[15b.1] Let f, g be relatively prime polynomials in n indeterminates t_{1}, \ldots, t_{n}, with g not 0 . Suppose that the ratio $f\left(t_{1}, \ldots, t_{n}\right) / g\left(t_{1}, \ldots, t_{n}\right)$ is invariant under all permutations of the t_{i}. Show that both f and g are polynomials in the elementary symmetric functions in the t_{i}.
Let s_{i} be the $i^{\text {th }}$ elementary symmetric function in the t_{j} 's. Earlier we showed that $k\left(t_{1}, \ldots, t_{n}\right)$ has Galois group S_{n} (the symmetric group on n letters) over $k\left(s_{1}, \ldots, s_{n}\right)$. Thus, the given ratio lies in $k\left(s_{1}, \ldots, s_{n}\right)$. Thus, it is expressible as a ratio

$$
\frac{f\left(t_{1}, \ldots, t_{n}\right)}{g\left(t_{1}, \ldots, t_{n}\right)}=\frac{F\left(s_{1}, \ldots, s_{n}\right)}{G\left(s_{1}, \ldots, s_{n}\right)}
$$

of polynomials F, G in the s_{i}.
To prove the stronger result that the original f and g were themselves literally polynomials in the t_{i}, we seem to need the characteristic of k to be not 2 , and we certainly must use the unique factorization in $k\left[t_{1}, \ldots, t_{n}\right]$.

Write

$$
f\left(t_{1}, \ldots, t_{n}\right)=p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}
$$

where the e_{i} are positive integers and the p_{i} are irreducibles. Similarly, write

$$
g\left(t_{1}, \ldots, t_{n}\right)=q_{1}^{f_{1}} \ldots q_{m}^{f_{n}}
$$

where the f_{i} are positive integers and the q_{i} are irreducibles. The relative primeness says that none of the q_{i} are associate to any of the p_{i}. The invariance gives, for any permutation π of

$$
\pi\left(\frac{p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}}{q_{1}^{f_{1}} \ldots q_{m}^{f_{n}}}\right)=\frac{p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}}{q_{1}^{f_{1}} \ldots q_{m}^{f_{n}}}
$$

Multiplying out,

$$
\prod_{i} \pi\left(p_{i}^{e_{i}}\right) \cdot \prod_{i} q_{i}^{f_{i}}=\prod_{i} p_{i}^{e_{i}} \cdot \prod_{i} \pi\left(q_{i}^{f_{i}}\right)
$$

By the relative prime-ness, each p_{i} divides some one of the $\pi\left(p_{j}\right)$. These ring automorphisms preserve irreducibility, and $\operatorname{gcd}(a, b)=1$ implies $\operatorname{gcd}(\pi a, \pi b)=1$, so, symmetrically, the $\pi\left(p_{j}\right)$'s divide the p_{i} 's. And similarly for the q_{i} 's. That is, permuting the t_{i} 's must permute the irreducible factors of f (up to units k^{\times} in $k\left[t_{1}, \ldots, t_{n}\right]$) among themselves, and likewise for the irreducible factors of g.

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units, then f and g would be symmetric. However, at this point we can only be confident that they are permuted up to constants.

What we have, then, is that for a permutation π

$$
\pi(f)=\alpha_{\pi} \cdot f
$$

for some $\alpha \in k^{\times}$. For another permutation τ, certainly $\tau(\pi(f))=(\tau \pi) f$. And $\tau\left(\alpha_{\pi} f\right)=\alpha_{\pi} \cdot \tau(f)$, since permutations of the indeterminates have no effect on elements of k. Thus, we have

$$
\alpha_{\tau \pi}=\alpha_{\tau} \cdot \alpha_{\pi}
$$

That is, $\pi \rightarrow \alpha_{\pi}$ is a group homomorphism $S_{n} \rightarrow k^{\times}$.
It is very useful to know that the alternating group A_{n} is the commutator subgroup of S_{n}. Thus, if f is not actually invariant under S_{n}, in any case the group homomorphism $S_{n} \rightarrow k^{\times}$factors through the quotient S_{n} / A_{n}, so is the sign function $\pi \rightarrow \sigma(\pi)$ that is +1 for $\pi \in A_{n}$ and -1 otherwise. That is, f is equivariant under S_{n} by the sign function, in the sense that $\pi f=\sigma(\pi) \cdot f$.

Now we claim that if $\pi f=\sigma(\pi) \cdot f$ then the square root

$$
\delta=\sqrt{\Delta}=\prod_{i<j}\left(t_{i}-t_{j}\right)
$$

of the discriminant Δ divides f. To see this, let $s_{i j}$ be the 2-cycle which interchanges t_{i} and t_{j}, for $i \neq j$. Then

$$
s_{i j} f=-f
$$

Under any homomorphism which sends $t_{i}-t_{j}$ to 0 , since the characteristic is not $2, f$ is sent to 0 . That is, $t_{i}-t_{j}$ divides f in $k\left[t_{1}, \ldots, t_{n}\right]$. By unique factorization, since no two of the monomials $t_{i}-t_{j}$ are associate (for distinct pairs $i<j$), we see that the square root δ of the discriminant must divide f.
That is, for f with $\pi f=\sigma(\pi) \cdot f$ we know that $\delta \mid f$. For f / g to be invariant under S_{n}, it must be that also $\pi g=\sigma(\pi) \cdot g$. But then $\delta \mid g$ also, contradicting the assumed relative primeness. Thus, in fact, it must have been that both f and g were invariant under S_{n}, not merely equivariant by the sign function.

