[18.1] Let k be a field, and V a finite-dimensional k vectorspace. Let Λ be a subset of the dual space V^{*}, with $|\Lambda|<\operatorname{dim} V$. Show that the homogeneous system of equations

$$
\lambda(v)=0(\text { for all } \lambda \in \Lambda)
$$

has a non-trivial (that is, non-zero) solution $v \in V$ (meeting all these conditions).
The dimension of the span W of Λ is strictly less than $\operatorname{dim} V^{*}$, which we've proven is $\operatorname{dim} V^{*}=\operatorname{dim} V$. We may also identify $V \approx V^{* *}$ via the natural isomorphism. With that identification, we may say that the set of solutions is W^{\perp}, and

$$
\operatorname{dim}\left(W^{\perp}\right)+\operatorname{dim} W=\operatorname{dim} V^{*}=\operatorname{dim} V
$$

Thus, $\operatorname{dim} W^{\perp}>0$, so there are non-zero solutions.
[18.2] Let k be a field, and V a finite-dimensional k vectorspace. Let Λ be a linearly independent subset of the dual space V^{*}. Let $\lambda \rightarrow a_{\lambda}$ be a set map $\Lambda \rightarrow k$. Show that an inhomogeneous system of equations

$$
\lambda(v)=a_{\lambda} \quad(\text { for all } \lambda \in \Lambda)
$$

has a solution $v \in V$ (meeting all these conditions).
Let $m=|\Lambda|, \Lambda=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. One way to use the linear independence of the functionals in Λ is to extend Λ to a basis $\lambda_{1}, \ldots, \lambda_{n}$ for V^{*}, and let $e_{1}, \ldots, e_{n} \in V^{* *}$ be the corresponding dual basis for $V^{* *}$. Then let v_{1}, \ldots, v_{n} be the images of the e_{i} in V under the natural isomorphism $V^{* *} \approx V$. (This achieves the effect of making the λ_{i} be a dual basis to the v_{i}. We had only literally proven that one can go from a basis of a vector space to a dual basis of its dual, and not the reverse.) Then

$$
v=\sum_{1 \leq i \leq m} a_{\lambda_{i}} \cdot v_{i}
$$

is a solution to the indicated set of equations, since

$$
\lambda_{j}(v)=\sum_{1 \leq i \leq m} a_{\lambda_{i}} \cdot \lambda_{j}\left(v_{i}\right)=a_{\lambda_{j}}
$$

for all indices $j \leq m$.
[18.3] Let T be a k-linear endomorphism of a finite-dimensional k-vectorspace V. For an eigenvalue λ of T, let V_{λ} be the generalized λ-eigenspace

$$
V_{\lambda}=\left\{v \in V:(T-\lambda)^{n} v=0 \text { for some } 1 \leq n \in \mathbb{Z}\right\}
$$

Show that the projector P of V to V_{λ} (commuting with T) lies inside $k[T]$.
First we do this assuming that the minimal polynomial of T factors into linear factors in $k[x]$.
Let $f(x)$ be the minimal polynomial of T, and let $f_{\lambda}(x)=f(x) /(x-\lambda)^{e}$ where $(x-\lambda)^{e}$ is the precise power of $(x-\lambda)$ dividing $f(x)$. Then the collection of all $f_{\lambda}(x)$'s has $g c d 1$, so there are $a_{\lambda}(x) \in k[x]$ such that

$$
1=\sum_{\lambda} a_{\lambda}(x) f_{\lambda}(x)
$$

We claim that $E_{\lambda}=a_{\lambda}(T) f_{\lambda}(T)$ is a projector to the generalized λ-eigenspace V_{λ}. Indeed, for $v \in V_{\lambda}$,

$$
v=1_{V} \cdot v=\sum_{\mu} a_{\mu}(T) f_{\mu}(T) \cdot v=\sum_{\mu} a_{\mu}(T) f_{\mu}(T) \cdot v=a_{\lambda}(T) f_{\lambda}(T) \cdot v
$$

