
(January 14, 2009)

[20.1] Prove the expansion by minors formula for determinants, namely, for an n-by-n matrix A with entries
aij , letting Aij be the matrix obtained by deleting the ith row and jth column, for any fixed row index i,

detA = (−1)i
n∑
j=1

(−1)j aij detAij

and symmetrically for expansion along a column.

[iou: prove that this formula is linear in each row/column, and invoke the uniqueness of determinants]

[20.2] Let M and N be free R-modules, where R is a commutative ring with identity. Prove that M ⊗RN
is free and

rankM ⊗R N = rankM · rankN

Let M and N be free on generators i : X →M and j : Y → N . We claim that M ⊗RN is free on a set map

` : X × Y →M ⊗R N

To verify this, let ϕ : X × Y → Z be a set map. For each fixed y ∈ Y , the map x→ ϕ(x, y) factors through
a unique R-module map By : M → Z. For each m ∈M , the map y → By(m) gives rise to a unique R-linear
map n→ B(m,n) such that

B(m, j(y)) = By(m)

The linearity in the second argument assures that we still have the linearity in the first, since for
n =

∑
t rt j(yt) we have

B(m,n) = B(m,
∑
t

rtj(yt)) =
∑
t

rtByt
(m)

which is a linear combination of linear functions. Thus, there is a unique map to Z induced on the tensor
product, showing that the tensor product with set map i× j : X × Y →M ⊗R N is free. ///

[20.3] Let M be a free R-module of rank r, where R is a commutative ring with identity. Let S be a
commutative ring with identity containing R, such that 1R = 1S . Prove that as an S module M ⊗R S is free
of rank r.

We prove a bit more. First, instead of simply an inclusion R ⊂ S, we can consider any ring homomorphism
ψ : R→ S such that ψ(1R) = 1S .

Also, we can consider arbitrary sets of generators, and give more details. Let M be free on generators
i : X → M , where X is a set. Let τ : M × S → M ⊗R S be the canonical map. We claim that M ⊗R S is
free on j : X →M ⊗R S defined by

j(x) = τ(i(x)× 1S)

Given an S-module N , we can be a little forgetful and consider N as an R-module via ψ, by r · n = ψ(r)n.
Then, given a set map ϕ : X → N , since M is free, there is a unique R-module map Φ : M → N such that
ϕ = Φ ◦ i. That is, the diagram

M
Φ

''NNNNNNN

X

i

OO

ϕ // N

commutes. Then the map
ψ : M × S → N

by
ψ(m× s) = s · Φ(m)
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induces (by the defining property of M ⊗R S) a unique Ψ : M ⊗R S → N making a commutative diagram

M ⊗R S

Ψ

��

E
C

@
>

;
9

7
5
3
1
/
.
,
+

M × S

ψ

!!B
B

B
B

B
B

B
B

B
B

τ

OO

X × {1S}

i×inc

OO

X
ϕ //

t

OO

N

where inc is the inclusion map {1S} → S, and where t : X → X×{1S} by x→ x×1S . Thus, M ⊗R S is free
on the composite j : X → M ⊗R S defined to be the composite of the vertical maps in that last diagram.
This argument does not depend upon finiteness of the generating set. ///

[20.4] For finite-dimensional vectorspaces V,W over a field k, prove that there is a natural isomorphism

(V ⊗k W )∗ ≈ V ∗ ⊗W ∗

where X∗ = Homk(X, k) for a k-vectorspace X.

For finite-dimensional V and W , since V ⊗k W is free on the cartesian product of the generators for V and
W , the dimensions of the two sides match. We make an isomorphism from right to left. Create a bilinear
map

V ∗ ×W ∗ → (V ⊗k W )∗

as follows. Given λ ∈ V ∗ and µ ∈W ∗, as usual make Λλ,µ ∈ (V ⊗k W )∗ from the bilinear map

Bλ,µ : V ×W → k

defined by
Bλ,µ(v, w) = λ(v) · µ(w)

This induces a unique functional Λλ,µ on the tensor product. This induces a unique linear map

V ∗ ⊗W ∗ → (V ⊗k W )∗

as desired.

