[15.1] Let k be a field of characteristic 0. Let f be an irreducible polynomial in k[x]. Prove that f has no repeated factors, even over an algebraic closure of k.

If f has a factor P^2 where P is irreducible in k[x], then P divides $gcd(f, f') \in k[x]$. Since f was monic, and since the characteristic is 0, the derivative of the highest-degree term is of the form nx^{n-1} , and the coefficient is non-zero. Since f' is not 0, the degree of gcd(f, f') is at most deg f', which is strictly less than deg f. Since f is irreducible, this gcd in k[x] must be 1. Thus, there are polynomials a, b such that af + bf' = 1. The latter identity certainly persists in K[x] for any field extension K of k.

[15.2] Let K be a finite extension of a field k of characteristic 0. Prove that K is separable over k.

Since K is finite over k, there is a finite list of elements $\alpha_1, \ldots, \alpha_n$ in K such that $K = k(\alpha_1, \ldots, \alpha_n)$. From the previous example, the minimal polynomial f of α_1 over k has no repeated roots in an algebraic closure \overline{k} of k, so $k(\alpha_1)$ is separable over k.

We recal^[1] the fact that we can map $k(\alpha_1) \to \overline{k}$ by sending α_1 to any of the $[k(\alpha_1) : k] = \deg f$ distinct roots of f(x) = 0 in \overline{k} . Thus, there are $[k(\alpha_1) : k] = \deg f$ distinct distinct imbeddings of $k(\alpha_1)$ into \overline{k} , so $k(\alpha_1)$ is separable over k.

Next, observe that for any imbedding $\sigma: k(\alpha_1) \to \overline{k}$ of $k(\alpha_1)$ into an algebraic closure \overline{k} of k, by proven properties of \overline{k} we know that \overline{k} is an algebraic closure of $\sigma(k(\alpha_1))$. Further, if $g(x) \in k(\alpha_1)[x]$ is the minimal polynomial of α_2 over $k(\alpha_1)$, then $\sigma(g)(x)$ (applying σ to the coefficients) is the minimal polynomial of α_2 over $\sigma(k(\alpha_1))$. Thus, by the same argument as in the previous paragraph we have $[k(\alpha_1, \alpha_2) : k(\alpha_1)]$ distinct imbeddings of $k(\alpha_1, \alpha_2)$ into \overline{k} for a given imbedding of $k(\alpha_1)$. Then use induction. ///

[15.3] Let k be a field of characteristic p > 0. Suppose that k is **perfect**, meaning that for any $a \in k$ there exists $b \in k$ such that $b^p = a$. Let $f(x) = \sum_i c_i x^i$ in k[x] be a polynomial such that its (algebraic) derivative

$$f'(x) = \sum_{i} c_i \, i \, x^{i-1}$$

is the zero polynomial. Show that there is a unique polynomial $g \in k[x]$ such that $f(x) = g(x)^p$.

For the derivative to be the 0 polynomial it must be that the characteristic p divides the exponent of every term (with non-zero coefficient). That is, we can rewrite

$$f(x) = \sum_{i} c_{ip} \, x^{ip}$$

Let $b_i \in k$ such that $b_i^p = c_{ip}$, using the perfect-ness. Since p divides all the inner binomial coefficients p!/i!(p-i)!,

$$\left(\sum_{i} b_{i} x^{i}\right)^{p} = \sum_{i} c_{ip} x^{ip}$$

as desired.

[15.4] Let k be a perfect field of characteristic p > 0, and f an irreducible polynomial in k[x]. Show that f has no repeated factors (even over an algebraic closure of k).

If f has a factor P^2 where P is irreducible in k[x], then P divides $gcd(f, f') \in k[x]$. If $\deg gcd(f, f') < \deg f$ then the irreducibility of f in k[x] implies that the gcd is 1, so no such P exists. If deg gcd $(f, f') = \deg f$,

///

^[1] Recall the proof: Let β be a root of f(x) = 0 in \overline{k} . Let $\varphi: k[x] \to k[\beta]$ by $x \to \beta$. The kernel of φ is the principal ideal generated by f(x) in k[x]. Thus, the map φ factors through $k[x]/\langle f \rangle \approx k[\alpha_1]$.

then f' = 0, and (from above) there is a polynomial $g(x) \in k[x]$ such that $f(x) = g(x)^p$, contradicting the irreducibility in k[x].

[15.5] Show that all finite fields \mathbb{F}_{p^n} with p prime and $1 \leq n \in \mathbb{Z}$ are perfect.