since $(x-\lambda)^{e}$ divides $f_{\mu}(x)$ for $\mu \neq \lambda$, and $(T-\lambda)^{e} v=0$. That is, it acts as the identity on V_{λ}. And

$$
(T-\lambda)^{e} \circ E_{\lambda}=a_{\lambda}(T) f(T)=0 \in \operatorname{End}_{k}(V)
$$

so the image of E_{λ} is inside V_{λ}. Since E_{λ} is the identity on V_{λ}, it must be that the image of E_{λ} is exactly V_{λ}. For $\mu \neq \lambda$, since $f(x) \mid f_{\mu}(x) f_{\lambda}(x), E_{\mu} E_{\lambda}=0$, so these idempotents are mutually orthogonal. Then

$$
\left(a_{\lambda}(T) f_{\lambda}(T)\right)^{2}=\left(a_{\lambda}(T) f_{\lambda}(T)\right) \cdot\left(1-\sum_{\mu \neq \lambda} a_{\mu}(T) f_{\mu}(T)\right)=a_{\lambda}(T) f_{\lambda}(T)-0
$$

That is, $E_{\lambda}^{2}=E_{\lambda}$, so E_{λ} is a projector to V_{λ}.
The mutual orthogonality of the idempotents will yield the fact that V is the direct sum of all the generalized eigenspaces of T. Indeed, for any $v \in V$,

$$
v=1 \cdot v=\left(\sum_{\lambda} E_{\lambda}\right) v=\sum_{\lambda}\left(E_{\lambda} v\right)
$$

and $E_{\lambda} v \in V_{\lambda}$. Thus,

$$
\sum_{\lambda} V_{\lambda}=V
$$

To check that the sum is (unsurprisingly) direct, let $v_{\lambda} \in V_{\lambda}$, and suppose

$$
\sum_{\lambda} v_{\lambda}=0
$$

Then $v_{\lambda}=E_{\lambda} v_{\lambda}$, for all λ. Then apply E_{μ} and invoke the orthogonality of the idempotents to obtain

$$
v_{\mu}=0
$$

This proves the linear independence, and that the sum is direct.
To prove uniqueness of a projector E to V_{λ} commuting with T, note that any operator S commuting with T necessarily stabilizes all the generalized eigenspaces of T, since for $v \in V_{\mu}$

$$
(T-\lambda)^{e} S v=S(T-\lambda)^{e} v=S \cdot 0=0
$$

Thus, E stabilizes all the V_{μ} s. Since V is the direct sum of the V_{μ} and E maps V to V_{λ}, it must be that E is 0 on V_{μ} for $\mu \neq \lambda$. Thus,

$$
E=1 \cdot E_{\lambda}+\sum_{\mu \neq \lambda} 0 \cdot E_{\mu}=E_{\lambda}
$$

That is, there is just one projector to V_{λ} that also commutes with T. This finishes things under the assumption that $f(x)$ factors into linear factors in $k[x]$.
The more general situation is similar. More generally, for a monic irreducible $P(x)$ in $k[x]$ dividing $f(x)$, with $P(x)^{e}$ the precise power of $P(x)$ dividing $f(x)$, let

$$
f_{P}(x)=f(x) / P(x)^{e}
$$

Then these f_{P} have $g c d 1$, so there are $a_{P}(x)$ in $k[x]$ such that

$$
1=\sum_{P} a_{P}(x) \cdot f_{P}(x)
$$

Let $E_{P}=a_{P}(T) f_{P}(T)$. Since $f(x)$ divides $f_{P}(x) \cdot f_{Q}(x)$ for distinct irreducibles P, Q, we have $E_{P} \circ E_{Q}=0$ for $P \neq Q$. And

$$
E_{P}^{2}=E_{P}\left(1-\sum_{Q \neq P} E_{Q}\right)=E_{P}
$$

so (as in the simpler version) the E_{P} 's are mutually orthogonal idempotents. And, similarly, V is the direct sum of the subspaces

$$
V_{P}=E_{P} \cdot V
$$

We can also characterize V_{P} as the kernel of $P^{e}(T)$ on V, where $P^{e}(x)$ is the power of $P(x)$ dividing $f(x)$. If $P(x)=(x-\lambda)$, then V_{P} is the generalized λ-eigenspace, and E_{P} is the projector to it.