Since everything is finite-dimensional, bijectivity will follow from injectivity. Let e1, . . . , em be a basis for
V , f1, . . . , fn a basis for W , and λ1, . . . , λm and µ1, . . . , µn corresponding dual bases. We have shown that
a basis of a tensor product of free modules is free on the cartesian product of the generators. Suppose that∑
ij cijλi ⊗ µj gives the 0 functional on V ⊗W , for some scalars cij . Then, for every pair of indices s, t, the

function is 0 on es ⊗ ft. That is,
0 =

∑
ij

cijλi(es)λj(ft) = cst

Thus, all constants cij are 0, proving that the map is injective. Then a dimension count proves the
isomorphism. ///

[20.5] For a finite-dimensional k-vectorspace V , prove that the bilinear map

B : V × V ∗ → Endk(V )
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by
B(v × λ)(x) = λ(x) · v

gives an isomorphism V ⊗k V ∗ → Endk(V ). Further, show that the composition of endormorphisms is the
same as the map induced from the map on

(V ⊗ V ∗)× (V ⊗ V ∗)→ V ⊗ V ∗

given by
(v ⊗ λ)× (w ⊗ µ)→ λ(w)v ⊗ µ

The bilinear map v × λ→ Tv,λ given by

Tv,λ(w) = λ(w) · v

induces a unique linear map j : V ⊗ V ∗ → Endk(V ).

To prove that j is injective, we may use the fact that a basis of a tensor product of free modules is free on
the cartesian product of the generators. Thus, let e1, . . . , en be a basis for V , and λ1, . . . , λn a dual basis for
V ∗. Suppose that

n∑
i,j=1

cij ei ⊗ λj → 0Endk(V )

That is, for every e`, ∑
ij

cijλj(e`)ei = 0 ∈ V

This is ∑
i

cijei = 0 (for all j)

Since the eis are linearly independent, all the cijs are 0. Thus, the map j is injective. Then counting
k-dimensions shows that this j is a k-linear isomorphism.

Composition of endomorphisms is a bilinear map

Endk(V )× Endk(V )
◦
−→Endk(V )

by
S × T → S ◦ T

Denote by
c : (v ⊗ λ)× (w ⊗ µ)→ λ(w)v ⊗ µ

the allegedly corresonding map on the tensor products. The induced map on (V ⊗ V ∗) ⊗ (V ⊗ V ∗) is an
example of a contraction map on tensors. We want to show that the diagram

Endk(V )× Endk(V ) ◦ // Endk(V )

(V ⊗k V ∗)× (V ⊗k V ∗)

j×j

OO

c // V ⊗k V ∗

j

OO

commutes. It suffices to check this starting with (v⊗λ)× (w⊗µ) in the lower left corner. Let x ∈ V . Going
up, then to the right, we obtain the endomorphism which maps x to

j(v ⊗ λ) ◦ j(w ⊗ µ) (x) = j(v ⊗ λ)(j(w ⊗ µ)(x)) = j(v ⊗ λ)(µ(x)w) = µ(x) j(v ⊗ λ)(w) = µ(x)λ(w) v
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Going the other way around, to the right then up, we obtain the endomorphism which maps x to

j( c((v ⊗ λ)× (w ⊗ µ))) (x) = j(λ(w)(v ⊗ µ) ) (x) = λ(w)µ(x) v

These two outcomes are the same. ///

[20.6] Via the isomorphism Endk(V ) ≈ V ⊗k V ∗, show that the linear map

tr : Endk(V )→ k

is the linear map
V ⊗ V ∗ → k

induced by the bilinear map v × λ→ λ(v).

Note that the induced map
V ⊗k V ∗ → k by v ⊗ λ→ λ(v)

is another contraction map on tensors. Part of the issue is to compare the coordinate-bound trace with
the induced (contraction) map t(v⊗λ) = λ(v) determined uniquely from the bilinear map v×λ→ λ(v). To
this end, let e1, . . . , en be a basis for V , with dual basis λ1, . . . , λn. The corresponding matrix coefficients
Tij ∈ k of a k-linear endomorphism T of V are

Tij = λi(Tej)

(Always there is the worry about interchange of the indices.) Thus, in these coordinates,

trT =
∑
i

λi(Tei)

Let T = j(es ⊗ λt). Then, since λt(ei) = 0 unless i = t,

trT =
∑
i

λi(Tei) =
∑
i

λi(j(es ⊗ λt)ei) =
∑
i

λi(λt(ei) · es) = λt(λt(et) · es) =
{

1 (s = t)
0 (s 6= t)

On the other hand,

t(es ⊗ λt) = λt(es) =
{

1 (s = t)
0 (s 6= t)

Thus, these two k-linear functionals agree on the monomials, which span, they are equal. ///

[20.7] Prove that tr (AB) = tr (BA) for two endomorphisms of a finite-dimensional vector space V over a
field k, with trace defined as just above.

