(January 14, 2009)

t
[21.1] Consider the injection Z/2 — 7/4 which maps
t:x+27 — 22+ 47

Show that the induced map
t@ 1 L[2Q7 L]2 — L[4 Ry 7]2

is no longer an injection.
We claim that ¢ ® 1 is the 0 map. Indeed,
e)(moen)=2men=2-(m@n)=me2n=mx0=0
for all m € Z/2 and n € Z/2. ///
[21.2] Prove that if s : M — N is a surjection of Z-modules and X is any other Z module, then the induced

map
sR1z: MRz X > N®g X

is still surjective.
Given ) . n; ® z; in N ®z X, let m; € M be such that s(m;) = n;. Then
(s® 1)(Zmi ®x;) = Zs(mi) Qx; = an ® T;

so the map is surjective. ///

[0.0.1] Remark: Note that the only issue here is hidden in the verification that the induced map s ® 1
exists.

[21.3] Give an example of a surjection f : M — N of Z-modules, and another Z-module X, such that the
induced map
fo—:Homyz(X, M) — Homgz (X, N)

(by post-composing) fails to be surjective.

Let M =7 and N = Z/n with n > 0. Let X = Z/n. Then
Homyz (X, M) = Homg(Z/n,Z) =0

since
0=¢(0) = p(nz) =n-p(z) € Z
so (since n is not a O-divisor in Z) ¢(z) = 0 for all € Z/n. On the other hand,

Homy, (X, N) = Homy (Z/n,Z/n) = Z/n # 0

Thus, the map cannot possibly be surjective. ///

[21.4] Let G : {Z — modules} — {sets} be the functor that forgets that a module is a module, and just
retains the underlying set. Let F' : {sets} — {Z — modules} be the functor which creates the free module
F'S on the set S (and keeps in mind a map ¢ : S — F'S). Show that for any set S and any Z-module M

Homy (F'S, M) ~ Homges(S, GM)
Prove that the isomorphism you describe is natural in S. (It is also natural in M, but don’t prove this.)
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Our definition of free module says that F'S = X is free on a (set) map ¢ : S — X if for every set map
¢S — M with R-module M gives a unique R-module map ® : X — M such that the diagram

S—M
commutes. Of course, given ®, we obtain ¢ = ® o i by composition (in effect, restriction). We claim that

the required isomorphism is

HOIIIZ (FS, M) & Homsets<57 GM)

Even prior to naturality, we must prove that this is a bijection. Note that the set of maps of a set into an
R-module has a natural structure of R-module, by

(r-@)(s) =7 @(s)

The map in the direction ¢ — & is an injection, because two maps ¢, mapping S — M that induce the
same map ¢ on X give ¢ = ®oi =1, so ¢ = 1. And the map ¢ — P is surjective because a given ® is
induced from ¢ = ® oi.

For naturality, for fixed S and M let the map ¢ — ® be named jg /. That is, the isomorphism is

Homg,(FS, M) <= Homyes (S, GM)
To show naturality in S, let f : S — S’ be a set map. Let i’ : " — X’ be a free module on S’. That is,
X' = FS’. We must show that

VERY

Homgy (F'S, M) <—— Homges (S, GM)

S

Homg (FS', M) <2 Homge (S, GM)

commutes, where — o f is pre-composition by f, and — o F'f is pre-composition by the induced map
Ff : FS — FS on the free modules X = FS and X' = FS'. Let ¢ € Homg(S',GM), and
x=> .1 i(s) € X = FS, Go up, then left, in the diagram, computing,

(s o (=o f)) (@) (@) = jsm (po f)(z) =jsm (po f) <Z m’(S)) = rslpof)s)

On the other hand, going left, then up, gives
((=oFf)ojsm) (@)(@) = (js:,m(p) o Ff) (x) = (js:,m(p)) F f(x)

— (s (9)) (Z Tsi’(f5)> =3 reelfs)

S S

These are the same. /]