If E were another projector to V_{λ} commuting with T, then E stabilizes V_{P} for all irreducibles P dividing the minimal polynomial f of T, and E is 0 on V_{Q} for $Q \neq(x-\lambda)$, and E is 1 on V_{λ}. That is,

$$
E=1 \cdot E_{x-\lambda}+\sum_{Q \neq x-\lambda} 0 \cdot E_{Q}=E_{P}
$$

This proves the uniqueness even in general.
[18.4] Let T be a matrix in Jordan normal form with entries in a field k. Let $T_{s s}$ be the matrix obtained by converting all the off-diagonal 1's to 0's, making T diagonal. Show that $T_{s s}$ is in $k[T]$.

This implicitly demands that the minimal polynomial of T factors into linear factors in $k[x]$.
Continuing as in the previous example, let $E_{\lambda} \in k[T]$ be the projector to the generalized λ-eigenspace V_{λ}, and keep in mind that we have shown that V is the direct sum of the generalized eigenspaces, equivalent, that $\sum_{\lambda} E_{\lambda}=1$. By definition, the operator $T_{s s}$ is the scalar operator λ on V_{λ}. Then

$$
T_{s s}=\sum_{\lambda} \lambda \cdot E_{\lambda} \in k[T]
$$

since (from the previous example) each E_{λ} is in $k[T]$.
[18.5] Let $M=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)$ be a matrix in a block decomposition, where A is m-by- m and D is n-by- n. Show that

$$
\operatorname{det} M=\operatorname{det} A \cdot \operatorname{det} D
$$

One way to prove this is to use the formula for the determinant of an N-by- N matrix

$$
\operatorname{det} C=\sum_{\pi \in S_{N}} \sigma(\pi) a_{\pi(1), 1} \ldots a_{\pi(N), N}
$$

where $c_{i j}$ is the $(i, j)^{t h}$ entry of C, π is summed over the symmetric group S_{N}, and σ is the sign homomorphism. Applying this to the matrix M,

$$
\operatorname{det} M=\sum_{\pi \in S_{m+n}} \sigma(\pi) M_{\pi(1), 1} \ldots M_{\pi(m+n), m+n}
$$

where $M_{i j}$ is the $(i, j)^{t h}$ entry. Since the entries $M_{i j}$ with $1 \leq j \leq m$ and $m<i \leq m+n$ are all 0 , we should only sum over π with the property that

$$
\pi(j) \leq m \quad \text { for } \quad 1 \leq j \leq m
$$

That is, π stabilizes the subset $\{1, \ldots, m\}$ of the indexing set. Since π is a bijection of the index set, necessarily such π stabilizes $\{m+1, m+2, \ldots, m+n\}$, also. Conversely, each pair $\left(\pi_{1}, \pi_{2}\right)$ of permutation π_{1} of the first m indices and π_{2} of the last n indices gives a permutation of the whole set of indices.

Let X be the set of the permutations $\pi \in S_{m+n}$ that stabilize $\{1, \ldots, m\}$. For each $\pi \in X$, let π_{1} be the restriction of π to $\{1, \ldots, m\}$, and let π_{2} be the restriction to $\{m+1, \ldots, m+n\}$. And, in fact, if we plan to index the entries of the block D in the usual way, we'd better be able to think of π_{2} as a permutation of $\{1, \ldots, n\}$, also. Note that $\sigma(\pi)=\sigma\left(\pi_{1}\right) \sigma\left(\pi_{2}\right)$. Then

