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[15.1] Let k be a field of characteristic 0. Let f be an irreducible polynomial in k[x]. Prove that f has no
repeated factors, even over an algebraic closure of k.

If f has a factor P 2 where P is irreducible in k[x], then P divides gcd(f, f ′) ∈ k[x]. Since f was monic, and
since the characteristic is 0, the derivative of the highest-degree term is of the form nxn−1, and the coefficient
is non-zero. Since f ′ is not 0, the degree of gcd(f, f ′) is at most deg f ′, which is strictly less than deg f .
Since f is irreducible, this gcd in k[x] must be 1. Thus, there are polynomials a, b such that af + bf ′ = 1.
The latter identity certainly persists in K[x] for any field extension K of k. ///

[15.2] Let K be a finite extension of a field k of characteristic 0. Prove that K is separable over k.

Since K is finite over k, there is a finite list of elements α1, . . . , αn in K such that K = k(α1, . . . , αn). From
the previous example, the minimal polynomial f of α1 over k has no repeated roots in an algebraic closure
k of k, so k(α1) is separable over k.

We recall [1] the fact that we can map k(α1) → k by sending α1 to any of the [k(α1) : k] = deg f distinct
roots of f(x) = 0 in k. Thus, there are [k(α1) : k] = deg f distinct distinct imbeddings of k(α1) into k, so
k(α1) is separable over k.

Next, observe that for any imbedding σ : k(α1) → k of k(α1) into an algebraic closure k of k, by proven
properties of k we know that k is an algebraic closure of σ(k(α1)). Further, if g(x) ∈ k(α1)[x] is the minimal
polynomial of α2 over k(α1), then σ(g)(x) (applying σ to the coefficients) is the minimal polynomial of α2

over σ(k(α1)). Thus, by the same argument as in the previous paragraph we have [k(α1, α2) : k(α1)] distinct
imbeddings of k(α1, α2) into k for a given imbedding of k(α1). Then use induction. ///

[15.3] Let k be a field of characteristic p > 0. Suppose that k is perfect, meaning that for any a ∈ k there
exists b ∈ k such that bp = a. Let f(x) =

∑
i cix

i in k[x] be a polynomial such that its (algebraic) derivative

f ′(x) =
∑
i

ci i x
i−1

is the zero polynomial. Show that there is a unique polynomial g ∈ k[x] such that f(x) = g(x)p.

For the derivative to be the 0 polynomial it must be that the characteristic p divides the exponent of every
term (with non-zero coefficient). That is, we can rewrite

f(x) =
∑
i

cip x
ip

Let bi ∈ k such that bpi = cip, using the perfect-ness. Since p divides all the inner binomial coefficients
p!/i!(p− i)!, (∑

i

bi x
i

)p
=
∑
i

cip x
ip

as desired. ///

[15.4] Let k be a perfect field of characteristic p > 0, and f an irreducible polynomial in k[x]. Show that
f has no repeated factors (even over an algebraic closure of k).

If f has a factor P 2 where P is irreducible in k[x], then P divides gcd(f, f ′) ∈ k[x]. If deg gcd(f, f ′) < deg f
then the irreducibility of f in k[x] implies that the gcd is 1, so no such P exists. If deg gcd(f, f ′) = deg f ,

[1] Recall the proof: Let β be a root of f(x) = 0 in k. Let ϕ : k[x]→ k[β] by x→ β. The kernel of ϕ is the principal

ideal generated by f(x) in k[x]. Thus, the map ϕ factors through k[x]/〈f〉 ≈ k[α1].
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then f ′ = 0, and (from above) there is a polynomial g(x) ∈ k[x] such that f(x) = g(x)p, contradicting the
irreducibility in k[x]. ///

[15.5] Show that all finite fields Fpn with p prime and 1 ≤ n ∈ Z are perfect.

Again because the inner binomial coefficients p!/i!(p − i)! are 0 in characteristic p, the (Frobenius) map
α→ αp is not only (obviously) multiplicative, but also additive, so is a ring homomorphism of Fpn to itself.
Since F×pn is cyclic (of order pn), for any α ∈ Fpn (including 0)

α(pn) = α

Thus, since the map α → αp has the (two-sided) inverse α → αp
n−1

, it is a bijection. That is, everything
has a pth root. ///

[15.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.

That is, we want to prove that the number of distinct imbeddings σ of K into a fixed algebraic closure k is
[K : k]. Let α ∈ K be a generator for the cyclic group K×. Then K = k(α) = k[α], since powers of α already
give every element but 0 in K. Thus, from basic field theory, the degree of the minimal polynomial f(x) of
α over k is [K : k]. The previous example shows that k is perfect, and the example before that showed that
irreducible polynomials over a perfect field have no repeated factors. Thus, f(x) has no repeated factors in
any field extension of k.

We have also already seen that for algebraic α over k, we can map k(α) to k to send α to any root β of
f(x) = 0 in k. Since f(x) has not repeated factors, there are [K : k] distinct roots β, so [K : k] distinct
imbeddings. ///

[15.7] Find all fields intermediate between Q and Q(ζ) where ζ is a primitive 17th root of unity.

