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[16.1] Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of G of
index p is necessarily normal.

Let G act on cosets gH of H by left multiplication. This gives a homomorphism f of G to the group of
permutations of [G : H] = p things. The kernel ker f certainly lies inside H, since gH = H only for g ∈ H.
Thus, p|[G : ker f ]. On the other hand,

|f(G)| = [G : ker f ] = |G|/| ker f |

and |f(G)| divides the order p! of the symmetric group on p things, by Lagrange. But p is the smallest prime
dividing |G|, so f(G) can only have order 1 or p. Since p divides the order of f(G) and |f(G)| divides p, we
have equality. That is, H is the kernel of f . Every kernel is normal, so H is normal. ///

[16.2] Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Let W be a T -stable
subspace. Prove that the minimal polynomial of T on W is a divisor of the minimal polynomial of T on V .
Define a natural action of T on the quotient V/W , and prove that the minimal polynomial of T on V/W is
a divisor of the minimal polynomial of T on V .

Let f(x) be the minimal polynomial of T on V , and g(x) the minimal polynomial of T on W . (We need the
T -stability of W for this to make sense at all.) Since f(T ) = 0 on V , and since the restriction map

Endk(V )→ Endk(W )

is a ring homomorphism,
(restriction of)f(t) = f(restriction of T )

Thus, f(T ) = 0 on W . That is, by definition of g(x) and the PID-ness of k[x], f(x) is a multiple of g(x), as
desired.

Define T (v + W ) = Tv + W . Since TW ⊂ W , this is well-defined. Note that we cannot assert, and do not
need, an equality TW = W , but only containment. Let h(x) be the minimal polynomial of T (on V/W ).
Any polynomial p(T ) stabilizes W , so gives a well-defined map p(T ) on V/W . Further, since the natural
map

Endk(V )→ Endk(V/W )

is a ring homomorphism, we have

p(T )(v +W ) = p(T )(v) +W = p(T )(v +W ) +W = p(T )(v +W )

Since f(T ) = 0 on V , f(T ) = 0. By definition of minimal polynomial, h(x)|f(x). ///

[16.3] Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Suppose that T is
diagonalizable on V . Let W be a T -stable subspace of V . Show that T is diagonalizable on W .

Since T is diagonalizable, its minimal polynomial f(x) on V factors into linear factors in k[x] (with zeros
exactly the eigenvalues), and no factor is repeated. By the previous example, the minimal polynomial g(x)
of T on W divides f(x), so (by unique factorization in k[x]) factors into linear factors without repeats. And
this implies that T is diagonalizable when restricted to W . ///

[16.4] Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Suppose that T is
diagonalizable on V , with distinct eigenvalues. Let S ∈ Homk(V ) commute with T , in the natural sense that
ST = TS. Show that S is diagonalizable on V .

The hypothesis of distinct eigenvalues means that each eigenspace is one-dimensional. We have seen
that commuting operators stabilize each other’s eigenspaces. Thus, S stabilizes each one-dimensional λ-
eigenspaces Vλ for T . By the one-dimensionality of Vλ, S is a scalar µλ on Vλ. That is, the basis of
eigenvectors for T is unavoidably a basis of eigenvectors for S, too, so S is diagonalizable. ///
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[16.5] Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Suppose that T is
diagonalizable on V . Show that k[T ] contains the projectors to the eigenspaces of T .

Though it is only implicit, we only want projectors P which commute with T .

Since T is diagonalizable, its minimal polynomial f(x) factors into linear factors and has no repeated factors.
For each eigenvalue λ, let fλ(x) = f(x)/(x− λ). The hypothesis that no factor is repeated implies that the
gcd of all these fλ(x) is 1, so there are polynomials aλ(x) in k[x] such that

1 =
∑
λ

aλ(x) fλ(x)

For µ 6= λ, the product fλ(x)fµ(x) picks up all the linear factors in f(x), so

fλ(T )fµ(T ) = 0

Then for each eigenvalue µ

(aµ(T ) fµ(T ))2 = (aµ(T ) fµ(T )) (1−
∑
λ6=µ

aλ(T ) fλ(T )) = (aµ(T ) fµ(T ))

Thus, Pµ = aµ(T ) fµ(T ) has P 2
µ = Pµ. Since fλ(T )fµ(T ) = 0 for λ 6= µ, we have PµPλ = 0 for λ 6= µ. Thus,

these are projectors to the eigenspaces of T , and, being polynomials in T , commute with T .