$$
\begin{gathered}
\operatorname{det} M=\sum_{\pi \in X} \sigma(\pi) M_{\pi(1), 1} \ldots M_{\pi(m+n), m+n} \\
=\sum_{\pi \in X} \sigma(\pi)\left(M_{\pi(1), 1} \ldots M_{\pi(m), m}\right) \cdot\left(M_{\pi(m+1), m+1} \ldots M_{\pi(m+n), m+n}\right) \\
=\left(\sum_{\pi_{1} \in S_{m}} \sigma\left(\pi_{1}\right) M_{\pi_{1}(1), 1} \ldots M_{\pi_{1}(m), m}\right) \cdot\left(\sum_{\pi_{2} \in S_{n}} \sigma\left(\pi_{2}\right)\left(M_{\pi_{2}(m+1), m+1} \ldots M_{\pi_{2}(m+n), m+n}\right)\right. \\
=\left(\sum_{\pi_{1} \in S_{m}} \sigma\left(\pi_{1}\right) A_{\pi_{1}(1), 1} \ldots A_{\pi_{1}(m), m}\right) \cdot\left(\sum_{\pi_{2} \in S_{n}} \sigma\left(\pi_{2}\right) D_{\pi_{2}(1), 1} \ldots D_{\pi_{2}(n), n}\right)=\operatorname{det} A \cdot \operatorname{det} D
\end{gathered}
$$

where in the last part we have mapped $\{m+1, \ldots, m+n\}$ bijectively by $\ell \rightarrow \ell-m$.
[18.6] The so-called Kronecker product ${ }^{[1]}$ of an m-by- m matrix A and an n-by- n matrix B is

$$
A \otimes B=\left(\begin{array}{cccc}
A_{11} \cdot B & A_{12} \cdot B & \ldots & A_{1 m} \cdot B \\
A_{21} \cdot B & A_{22} \cdot B & \ldots & A_{2 m} \cdot B \\
& \vdots & & \\
A_{m 1} \cdot B & A_{m 2} \cdot B & \ldots & A_{m m} \cdot B
\end{array}\right)
$$

where, as it may appear, the matrix B is inserted as n-by- n blocks, multiplied by the respective entries $A_{i j}$ of A. Prove that

$$
\operatorname{det}(A \otimes B)=(\operatorname{det} A)^{n} \cdot(\operatorname{det} B)^{m}
$$

at least for $m=n=2$.
If no entry of the first row of A is non-zero, then both sides of the desired equality are 0 , and we're done. So suppose some entry $A_{1 i}$ of the first row of A is non-zero. If $i \neq 1$, then for $\ell=1, \ldots, n$ interchange the $\ell^{t h}$ and $(i-1) n+\ell^{t h}$ columns of $A \otimes B$, thus multiplying the determinant by $(-1)^{n}$. This is compatible with the formula, so we'll assume that $A_{11} \neq 0$ to do an induction on m.

We will manipulate n-by- n blocks of scalar multiples of B rather than actual scalars.
Thus, assuming that $A_{11} \neq 0$, we want to subtract multiples of the left column of n-by- n blocks from the blocks further to the right, to make the top n-by- n blocks all 0 (apart from the leftmost block, $A_{11} B$). In terms of manipulations of columns, for $\ell=1, \ldots, n$ and $j=2,3, \ldots, m$ subtract $A_{1 j} / A_{11}$ times the $\ell^{t h}$ column of $A \otimes B$ from the $((j-1) n+\ell)^{t h}$. Since for $1 \leq \ell \leq n$ the $\ell^{t h}$ column of $A \otimes B$ is A_{11} times the $\ell^{t h}$ column of B, and the $((j-1) n+\ell)^{t h}$ column of $A \otimes B$ is $A_{1 j}$ times the $\ell^{t h}$ column of B, this has the desired effect of killing off the n-by- n blocks along the top of $A \otimes B$ except for the leftmost block. And the $(i, j)^{t h} n$-by- n block of $A \otimes B$ has become $\left(A_{i j}-A_{1 j} A_{i 1} / A_{11}\right) \cdot B$. Let

$$
A_{i j}^{\prime}=A_{i j}-A_{1 j} A_{i 1} / A_{11}
$$

[1] As we will see shortly, this is really a tensor product, and we will treat this question more sensibly.
and let D be the $(m-1)$-by- $(m-1)$ matrix with $(i, j)^{t h}$ entry $D_{i j}=A_{(i-1),(j-1)}^{\prime}$. Thus, the manipulation so far gives

$$
\operatorname{det}(A \otimes B)=\operatorname{det}\left(\begin{array}{cc}
A_{11} B & 0 \\
* & D \otimes B
\end{array}\right)
$$