Since 17 is prime, Gal(Q(ζ)/Q) ≈ (Z/17)× is cyclic (of order 16), and we know that a cyclic group has
a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate fields
corresponding to the proper divisors 2, 4, 8 of 16. Let σa be the automorphism σaζ = ζa.

By a little trial and error, 3 is a generator for the cyclic group (Z/17)×, so σ3 is a generator for the
automorphism group. Thus, one reasonably considers

α8 = ζ + ζ32
+ ζ34

+ ζ36
+ ζ38

+ ζ310
+ ζ312

+ ζ314

α4 = ζ + ζ34
+ ζ38

+ ζ312

α2 = ζ + ζ38
= ζ + ζ−1

The αn is visibly invariant under the subgroup of (Z/17)× of order n. The linear independence of
ζ, ζ2, ζ3, . . . , ζ16 shows αn is not by accident invariant under any larger subgroup of the Galois group. Thus,
Q(αn) is (by Galois theory) the unique intermediate field of degree 16/n over Q.

We can also give other characterizations of some of these intermediate fields. First, we have already seen (in
discussion of Gauss sums) that ∑

a mod 17

( a
17

)
2
· ζa =

√
17

where
(
a
17

)
2

is the quadratic symbol. Thus,

α8 − σ3α8 =
√

17
α8 + σ3α8 = 0

so α8 and σ3α8 are ±
√

17/2. Further computation can likewise express all the intermediate fields as being
obtained by adjoining square roots to the next smaller one. ///
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[15.8] Let f, g be relatively prime polynomials in n indeterminates t1, . . . , tn, with g not 0. Suppose that
the ratio f(t1, . . . , tn)/g(t1, . . . , tn) is invariant under all permutations of the ti. Show that both f and g are
polynomials in the elementary symmetric functions in the ti.

Let si be the ith elementary symmetric function in the tj ’s. Earlier we showed that k(t1, . . . , tn) has Galois
group Sn (the symmetric group on n letters) over k(s1, . . . , sn). Thus, the given ratio lies in k(s1, . . . , sn).
Thus, it is expressible as a ratio

f(t1, . . . , tn)
g(t1, . . . , tn)

=
F (s1, . . . , sn)
G(s1, . . . , sn)

of polynomials F,G in the si.

To prove the stronger result that the original f and g were themselves literally polynomials in the ti, we seem
to need the characteristic of k to be not 2, and we certainly must use the unique factorization in k[t1, . . . , tn].

Write
f(t1, . . . , tn) = pe11 . . . pem

m

where the ei are positive integers and the pi are irreducibles. Similarly, write

g(t1, . . . , tn) = qf11 . . . qfn
m

where the fi are positive integers and the qi are irreducibles. The relative primeness says that none of the
qi are associate to any of the pi. The invariance gives, for any permutation π of

π

(
pe11 . . . pem

m

qf11 . . . qfn
m

)
=
pe11 . . . pem

m

qf11 . . . qfn
m

Multiplying out, ∏
i

π(pei
i ) ·

∏
i

qfi

i =
∏
i

pei
i ·
∏
i

π(qfi

i )

By the relative prime-ness, each pi divides some one of the π(pj). These ring automorphisms preserve
irreducibility, and gcd(a, b) = 1 implies gcd(πa, πb) = 1, so, symmetrically, the π(pj)’s divide the pi’s. And
similarly for the qi’s. That is, permuting the ti’s must permute the irreducible factors of f (up to units k×

in k[t1, . . . , tn]) among themselves, and likewise for the irreducible factors of g.

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units,
then f and g would be symmetric. However, at this point we can only be confident that they are permuted
up to constants.

What we have, then, is that for a permutation π

π(f) = απ · f

for some α ∈ k×. For another permutation τ , certainly τ(π(f)) = (τπ)f . And τ(απf) = απ · τ(f), since
permutations of the indeterminates have no effect on elements of k. Thus, we have

ατπ = ατ · απ

That is, π → απ is a group homomorphism Sn → k×.

It is very useful to know that the alternating group An is the commutator subgroup of Sn. Thus, if f is not
actually invariant under Sn, in any case the group homomorphism Sn → k× factors through the quotient
Sn/An, so is the sign function π → σ(π) that is +1 for π ∈ An and −1 otherwise. That is, f is equivariant
under Sn by the sign function, in the sense that πf = σ(π) · f .
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Now we claim that if πf = σ(π) · f then the square root

δ =
√

∆ =
∏
i<j

(ti − tj)

of the discriminant ∆ divides f . To see this, let sij be the 2-cycle which interchanges ti and tj , for i 6= j.
Then

sijf = −f

Under any homomorphism which sends ti − tj to 0, since the characteristic is not 2, f is sent to 0. That is,
ti − tj divides f in k[t1, . . . , tn]. By unique factorization, since no two of the monomials ti − tj are associate
(for distinct pairs i < j), we see that the square root δ of the discriminant must divide f .

That is, for f with πf = σ(π) · f we know that δ|f . For f/g to be invariant under Sn, it must be that also
πg = σ(π) · g. But then δ|g also, contradicting the assumed relative primeness. Thus, in fact, it must have
been that both f and g were invariant under Sn, not merely equivariant by the sign function. ///
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