Again because the inner binomial coefficients p!/i!(p-i)! are 0 in characteristic p, the (Frobenius) map $\alpha \to \alpha^p$ is not only (obviously) multiplicative, but also additive, so is a ring homomorphism of \mathbb{F}_{p^n} to itself. Since $\mathbb{F}_{p^n}^{\times}$ is cyclic (of order p^n), for any $\alpha \in \mathbb{F}_{p^n}$ (including 0)

$$\alpha^{(p^n)} = \alpha$$

Thus, since the map $\alpha \to \alpha^p$ has the (two-sided) inverse $\alpha \to \alpha^{p^{n-1}}$, it is a bijection. That is, everything has a p^{th} root.

[15.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.

That is, we want to prove that the number of distinct imbeddings σ of K into a fixed algebraic closure \overline{k} is [K:k]. Let $\alpha \in K$ be a generator for the cyclic group K^{\times} . Then $K = k(\alpha) = k[\alpha]$, since powers of α already give every element but 0 in K. Thus, from basic field theory, the degree of the minimal polynomial f(x) of α over k is [K:k]. The previous example shows that k is perfect, and the example before that showed that irreducible polynomials over a perfect field have no repeated factors. Thus, f(x) has no repeated factors in any field extension of k.

We have also already seen that for algebraic α over k, we can map $k(\alpha)$ to \overline{k} to send α to any root β of f(x) = 0 in \overline{k} . Since f(x) has not repeated factors, there are [K:k] distinct roots β , so [K:k] distinct imbeddings.

[15.7] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}(\zeta)$ where ζ is a primitive 17^{th} root of unity.

Since 17 is prime, $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \approx (\mathbb{Z}/17)^{\times}$ is cyclic (of order 16), and we know that a cyclic group has a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate fields corresponding to the proper divisors 2, 4, 8 of 16. Let σ_a be the automorphism $\sigma_a \zeta = \zeta^a$.

By a little trial and error, 3 is a generator for the cyclic group $(\mathbb{Z}/17)^{\times}$, so σ_3 is a generator for the automorphism group. Thus, one reasonably considers

$$\begin{array}{rcl} \alpha_8 & = & \zeta + \zeta^{3^2} + \zeta^{3^4} + \zeta^{3^6} + \zeta^{3^8} + \zeta^{3^{10}} + \zeta^{3^{12}} + \zeta^{3^{14}} \\ \alpha_4 & = & \zeta + \zeta^{3^4} + \zeta^{3^8} + \zeta^{3^{12}} \\ \alpha_2 & = & \zeta + \zeta^{3^8} = \zeta + \zeta^{-1} \end{array}$$

The α_n is visibly invariant under the subgroup of $(\mathbb{Z}/17)^{\times}$ of order *n*. The linear independence of $\zeta, \zeta^2, \zeta^3, \ldots, \zeta^{16}$ shows α_n is *not* by accident invariant under any larger subgroup of the Galois group. Thus, $\mathbb{Q}(\alpha_n)$ is (by Galois theory) the unique intermediate field of degree 16/n over \mathbb{Q} .

We can also give other characterizations of some of these intermediate fields. First, we have already seen (in discussion of Gauss sums) that

$$\sum_{\text{mod }17} \left(\frac{a}{17}\right)_2 \cdot \zeta^a = \sqrt{17}$$

a

where $\left(\frac{a}{17}\right)_2$ is the quadratic symbol. Thus,

$$\begin{array}{rcl} \alpha_8 - \sigma_3 \alpha_8 & = & \sqrt{17} \\ \alpha_8 + \sigma_3 \alpha_8 & = & 0 \end{array}$$

so α_8 and $\sigma_3 \alpha_8$ are $\pm \sqrt{17}/2$. Further computation can likewise express all the intermediate fields as being obtained by adjoining square roots to the next smaller one. ///

[15.8] Let f, g be relatively prime polynomials in n indeterminates t_1, \ldots, t_n , with g not 0. Suppose that the ratio $f(t_1, \ldots, t_n)/g(t_1, \ldots, t_n)$ is invariant under all permutations of the t_i . Show that both f and g are polynomials in the elementary symmetric functions in the t_i .

