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[18.1] Let k be a field, and V a finite-dimensional k vectorspace. Let Λ be a subset of the dual space V ∗,
with |Λ| < dimV . Show that the homogeneous system of equations

λ(v) = 0 (for all λ ∈ Λ)

has a non-trivial (that is, non-zero) solution v ∈ V (meeting all these conditions).

The dimension of the span W of Λ is strictly less than dimV ∗, which we’ve proven is dimV ∗ = dimV . We
may also identify V ≈ V ∗∗ via the natural isomorphism. With that identification, we may say that the set
of solutions is W⊥, and

dim(W⊥) + dimW = dimV ∗ = dimV

Thus, dimW⊥ > 0, so there are non-zero solutions. ///

[18.2] Let k be a field, and V a finite-dimensional k vectorspace. Let Λ be a linearly independent subset of
the dual space V ∗. Let λ→ aλ be a set map Λ→ k. Show that an inhomogeneous system of equations

λ(v) = aλ (for all λ ∈ Λ)

has a solution v ∈ V (meeting all these conditions).

Let m = |Λ|, Λ = {λ1, . . . , λm}. One way to use the linear independence of the functionals in Λ is to extend
Λ to a basis λ1, . . . , λn for V ∗, and let e1, . . . , en ∈ V ∗∗ be the corresponding dual basis for V ∗∗. Then let
v1, . . . , vn be the images of the ei in V under the natural isomorphism V ∗∗ ≈ V . (This achieves the effect
of making the λi be a dual basis to the vi. We had only literally proven that one can go from a basis of a
vector space to a dual basis of its dual, and not the reverse.) Then

v =
∑

1≤i≤m

aλi
· vi

is a solution to the indicated set of equations, since

λj(v) =
∑

1≤i≤m

aλi
· λj(vi) = aλj

for all indices j ≤ m. ///

[18.3] Let T be a k-linear endomorphism of a finite-dimensional k-vectorspace V . For an eigenvalue λ of
T , let Vλ be the generalized λ-eigenspace

Vλ = {v ∈ V : (T − λ)nv = 0 for some 1 ≤ n ∈ Z}

Show that the projector P of V to Vλ (commuting with T ) lies inside k[T ].

First we do this assuming that the minimal polynomial of T factors into linear factors in k[x].

Let f(x) be the minimal polynomial of T , and let fλ(x) = f(x)/(x−λ)e where (x−λ)e is the precise power
of (x− λ) dividing f(x). Then the collection of all fλ(x)’s has gcd 1, so there are aλ(x) ∈ k[x] such that

1 =
∑
λ

aλ(x) fλ(x)

We claim that Eλ = aλ(T )fλ(T ) is a projector to the generalized λ-eigenspace Vλ. Indeed, for v ∈ Vλ,

v = 1V · v =
∑
µ

aµ(T )fµ(T ) · v =
∑
µ

aµ(T )fµ(T ) · v = aλ(T )fλ(T ) · v
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since (x− λ)e divides fµ(x) for µ 6= λ, and (T − λ)ev = 0. That is, it acts as the identity on Vλ. And

(T − λ)e ◦ Eλ = aλ(T ) f(T ) = 0 ∈ Endk(V )

so the image of Eλ is inside Vλ. Since Eλ is the identity on Vλ, it must be that the image of Eλ is exactly
Vλ. For µ 6= λ, since f(x)|fµ(x)fλ(x), EµEλ = 0, so these idempotents are mutually orthogonal. Then

(aλ(T )fλ(T ))2 = (aλ(T )fλ(T )) · (1−
∑
µ6=λ

aµ(T )fµ(T )) = aλ(T )fλ(T )− 0

That is, E2
λ = Eλ, so Eλ is a projector to Vλ.

The mutual orthogonality of the idempotents will yield the fact that V is the direct sum of all the generalized
eigenspaces of T . Indeed, for any v ∈ V ,

v = 1 · v = (
∑
λ

Eλ) v =
∑
λ

(Eλv)

and Eλv ∈ Vλ. Thus, ∑
λ

Vλ = V

To check that the sum is (unsurprisingly) direct, let vλ ∈ Vλ, and suppose∑
λ

vλ = 0

Then vλ = Eλvλ, for all λ. Then apply Eµ and invoke the orthogonality of the idempotents to obtain

vµ = 0

This proves the linear independence, and that the sum is direct.