[21.5] Let M = <m21 22 m23> be a 2-by-3 integer matrix, such that the ged of the three 2-by-2
m31 M32 MM33

minors is 1. Prove that there exist three integers mi1, m12, m33 such that

mi1 M2 MMasg
det mo1 Moo Mo3 =1
m31 M3z M33
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This is the easiest of this and the following two examples. Namely, let M, be the 2-by-2 matrix obtained by
omitting the i*" column of the given matrix. Let a,b, ¢ be integers such that

adet My — bdet My + cdet M3 = ged(det My, det My, det M3) =1
Then, expanding by minors,

a b c
det mo1 M22 Ma3 = adet M1 —bdet M2 + cdet M3 =1
m31 M32 M33

as desired. ///
[21.6] Let a,b, c be integers whose ged is 1. Prove (without manipulating matrices) that there is a 3-by-3
integer matrix with top row (a b ¢) with determinant 1.

Let F = 73 and E = Z - (a,b,c). We claim that, since ged(a,b,¢) = 1, F/E is torsion-free. Indeed, for
(v,y,2) € F =73, r € Z, and r - (7,y,z) € E, there must be an integer ¢ such that ta = rx, tb = ry, and
tc = rz. Let u,v,w be integers such that

ua + vb+ wz = ged(a, b,c) =1
Then the usual stunt gives
t=t-1=1t-(ua+vb+wz)=u(ta) + v(th) + w(tc) = u(rz) + v(ry) + w(rz) = r - (ux + vy + wz)
This implies that r|¢t. Thus, dividing through by r, (x,y, 2) € Z - (a,b, ¢), as claimed.

Invoking the Structure Theorem for finitely-generated Z-modules, there is a basis fi, fo, f3 for F and
0 < dy € Z such that E = Z - d; f1. Since F/F is torsionless, d; = 1, and E = Z - f;. Further, since both
(a,b,c) and f1 generate E, and Z* = {£1}, without loss of generality we can suppose that f; = (a,b, ¢).

Let A be an endomorphism of F = Z3 such that Af; = e;. Then, writing A for the matrix giving the
endomorphism A,
(a,b,c) - A= (1,0,0)

Since A has an inverse B,
1=detls =det(AB) =det A-det B

so the determinants of A and B are in Z* = {£1}. We can adjust A by right-multiplying by

1 0 0
0 1 0
0 0 -1
to make det A = +1, and retaining the property f; - A = e;. Then
a b c
At =15-A471 = = * * =*
* k%
That is, the original (a, b, c) is the top row of A=, which has integer entries and determinant 1. ///

[21.7] Let
mi1 M1z M3 M4 Mis
M= | ma1 ma2 Moz Moy Mas
m31 M3z M3z M3 M3s
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and suppose that the ged of all determinants of 3-by-3 minors is 1. Prove that there exists a 5-by-5 integer
matrix M with M as its top 3 rows, such that det M = 1.

Let F = Z°, and let E be the submodule generated by the rows of the matrix. Since Z is a PID and F is
free, F is free.

Let e1, ..., e5 be the standard basis for Z°. We have shown that the monomials e;, Ae;, Ae;, with iy < iy < i3
are a basis for /\3F . Since the ged of the determinants of 3-by-3 minors is 1, some determinant of 3-by-3
minor is non-zero, so the rows of M are linearly independent over Q, so E has rank 3 (rather than something
less). The structure theorem tells us that there is a Z-basis f1, ..., f5 for F' and divisors d; |dz2|ds (all non-zero
since E is of rank 3) such that

E=7Z difiBZ-dofo ®Z-dsfs

Let i : E — F be the inclusion. Consider A : A>E — A’F. We know that A*E has Z-basis

difir Ndafo ANdsfs = (didads) - (f1 A fa A f3)

On the other hand, we claim that the coefficients of (didads)- (f1 A fa A f3) in terms of the basis e;;, Aej, Aes,
for /\3F are exactly (perhaps with a change of sign) the determinants of the 3-by-3 minors of M. Indeed,
since both f1, f2, f3 and the three rows of M are bases for the rowspace of M, the f;s are linear combinations
of the rows, and vice-versa (with integer coefficients). Thus, there is a 3-by-3 matrix with determinant +1
such that left multiplication of M by it yields a new matrix with rows fi, fo, f3. At the same time, this
changes the determinants of 3-by-3 minors by at most 4, by the multiplicativity of determinants.