For uniqueness, observe that the diagonalizability of T implies that V is the sum of the λ-eigenspaces Vλ
of T . We know that any endomorphism (such as a projector) commuting with T stabilizes the eigenspaces
of T . Thus, given an eigenvalue λ of T , an endomorphism P commuting with T and such that P (V ) = Vλ
must be 0 on T -eigenspaces Vµ with µ 6= λ, since

P (Vµ) ⊂ Vµ ∩ Vλ = 0

And when restricted to Vλ the operator P is required to be the identity. Since V is the sum of the eigenspaces
and P is determined completely on each one, there is only one such P (for each λ). ///

[16.6] Let V be a complex vector space with a (positive definite) inner product. Show that T ∈ Homk(V )
cannot be a normal operator if it has any non-trivial Jordan block.

The spectral theorem for normal operators asserts, among other things, that normal operators are
diagonalizable, in the sense that there is a basis of eigenvectors. We know that this implies that the minimal
polynomial has no repeated factors. Presence of a non-trivial Jordan block exactly means that the minimal
polynomial does have a repeated factor, so this cannot happen for normal operators. ///

[16.7] Show that a positive-definite hermitian n-by-n matrix A has a unique positive-definite square root
B (that is, B2 = A).

Even though the question explicitly mentions matrices, it is just as easy to discuss endomorphisms of the
vector space V = Cn.

By the spectral theorem, A is diagonalizable, so V = Cn is the sum of the eigenspaces Vλ of A. By hermitian-
ness these eigenspaces are mutually orthogonal. By positive-definiteness A has positive real eigenvalues λ,
which therefore have real square roots. Define B on each orthogonal summand Vλ to be the scalar

√
λ.

Since these eigenspaces are mutually orthogonal, the operator B so defined really is hermitian, as we now
verify. Let v =

∑
λ vλ and w =

∑
µ wµ be orthogonal decompositions of two vectors into eigenvectors vλ

with eigenvalues λ and wµ with eigenvalues µ. Then, using the orthogonality of eigenvectors with distinct
eigenvalues,

〈Bv,w〉 = 〈B
∑
λ

vλ,
∑
µ

wµ〉 = 〈
∑
λ

λvλ,
∑
µ

wµ〉 =
∑
λ

λ〈vλ, wλ〉
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=
∑
λ

〈vλ, λwλ〉 = 〈
∑
µ

vµ,
∑
λ

λwλ〉 = 〈v,Bw〉

Uniqueness is slightly subtler. Since we do not know a priori that two positive-definite square roots B and
C of A commute, we cannot immediately say that B2 = C2 gives (B + C)(B − C) = 0, etc. If we could do
that, then since B and C are both positive-definite, we could say

〈(B + C)v, v〉 = 〈Bv, v〉+ 〈Cv, v〉 > 0

so B + C is positive-definite and, hence invertible. Thus, B − C = 0. But we cannot directly do this. We
must be more circumspect.

Let B be a positive-definite square root of A. Then B commutes with A. Thus, B stabilizes each eigenspace
of A. Since B is diagonalizable on V , it is diagonalizable on each eigenspace of A (from an earlier example).
Thus, since all eigenvalues of B are positive, and B2 = λ on the λ-eigenspace Vλ of A, it must be that B is
the scalar

√
λ on Vλ. That is, B is uniquely determined. ///

[16.8] Given a square n-by-n complex matrix M , show that there are unitary matrices A and B such that
AMB is diagonal.

We prove this for not-necessarily square M , with the unitary matrices of appropriate sizes.

This asserted expression
M = unitary · diagonal · unitary

is called a Cartan decomposition of M .

First, if M is (square) invertible, then T = MM∗ is self-adjoint and invertible. From an earlier example, the
spectral theorem implies that there is a self-adjoint (necessarily invertible) square root S of T . Then

1 = S−1TS−1 = (S−1M)(−1SM)∗

so k1 = S−1M is unitary. Let k2 be unitary such that D = k2Sk
∗
2 is diagonal, by the spectral theorem.

Then
M = Sk1 = (k2Dk

∗
2)k1 = k2 ·D · (k∗2k1)

expresses M as
M = unitary · diagonal · unitary

as desired.

In the case of m-by-n (not necessarily invertible) M , we want to reduce to the invertible case by showing
that there are m-by-m unitary A1 and n-by-n unitary B1 such that

A1MB1 =
(
M ′ 0
0 0

)
where M ′ is square and invertible. That is, we can (in effect) do column and row reduction with unitary
matrices.

