cip P
as desired. ///

[15.4] Let k be a perfect field of characteristic p > 0, and f an irreducible polynomial in k[z]. Show that
f has no repeated factors (even over an algebraic closure of k).

If f has a factor P? where P is irreducible in k[z], then P divides ged(f, f') € k[x]. If deg gcd(f, f') < deg f
then the irreducibility of f in k[z] implies that the ged is 1, so no such P exists. If degged(f, f/) = deg f,

(11 Recall the proof: Let 8 be a root of f(z) = 0 in k. Let ¢ : k[z] — k[3] by  — 3. The kernel of ¢ is the principal
ideal generated by f(z) in k[z]. Thus, the map ¢ factors through k[x]/{f) =~ k[a1].
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then f/ =0, and (from above) there is a polynomial g(z) € k[x] such that f(z) = g(z)P, contradicting the
irreducibility in k[z]. /1]

[15.5] Show that all finite fields IFn with p prime and 1 < n € Z are perfect.

Again because the inner binomial coefficients p!/il(p —4)! are 0 in characteristic p, the (Frobenius) map
a — oP is not only (obviously) multiplicative, but also additive, so is a ring homomorphism of IFy» to itself.
Since Iy, is cyclic (of order p"), for any a € Fpn (including 0)

a®) = o

Thus, since the map o — P has the (two-sided) inverse o — apnfl, it is a bijection. That is, everything
has a p** root. /]

[15.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.

That is, we want to prove that the number of distinct imbeddings o of K into a fixed algebraic closure k is
[K : k]. Let a € K be a generator for the cyclic group K*. Then K = k(a) = k[a], since powers of a already
give every element but 0 in K. Thus, from basic field theory, the degree of the minimal polynomial f(x) of
a over k is [K : k]. The previous example shows that k is perfect, and the example before that showed that
irreducible polynomials over a perfect field have no repeated factors. Thus, f(z) has no repeated factors in
any field extension of k.

We have also already seen that for algebraic « over k, we can map k() to k to send « to any root 3 of
f(z) = 01in k. Since f(z) has not repeated factors, there are [K : k] distinct roots 3, so [K : k] distinct
imbeddings. ///

[15.7] Find all fields intermediate between @ and Q(¢) where ( is a primitive 17¢" root of unity.

Since 17 is prime, Gal(Q(¢)/QR) ~ (Z/17)* is cyclic (of order 16), and we know that a cyclic group has
a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate fields
corresponding to the proper divisors 2,4, 8 of 16. Let o, be the automorphism ¢, = (*.

By a little trial and error, 3 is a generator for the cyclic group (Z/17)*, so o3 is a generator for the
automorphism group. Thus, one reasonably considers

as = (T AT T T
ay = C+¢ +¢+¢°
ay = C+¢ =¢+¢!

The «, is visibly invariant under the subgroup of (Z/17)* of order n. The linear independence of
¢,C%,¢3, ..., shows ay, is not by accident invariant under any larger subgroup of the Galois group. Thus,
Q(ay) is (by Galois theory) the unique intermediate field of degree 16/n over Q.

We can also give other characterizations of some of these intermediate fields. First, we have already seen (in

discussion of Gauss sums) that
> (), =V
1772
a mod 17

a

where ( 1

)2 is the quadratic symbol. Thus,

ag —o30g — 17

ag +osag = 0

so ag and osag are £4/17/2. Further computation can likewise express all the intermediate fields as being
obtained by adjoining square roots to the next smaller one. ///
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[15.8] Let f, g be relatively prime polynomials in n indeterminates t1,...,t,, with g not 0. Suppose that
the ratio f(t1,...,tn)/g(t1,...,t,) is invariant under all permutations of the ¢;. Show that both f and g are
polynomials in the elementary symmetric functions in the ¢;.

Let s; be the i elementary symmetric function in the ¢;’s. Earlier we showed that k(t1,...,t,) has Galois
group S, (the symmetric group on n letters) over k(sy,...,s,). Thus, the given ratio lies in k(s1,...,s,).
Thus, it is expressible as a ratio

S, oo tn)

F(s1,.-.,5n)
g(ti, ... tn)  G(s1,...,5n)

of polynomials F, G in the s;.

To prove the stronger result that the original f and g were themselves literally polynomials in the ¢;, we seem
to need the characteristic of k to be not 2, and we certainly must use the unique factorization in k[ty, ..., t,].

Write
f(tla s 7tn) = pil < ‘pfryLn

where the e; are positive integers and the p; are irreducibles. Similarly, write

g(tl,...,tn):qfl...qgg

where the f; are positive integers and the ¢; are irreducibles. The relative primeness says that none of the
¢; are associate to any of the p;. The invariance gives, for any permutation 7 of

- Pt ... pEm :p?...pfﬁn
o av) ok

Hﬂ(p?) - Hqﬁ = Hp? ‘HW(q{i)

By the relative prime-ness, each p; divides some one of the 7(p;). These ring automorphisms preserve
irreducibility, and ged(a,b) = 1 implies ged(ma, 7b) = 1, so, symmetrically, the w(p;)’s divide the p;’s. And
similarly for the ¢;’s. That is, permuting the ¢;’s must permute the irreducible factors of f (up to units k*
in k[t1,...,t,]) among themselves, and likewise for the irreducible factors of g.

Multiplying out,

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units,
then f and g would be symmetric. However, at this point we can only be confident that they are permuted
up to constants.

What we have, then, is that for a permutation w
71—(f) = Qr - f

for some a € k*. For another permutation 7, certainly 7(7(f)) = (7m)f. And 7(axf) = ar - 7(f), since
permutations of the indeterminates have no effect on elements of k. Thus, we have

Qrp = Qr * Qi

That is, 7 — «, is a group homomorphism S,, — k*.

It is very useful to know that the alternating group A, is the commutator subgroup of S,. Thus, if f is not
actually invariant under S,,, in any case the group homomorphism S,, — k* factors through the quotient
Sn/An, so is the sign function m — o(w) that is +1 for 7 € A,, and —1 otherwise. That is, f is equivariant
under S,, by the sign function, in the sense that 7f = o(7) - f.
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Now we claim that if 7f = o(7) - f then the square root

s=vVAa=[[t-t)

i<j

of the discriminant A divides f. To see this, let s;; be the 2-cycle which interchanges t; and ¢;, for i # j.
Then

Sijf =—f
Under any homomorphism which sends ¢; — ¢; to 0, since the characteristic is not 2, f is sent to 0. That is,
t; —t; divides f in k[ty,...,t,]. By unique factorization, since no two of the monomials ¢; — t; are associate

(for distinct pairs @ < j), we see that the square root ¢ of the discriminant must divide f.

That is, for f with 7f = o(n) - f we know that §|f. For f/g to be invariant under .S, it must be that also
mg = o(n) - g. But then d|g also, contradicting the assumed relative primeness. Thus, in fact, it must have
been that both f and g were invariant under S,,, not merely equivariant by the sign function. ///