To prove uniqueness of a projector E to Vλ commuting with T , note that any operator S commuting with
T necessarily stabilizes all the generalized eigenspaces of T , since for v ∈ Vµ

(T − λ)e Sv = S (T − λ)ev = S · 0 = 0

Thus, E stabilizes all the Vµs. Since V is the direct sum of the Vµ and E maps V to Vλ, it must be that E
is 0 on Vµ for µ 6= λ. Thus,

E = 1 · Eλ +
∑
µ6=λ

0 · Eµ = Eλ

That is, there is just one projector to Vλ that also commutes with T . This finishes things under the
assumption that f(x) factors into linear factors in k[x].

The more general situation is similar. More generally, for a monic irreducible P (x) in k[x] dividing f(x),
with P (x)e the precise power of P (x) dividing f(x), let

fP (x) = f(x)/P (x)e

Then these fP have gcd 1, so there are aP (x) in k[x] such that

1 =
∑
P

aP (x) · fP (x)
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Let EP = aP (T )fP (T ). Since f(x) divides fP (x) · fQ(x) for distinct irreducibles P,Q, we have EP ◦EQ = 0
for P 6= Q. And

E2
P = EP (1−

∑
Q 6=P

EQ) = EP

so (as in the simpler version) the EP ’s are mutually orthogonal idempotents. And, similarly, V is the direct
sum of the subspaces

VP = EP · V

We can also characterize VP as the kernel of P e(T ) on V , where P e(x) is the power of P (x) dividing f(x).
If P (x) = (x− λ), then VP is the generalized λ-eigenspace, and EP is the projector to it.

If E were another projector to Vλ commuting with T , then E stabilizes VP for all irreducibles P dividing
the minimal polynomial f of T , and E is 0 on VQ for Q 6= (x− λ), and E is 1 on Vλ. That is,

E = 1 · Ex−λ +
∑

Q 6=x−λ

0 · EQ = EP

This proves the uniqueness even in general. ///

[18.4] Let T be a matrix in Jordan normal form with entries in a field k. Let Tss be the matrix obtained
by converting all the off-diagonal 1’s to 0’s, making T diagonal. Show that Tss is in k[T ].

This implicitly demands that the minimal polynomial of T factors into linear factors in k[x].

Continuing as in the previous example, let Eλ ∈ k[T ] be the projector to the generalized λ-eigenspace Vλ,
and keep in mind that we have shown that V is the direct sum of the generalized eigenspaces, equivalent,
that

∑
λEλ = 1. By definition, the operator Tss is the scalar operator λ on Vλ. Then

Tss =
∑
λ

λ · Eλ ∈ k[T ]

since (from the previous example) each Eλ is in k[T ]. ///

[18.5] Let M =
(
A B
0 D

)
be a matrix in a block decomposition, where A is m-by-m and D is n-by-n.

Show that
detM = detA · detD

One way to prove this is to use the formula for the determinant of an N -by-N matrix

detC =
∑
π∈SN

σ(π) aπ(1),1 . . . aπ(N),N

where cij is the (i, j)th entry of C, π is summed over the symmetric group SN , and σ is the sign
homomorphism. Applying this to the matrix M ,

detM =
∑

π∈Sm+n

σ(π)Mπ(1),1 . . .Mπ(m+n),m+n

where Mij is the (i, j)th entry. Since the entries Mij with 1 ≤ j ≤ m and m < i ≤ m+n are all 0, we should
only sum over π with the property that

π(j) ≤ m for 1 ≤ j ≤ m
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That is, π stabilizes the subset {1, . . . ,m} of the indexing set. Since π is a bijection of the index set,
necessarily such π stabilizes {m+ 1,m+ 2, . . . ,m+ n}, also. Conversely, each pair (π1, π2) of permutation
π1 of the first m indices and π2 of the last n indices gives a permutation of the whole set of indices.

Let X be the set of the permutations π ∈ Sm+n that stabilize {1, . . . ,m}. For each π ∈ X, let π1 be the
restriction of π to {1, . . . ,m}, and let π2 be the restriction to {m + 1, . . . ,m + n}. And, in fact, if we plan
to index the entries of the block D in the usual way, we’d better be able to think of π2 as a permutation of
{1, . . . , n}, also. Note that σ(π) = σ(π1)σ(π2). Then

detM =
∑
π∈X

σ(π)Mπ(1),1 . . .Mπ(m+n),m+n

=
∑
π∈X

σ(π) (Mπ(1),1 . . .Mπ(m),m) · (Mπ(m+1),m+1 . . .Mπ(m+n),m+n)