Nearly half of the issue is showing that by left (or right) multiplication by a suitable unitary matrix A an
arbitrary matrix M may be put in the form

AM =
(
M11 M12

0 0

)
with 0’s below the rth row, where the column space of M has dimension r. To this end, let f1, . . . , fr be
an orthonormal basis for the column space of M , and extend it to an orthonormal basis f1, . . . , fm for the
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whole Cm. Let e1, . . . , em be the standard orthonormal basis for Cm. Let A be the linear endomorphism
of Cm defined by Afi = ei for all indices i. We claim that this A is unitary, and has the desired effect on
M . That is has the desired effect on M is by design, since any column of the original M will be mapped
by A to the span of e1, . . . , er, so will have all 0’s below the rth row. A linear endomorphism is determined
exactly by where it sends a basis, so all that needs to be checked is the unitariness, which will result from
the orthonormality of the bases, as follows. For v =

∑
i aifi and w =

∑
i bifi,

〈Av,Aw〉 = 〈
∑
i

aiAfi,
∑
j

bj Afj〉 = 〈
∑
i

ai ei,
∑
j

bj ej〉 =
∑
i

aibi

by orthonormality. And, similarly,∑
i

aibi = 〈
∑
i

ai fi,
∑
j

bj fj〉 = 〈v, w〉

Thus, 〈Av,Aw〉 = 〈v, w〉. To be completely scrupulous, we want to see that the latter condition implies
that A∗A = 1. We have 〈A∗Av,w〉 = 〈v, w〉 for all v and w. If A∗A 6= 1, then for some v we would have
A∗Av 6= v, and for that v take w = (A∗A− 1)v, so

〈(A∗A− 1)v, w〉 = 〈(A∗A− 1)v, (A∗A− 1)v〉 > 0

contradiction. That is, A is certainly unitary.

If we had had the foresight to prove that row rank is always equal to column rank, then we would know
that a combination of the previous left multiplication by unitary and a corresponding right multiplication
by unitary would leave us with (

M ′ 0
0 0

)
with M ′ square and invertible, as desired. ///

[16.9] Given a square n-by-n complex matrix M , show that there is a unitary matrix A such that AM is
upper triangular.

Let {ei} be the standard basis for Cn. To say that a matrix is upper triangular is to assert that (with left
multiplication of column vectors) each of the maximal family of nested subspaces (called a maximal flag)

V0 = 0 ⊂ V1 = Ce1 ⊂ Ce1 +Ce2 ⊂ . . . ⊂ Ce1 + . . .+Cen−1 ⊂ Vn = Cn

is stabilized by the matrix. Of course

MV0 ⊂MV1 ⊂MV2 ⊂ . . . ⊂MVn−1 ⊂ Vn

is another maximal flag. Let fi+1 be a unit-length vector in the orthogonal complement to MVi inside
MVi+1 Thus, these fi are an orthonormal basis for V , and, in fact, f1, . . . , ft is an orthonormal basis for
MVt. Then let A be the unitary endomorphism such that Afi = ei. (In an earlier example and in class we
checked that, indeed, a linear map which sends one orthonormal basis to another is unitary.) Then

AMVi = Vi

so AM is upper-triangular. ///

[16.10] Let Z be an m-by-n complex matrix. Let Z∗ be its conjugate-transpose. Show that

det(1m − ZZ∗) = det(1n − Z∗Z)
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Write Z in the (rectangular) Cartan decomposition

Z = ADB

with A and B unitary and D is m-by-n of the form

D =



d1

d2

. . .
dr

0
. . .


where the diagonal di are the only non-zero entries. We grant ourselves that det(xy) = det(x) · det(y) for
square matrices x, y of the same size. Then

det(1m − ZZ∗) = det(1m −ADBB∗D∗A∗) = det(1m −ADD∗A∗) = det(A · (1m −DD∗) ·A∗)

= det(AA∗) · det(1m −DD∗) = det(1m −DD∗) =
∏
i

(1− didi)

Similarly,

det(1n − Z∗Z) = det(1n −B∗D∗A∗ADB) = det(1n −B∗D∗DB) = det(B∗ · (1n −D∗D) ·B)

= det(B∗B) · det(1n −D∗D) = det(1n −D∗D) =
∏
i

(1− didi)

which is the same as the first computation. ///

5