The hypothesis that the ged of all these coordinates is 1 means exactly that A*F/A®E is torsion-free. (If
the coordinates had a common factor d > 1, then d would annihilate the quotient.) This requires that
dydads =1, so dy = do = d3 =1 (since we take these divisors to be positive). That is,

E=7 /L ®Z-f2®Z-f3

Writing f1, f2, and f3 as row vectors, they are Z-linear combinations of the rows of M, which is to say that
there is a 3-by-3 integer matrix L such that

fi
L-M=1f
fs

Since the f; are also a Z-basis for F, there is another 3-by-3 integer matrix K such that
f1
M=K |f
fs

Then LK = LK = 13. In particular, taking determinants, both K and L have determinants in Z*, namely,
+1.

Let A be a Z-linear endomorphism of F' = Z°® mapping f; to e;. Also let A be the 5-by-5 integer matrix
such that right multiplication of a row vector by A gives the effect of the endomorphism A. Then

f1 €1
L-M-A= f2 A= €2
f3 €3

Since the endormorphism A is invertible on F' = 7%, it has an inverse endomorphism A~!, whose matrix has
integer entries. Then

M=L"1' |e ]| A"
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Let
LY 0 0
A= 0 1 0
0 0 =1
where the +1 = det A = det A~!. Then
€1
€2
Ales |-A T =A1,- A=A A"
€4
€s

has integer entries and determinant 1 (since we adjusted the 1 in A). At the same time, it is

€1
Lil 0 0 €9 M
AA =1 0 1 0 |-|es| -At=| % | =5byb
0 0 #+1 *

This is the desired integer matrix M with determinant 1 and upper 3 rows equal to the given matrix.

"

[21.8] Let R be a commutative ring with unit. For a finitely-generated free R-module F', prove that there
is a (natural) isomorphism
Hompg(F,R) =~ F

Or is it only
Hompg(R,F) ~ F

instead? (Hint: Recall the definition of a free module.)
For any R-module M, there is a (natural) isomorphism

i: M — Homp(R, M)

given by
i(m)(r)=r-m

This is injective, since if i(m)(r) were the 0 homomorphism, then i(m)(r) = 0 for all r, which is to say that
r-m =0 for all » € R, in particular, for r = 1. Thus, m =1-m =0, so m = 0. (Here we use the standing
assumption that 1-m = m for all m € M.) The map is surjective, since, given ¢ € Hompg(R, M), we have

p(r)=¢(r-1) =7-p(1)

That is, m = ¢(1) determines ¢ completely. Then ¢ = i(p(m)) and m = i(m)(1), so these are mutually
inverse maps. This did not use finite generation, nor free-ness. ///

Consider now the other form of the question, namely whether or not

Homp(F,R) = F
is valid for F' finitely-generated and free. Let F' be free on i : S — F, with finite S. Use the natural
isomorphism

HOmR(F, R) ~ Homsets(Sa R)
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discussed earlier. The right-hand side is the collection of R-valued functions on S. Since S is finite, the
collection of all R-valued functions on S is just the collection of functions which vanish off a finite subset.
The latter was our construction of the free R-module on S. So we have the isomorphism. ///

[0.0.2] Remark: Note that if S is not finite, Hompg(F, R) is too large to be isomorphic to F. If F is not
free, it may be too small. Consider F' = Z/n and R = Z, for example.

[0.0.3] Remark: And this discussion needs a choice of the generators i : S — F. In the language style
which speaks of generators as being chosen elements of the module, we have most certainly chosen a basis.

[21.9] Let R be an integral domain. Let M and N be free R-modules of finite ranks r, s, respectively.
Suppose that there is an R-bilinear map
B:MxN—R

which is non-degenerate in the sense that for every 0 # m € M there is n € N such that B(m,n) # 0, and
vice-versa. Prove that r = s.