Since the maps
Endk(V )× Endk(V )→ k

by
A×B → tr (AB) and/or A×B → tr (BA)

are bilinear, it suffices to prove the equality on (images of) monomials v ⊗ λ, since these span the
endomophisms over k. Previous examples have converted the issue to one concerning V ⊗k V

∗. (We have
already shown that the isomorphism V ⊗k V ∗ ≈ Endk(V ) is converts a contraction map on tensors to
composition of endomorphisms, and that the trace on tensors defined as another contraction corresponds to
the trace of matrices.) Let tr now denote the contraction-map trace on tensors, and (temporarily) write

(v ⊗ λ) ◦ (w ⊗ µ) = λ(w) v ⊗ µ
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for the contraction-map composition of endomorphisms. Thus, we must show that

tr (v ⊗ λ) ◦ (w ⊗ µ) = tr (w ⊗ µ) ◦ (v ⊗ λ)

The left-hand side is

tr (v ⊗ λ) ◦ (w ⊗ µ) = tr (λ(w) v ⊗ µ) = λ(w) tr (v ⊗ µ) = λ(w)µ(v)

The right-hand side is

tr (w ⊗ µ) ◦ (v ⊗ λ) = tr (µ(v)w ⊗ λ) = µ(v) tr (w ⊗ λ) = µ(v)λ(w)

These elements of k are the same. ///

[20.8] Prove that tensor products are associative, in the sense that, for R-modules A,B,C, we have a
natural isomorphism

A⊗R (B ⊗R C) ≈ (A⊗R B)⊗R C

In particular, do prove the naturality, at least the one-third part of it which asserts that, for every R-module
homomorphism f : A→ A′, the diagram

A⊗R (B ⊗R C) ≈ //

f⊗(1B⊗1C)

��

(A⊗R B)⊗R C

(f⊗1B)⊗1C

��
A′ ⊗R (B ⊗R C) ≈ // (A′ ⊗R B)⊗R C

commutes, where the two horizontal isomorphisms are those determined in the first part of the problem.
(One might also consider maps g : B → B′ and h : C → C ′, but these behave similarly, so there’s no real
compulsion to worry about them, apart from awareness of the issue.)

Since all tensor products are over R, we drop the subscript, to lighten the notation. As usual, to make a
(linear) map from a tensor product M ⊗ N , we induce uniquely from a bilinear map on M × N . We have
done this enough times that we will suppress this part now.

The thing that is slightly less trivial is construction of maps to tensor products M ⊗ N . These are always
obtained by composition with the canonical bilinear map

M ×N →M ⊗N

Important at present is that we can create n-fold tensor products, as well. Thus, we prove the indicated
isomorphism by proving that both the indicated iterated tensor products are (naturally) isomorphic to the
un-parenthesis’d tensor product A⊗B ⊗C, with canonical map τ : A×B ×C → A⊗B ⊗C, such that for
every trilinear map ϕ : A×B × C → X there is a unique linear Φ : A⊗B ⊗ C → X such that

A⊗B ⊗ C
Φ

((QQQQQQQQ

A×B × C
ϕ //

τ

OO

X

The set map
A×B × C ≈ (A×B)× C → (A⊗B)⊗ C

by
a× b× c→ (a× b)× c→ (a⊗ b)⊗ c
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is linear in each single argument (for fixed values of the others). Thus, we are assured that there is a unique
induced linear map

A⊗B ⊗ C → (A⊗B)⊗ C

such that
A⊗B ⊗ C

i

))TTTTTTTT

A×B × C //

OO

(A⊗B)⊗ C

commutes.

Similarly, from the set map
(A×B)× C ≈ A×B × C → A⊗B ⊗ C

by
(a× b)× c→ a× b× c→ a⊗ b⊗ c

is linear in each single argument (for fixed values of the others). Thus, we are assured that there is a unique
induced linear map

(A⊗B)⊗ C → A⊗B ⊗ C

such that
(A⊗B)⊗ C

j

))TTTTTTTT

(A×B)× C //

OO

A⊗B ⊗ C

commutes.

Then j ◦ i is a map of A⊗B ⊗C to itself compatible with the canonical map A×B ×C → A⊗B ⊗C. By
uniqueness, j ◦ i is the identity on A⊗B ⊗ C. Similarly (just very slightly more complicatedly), i ◦ j must
be the identity on the iterated tensor product. Thus, these two maps are mutual inverses.

To prove naturality in one of the arguments A,B,C, consider f : C → C ′. Let jABC be the isomorphism for
a fixed triple A,B,C, as above. The diagram of maps of cartesian products (of sets, at least)

(A×B)× C
jABC //

(1A×1B)×f
��

A×B × C

1A×1B×f
��

(A×B)× C
j // A×B × C

does commute: going down, then right, is

jABC′ ((1A × 1B)× f)((a× b)× c)) = jABC′ ((a× b)× f(c)) = a× b× f(c)

Going right, then down, gives

(1A × 1B × f) (jABC((a× b)× c)) = (1A × 1B × f) (a× b× c)) = a× b× f(c)

These are the same. ///
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