Let s_i be the i^{th} elementary symmetric function in the t_j 's. Earlier we showed that $k(t_1, \ldots, t_n)$ has Galois group S_n (the symmetric group on *n* letters) over $k(s_1, \ldots, s_n)$. Thus, the given ratio lies in $k(s_1, \ldots, s_n)$. Thus, it is *expressible* as a ratio

$$\frac{f(t_1,\ldots,t_n)}{g(t_1,\ldots,t_n)} = \frac{F(s_1,\ldots,s_n)}{G(s_1,\ldots,s_n)}$$

of polynomials F, G in the s_i .

To prove the stronger result that the original f and g were themselves literally polynomials in the t_i , we seem to need the characteristic of k to be not 2, and we certainly must use the unique factorization in $k[t_1, \ldots, t_n]$.

Write

$$f(t_1,\ldots,t_n) = p_1^{e_1}\ldots p_m^{e_m}$$

where the e_i are positive integers and the p_i are irreducibles. Similarly, write

$$g(t_1,\ldots,t_n)=q_1^{f_1}\ldots q_m^{f_r}$$

where the f_i are positive integers and the q_i are irreducibles. The relative primeness says that none of the q_i are *associate* to any of the p_i . The invariance gives, for any permutation π of

$$\pi\left(\frac{p_1^{e_1}\dots p_m^{e_m}}{q_1^{f_1}\dots q_m^{f_n}}\right) = \frac{p_1^{e_1}\dots p_m^{e_m}}{q_1^{f_1}\dots q_m^{f_n}}$$

Multiplying out,

$$\prod_i \pi(p_i^{e_i}) \cdot \prod_i q_i^{f_i} = \prod_i p_i^{e_i} \cdot \prod_i \pi(q_i^{f_i})$$

By the relative prime-ness, each p_i divides some one of the $\pi(p_j)$. These ring automorphisms preserve irreducibility, and gcd(a, b) = 1 implies $gcd(\pi a, \pi b) = 1$, so, symmetrically, the $\pi(p_j)$'s divide the p_i 's. And similarly for the q_i 's. That is, permuting the t_i 's must permute the irreducible factors of f (up to units k^{\times} in $k[t_1, \ldots, t_n]$) among themselves, and likewise for the irreducible factors of g.

If all permutations *literally* permuted the irreducible factors of f (and of g), rather than merely up to *units*, then f and g would be symmetric. However, at this point we can only be confident that they are permuted up to constants.

What we have, then, is that for a permutation π

$$\pi(f) = \alpha_{\pi} \cdot f$$

for some $\alpha \in k^{\times}$. For another permutation τ , certainly $\tau(\pi(f)) = (\tau \pi)f$. And $\tau(\alpha_{\pi}f) = \alpha_{\pi} \cdot \tau(f)$, since permutations of the indeterminates have no effect on elements of k. Thus, we have

$$\alpha_{\tau\pi} = \alpha_{\tau} \cdot \alpha_{\pi}$$

That is, $\pi \to \alpha_{\pi}$ is a group homomorphism $S_n \to k^{\times}$.

It is very useful to know that the alternating group A_n is the *commutator subgroup* of S_n . Thus, if f is not actually invariant under S_n , in any case the group homomorphism $S_n \to k^{\times}$ factors through the quotient S_n/A_n , so is the sign function $\pi \to \sigma(\pi)$ that is +1 for $\pi \in A_n$ and -1 otherwise. That is, f is **equivariant** under S_n by the sign function, in the sense that $\pi f = \sigma(\pi) \cdot f$.

Now we claim that if $\pi f = \sigma(\pi) \cdot f$ then the square root

$$\delta = \sqrt{\Delta} = \prod_{i < j} \left(t_i - t_j \right)$$

of the discriminant Δ divides f. To see this, let s_{ij} be the 2-cycle which interchanges t_i and t_j , for $i \neq j$. Then

$$s_{ij}f = -f$$

Under any homomorphism which sends $t_i - t_j$ to 0, since the characteristic is not 2, f is sent to 0. That is, $t_i - t_j$ divides f in $k[t_1, \ldots, t_n]$. By unique factorization, since no two of the monomials $t_i - t_j$ are associate (for distinct pairs i < j), we see that the square root δ of the discriminant must divide f.

That is, for f with $\pi f = \sigma(\pi) \cdot f$ we know that $\delta | f$. For f/g to be invariant under S_n , it must be that also $\pi g = \sigma(\pi) \cdot g$. But then $\delta | g$ also, contradicting the assumed relative primeness. Thus, in fact, it must have been that both f and g were *invariant* under S_n , not merely equivariant by the sign function. ///