All tensors and homomorphisms are over R, so we suppress the subscript and other references to R when
reasonable to do so. We use the important identity (proven afterward)

1A,B,C

Hom(A ® B,C) Hom(A, Hom(B, C))

by
ia,,c(®)(a)(b) =Pa®b)

We also use the fact (from an example just above) that for F' free on ¢ : S — F' there is the natural (given
t:S — F, anyway!) isomorphism

j : Hom(F, R) ~ Homgets(S, R) = F

for modules E, given by
J(@)(s) = 1(t(s))

where we use construction of free modules on sets S that they are R-valued functions on S taking non-zero
values at only finitely-many elements.

Thus,
Hom(M ® N, R) —— Hom(M, Hom(N, R)) — Hom(M, N)
The bilinear form B induces a linear functional 3 such that
B(m ®@mn) = B(m,n)

The hypothesis says that for each m € M there is n € N such that

i(B)(m)(n) # 0

That is, for all m € M, i(8)(m) € Hom(N, R) ~ N is 0. That is, the map m — i(8)(m) is injective. So the
existence of the non-degenerate bilinear pairing yields an injection of M to N. Symmetrically, there is an
injection of N to M.

Using the assumption that R is a PID, we know that a submodule of a free module is free of lesser-or-equal
rank. Thus, the two inequalities

rank M < rank N rank N < rank M
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from the two inclusions imply equality. ///

[0.0.4] Remark: The hypothesis that R is a PID may be too strong, but I don’t immediately see a way
to work around it.

Now let’s prove (again?) that
Hom(A ® B,C) SRR AN Hom(A, Hom(B, C))

by
i(®)(a)(b) = ®(a®@b)

is an isomorphism. The map in the other direction is

i(p)(a@b) = p(a)(b)

First,
i(j(¢))(a)(b) = j(¢)(a ® b) = p(a)(b)
Second,
j(i(®))(a @ b) = i(®)(a)(b) = ®(a @ b)
Thus, these maps are mutual inverses, so each is an isomorphism. ///

[21.10] Write an explicit isomorphism
Z]a @z 7.]b — Z/gcd(a, b)

and verify that it is what is claimed.

First, we know that monomial tensors generate the tensor product, and for any x,y € Z
TRy =(zy)- 1®1)

so the tensor product is generated by 1 ® 1. Next, we claim that g = gcd(a,b) annihilates every z ® y, that
is, g- (x ® y) = 0. Indeed, let r, s be integers such that ra + sb = g. Then

g-(z®@y)=(ra+sb)- (z@y)=r(az®y)=s(zR@by)=7r-0+s-0=0

So the generator 1 ® 1 has order dividing g. To prove that that generator has order exactly g, we construct
a bilinear map. Let
B:Z/axZ/b—Z/g

by
Bz xy) =y + gZ

To see that this is well-defined, first compute
(x+ aZ)(y + VZ) = xy + xbZ + yaZ + abZ

Since
abZ + yaZ C VZ + aZ = ged(a, b)7Z

(and abZ C gZ), we have
(x4 aZ)(y + VZ) + 9Z = xy + xbZ + yaZ + abZ + 7

7
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and well-definedness. By the defining property of the tensor product, this gives a unique linear map 3 on
the tensor product, which on monomials is

Blx ®y) = zy + ged(a, b)Z

The generator 1 ® 1 is mapped to 1, so the image of 1 ® 1 has order ged(a,b), so 1 ® 1 has order divisible by
ged(a, b). Thus, having already proven that 1 ® 1 has order at most ged(a, b), this must be its order.