=

( ∑
π1∈Sm

σ(π1)Mπ1(1),1 . . .Mπ1(m),m

)
·

( ∑
π2∈Sn

σ(π2)(Mπ2(m+1),m+1 . . .Mπ2(m+n),m+n

)

=

( ∑
π1∈Sm

σ(π1)Aπ1(1),1 . . . Aπ1(m),m

)
·

( ∑
π2∈Sn

σ(π2)Dπ2(1),1 . . . Dπ2(n),n

)
= detA · detD

where in the last part we have mapped {m+ 1, . . . ,m+ n} bijectively by `→ `−m. ///

[18.6] The so-called Kronecker product [1] of an m-by-m matrix A and an n-by-n matrix B is

A⊗B =


A11 ·B A12 ·B . . . A1m ·B
A21 ·B A22 ·B . . . A2m ·B

...
Am1 ·B Am2 ·B . . . Amm ·B


where, as it may appear, the matrix B is inserted as n-by-n blocks, multiplied by the respective entries Aij
of A. Prove that

det(A⊗B) = (detA)n · (detB)m

at least for m = n = 2.

If no entry of the first row of A is non-zero, then both sides of the desired equality are 0, and we’re done. So
suppose some entry A1i of the first row of A is non-zero. If i 6= 1, then for ` = 1, . . . , n interchange the `th

and (i − 1)n + `th columns of A ⊗ B, thus multiplying the determinant by (−1)n. This is compatible with
the formula, so we’ll assume that A11 6= 0 to do an induction on m.

We will manipulate n-by-n blocks of scalar multiples of B rather than actual scalars.

Thus, assuming that A11 6= 0, we want to subtract multiples of the left column of n-by-n blocks from the
blocks further to the right, to make the top n-by-n blocks all 0 (apart from the leftmost block, A11B). In
terms of manipulations of columns, for ` = 1, . . . , n and j = 2, 3, . . . ,m subtract A1j/A11 times the `th

column of A ⊗ B from the ((j − 1)n + `)th. Since for 1 ≤ ` ≤ n the `th column of A ⊗ B is A11 times the
`th column of B, and the ((j − 1)n + `)th column of A ⊗ B is A1j times the `th column of B, this has the
desired effect of killing off the n-by-n blocks along the top of A⊗B except for the leftmost block. And the
(i, j)th n-by-n block of A⊗B has become (Aij −A1jAi1/A11) ·B. Let

A′ij = Aij −A1jAi1/A11

[1] As we will see shortly, this is really a tensor product, and we will treat this question more sensibly.
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and let D be the (m− 1)-by-(m− 1) matrix with (i, j)th entry Dij = A′(i−1),(j−1). Thus, the manipulation
so far gives

det(A⊗B) = det
(
A11B 0
∗ D ⊗B

)
By the previous example (or its tranpose)

det
(
A11B 0
∗ D ⊗B

)
= det(A11B) · det(D ⊗B) = An11 detB · det(D ⊗B)

by the multilinearity of det.

And, at the same time subtracting A1j/A11 times the first column of A from the jth column of A for
2 ≤ j ≤ m does not change the determinant, and the new matrix is(

A11 0
∗ D

)
Also by the previous example,

detA = det
(
A11 0
∗ D

)
= A11 · detD

Thus, putting the two computations together,

det(A⊗B) = An11 detB · det(D ⊗B) = An11 detB · (detD)n(detB)m−1

= (A11 detD)n detB · (detB)m−1 = (detA)n(detB)m

as claimed.

Another approach to this is to observe that, in these terms, A⊗B is

A11 0 . . . 0
0 A11
...

. . .
0 A11

. . .

A1m 0 . . . 0
0 A1m
...

. . .
0 A1m

...
...

Am1 0 . . . 0
0 Am1
...

. . .
0 Am1

. . .

Amm 0 . . . 0
0 Amm
...

. . .
0 Amm




B 0 . . . 0
0 B
...

. . .
0 B



where there are m copies of B on the diagonal. By suitable permutations of rows and columns (with an
interchange of rows for each interchange of columns, thus giving no net change of sign), the matrix containing
the Aijs becomes 

A 0 . . . 0
0 A
...

. . .
0 A


with n copies of A on the diagonal. Thus,

det(A⊗B) = det


A 0 . . . 0
0 A
...

. . .
0 A

 · det


B 0 . . . 0
0 B
...

. . .
0 B

 = (detA)n · (detB)m

This might be more attractive than the first argument, depending on one’s tastes. ///

5