By the previous example (or its tranpose)

$$
\operatorname{det}\left(\begin{array}{cc}
A_{11} B & 0 \\
* & D \otimes B
\end{array}\right)=\operatorname{det}\left(A_{11} B\right) \cdot \operatorname{det}(D \otimes B)=A_{11}^{n} \operatorname{det} B \cdot \operatorname{det}(D \otimes B)
$$

by the multilinearity of det.
And, at the same time subtracting $A_{1 j} / A_{11}$ times the first column of A from the $j^{\text {th }}$ column of A for $2 \leq j \leq m$ does not change the determinant, and the new matrix is

$$
\left(\begin{array}{cc}
A_{11} & 0 \\
* & D
\end{array}\right)
$$

Also by the previous example,

$$
\operatorname{det} A=\operatorname{det}\left(\begin{array}{cc}
A_{11} & 0 \\
* & D
\end{array}\right)=A_{1} 1 \cdot \operatorname{det} D
$$

Thus, putting the two computations together,

$$
\begin{gathered}
\operatorname{det}(A \otimes B)=A_{11}^{n} \operatorname{det} B \cdot \operatorname{det}(D \otimes B)=A_{11}^{n} \operatorname{det} B \cdot(\operatorname{det} D)^{n}(\operatorname{det} B)^{m-1} \\
=\left(A_{11} \operatorname{det} D\right)^{n} \operatorname{det} B \cdot(\operatorname{det} B)^{m-1}=(\operatorname{det} A)^{n}(\operatorname{det} B)^{m}
\end{gathered}
$$

as claimed.
Another approach to this is to observe that, in these terms, $A \otimes B$ is

$$
\left(\begin{array}{ccccccccc}
A_{11} & 0 & \ldots & 0 & & A_{1 m} & 0 & \ldots & 0 \\
0 & A_{11} & & & \ldots & 0 & A_{1 m} & & \\
\vdots & & \ddots & & \cdots & \vdots & & \ddots & \\
0 & & & A_{11} & & 0 & & & A_{1 m} \\
& \vdots & & & & & \vdots & & \\
& & & & & & & & \\
A_{m 1} & 0 & \cdots & 0 & & A_{m m} & 0 & \cdots & 0 \\
0 & A_{m 1} & & & \ldots & 0 & A_{m m} & & \\
\vdots & & \ddots & & \cdots & & \ddots & \\
0 & & & A_{m 1} & & 0 & & & A_{m m}
\end{array}\right)\left(\begin{array}{cccc}
B & 0 & \ldots & 0 \\
0 & B & & \\
\vdots & & \ddots & \\
0 & & & B
\end{array}\right)
$$

where there are m copies of B on the diagonal. By suitable permutations of rows and columns (with an interchange of rows for each interchange of columns, thus giving no net change of sign), the matrix containing the $A_{i j}$ s becomes

$$
\left(\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & A & & \\
\vdots & & \ddots & \\
0 & & & A
\end{array}\right)
$$

with n copies of A on the diagonal. Thus,

$$
\operatorname{det}(A \otimes B)=\operatorname{det}\left(\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & A & & \\
\vdots & & \ddots & \\
0 & & & A
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{cccc}
B & 0 & \ldots & 0 \\
0 & B & & \\
\vdots & & \ddots & \\
0 & & & B
\end{array}\right)=(\operatorname{det} A)^{n} \cdot(\operatorname{det} B)^{m}
$$

This might be more attractive than the first argument, depending on one's tastes.