In particular, the map [ is injective on the cyclic subgroup generated by 1 ® 1. That cyclic subgroup is
the whole group, since 1 ® 1. The map is also surjective, since -1 ® 1 hits r mod ged(a,b). Thus, it is an
isomorphism. /]

[21.11] Tet ¢ : R — S be commutative rings with unit, and suppose that p(1g) = lg, thus making S
an R-algebra. For an R-module N prove that Hompg(S, N) is (yet another) good definition of extension of
scalars from R to S, by checking that for every S-module M there is a natural isomorphism

Hompg (Resp M, N) ~ Homg (M, Homg(S, N)

where ResiM is the R-module obtained by forgetting S, and letting r € R act on M by r-m = ¢(r)m. (Do
prove naturality in M, also.)

Let
i : Hompg(Resy M, N) — Homg(M, Homg(S, N)

be defined for ¢ € Hompg(Resz, M, N) by
i(p)(m)(s) = ¢(s-m)

This makes some sense, at least, since M is an S-module. We must verify that i(¢) : M — Hompg(S, N) is
S-linear. Note that the S-module structure on Homg(S, N) is

(s -9)(t) = ¥(st)
where s,t € S, ¢ € Homp(S, N). Then we check:
(i(p)(sm)) (8) = i(p) (L - sm) = i(p)(stm) = i(p)(m)(st) = (s - i(p)(m)) ()

which proves the S-linearity.

The map j in the other direction is described, for ® € Homg (M, Hompg(S, N), by
§(®)(m) = (m)(1s)
where 1g is the identity in S. Verify that these are mutual inverses, by
i(j(@))(m)(s) = j(@)(s - m) = ®(sm)(1s) = (s - @(m)) (1s) = B(m)(s - 15) = ®(m)(s)

as hoped. (Again, the equality
(s- @(m)) (1s) = (m)(s - 1s)

is the definition of the S-module structure on Hompg(S, N).) In the other direction,
J(i(p))(m) = i(p)(m)(Ls) = (1 -m) = p(m)
Thus, ¢ and j are mutual inverses, so are isomorphisms.
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For naturality, let f : M — M’ be an S-module homomorphism. Add indices to the previous notation, so
that
irvn - Homp(Resi M, N) — Homg(M, Homg(S, N)

is the isomorphism discussed just above, and iy the analogous isomorphism for M’ and N. We must
show that the diagram

iM,N

Homp(Resy M, N) Homg (M, Hompg(S, N)

—OfT T_Of
i]\l’,N

Hompg (Resp M', N) —————— Homg(M’,Homp(S, N)

commutes, where — o f is pre-composition with f. (We use the same symbol for the map f : M — M’ on
the modules whose S-structure has been forgotten, leaving only the R-module structure.) Starting in the
lower left of the diagram, going up then right, for ¢ € HomR(Res}%M’7 N),

(inv o (=0 f) ) (m)(s) = (imn (o f)) (m)(s) = (@ o f)(s-m) = @(f(s-m))

On the other hand, going right, then up,

(= f)ein v @) (m)(s) = (inr v @) (fm)(s) = ¢(s - fm) = (f(s-m))

since f is S-linear. That is, the two outcomes are the same, so the diagram commutes, proving functoriality
in M, which is a part of the naturality assertion. ///

[21.12] Let
M=7Z¢ZdZdZ N=ZSAZ 247 & 1447Z
What are the elementary divisors of A*(M/N)?

First, note that this is not the same as asking about the structure of (A°M)/(A>N). Still, we can address
that, too, after dealing with the question that was asked.

First,
M/N =77 ®L/AL & L2447 © 7/1447. ~ 7./A B 7./24 ® 7./144

where we use the obvious slightly lighter notation. Generators for M/N are
m=100H0 me=00100 m3=00061

where the 1s are respectively in Z/4, Z/24, and Z/144. We know that e; A e; generate the exterior square,
for the 3 pairs of indices with ¢ < j. Much as in the computation of Z/a ® Z /b, for e in a Z-module E with
a-e=0and fin E with b- f =0, let , s be integers such that

ra + sb = ged(a, b)

Then
ged(a,b) -eNf=r(aeNf)+s(enbf)=r-04+s-0=0

Thus, 4-e; Aeg =0 and 4-e; Aez =0, while 24 - e5 A eg = 0. If there are no further relations, then we could
have
N (M/N) ~ Z/A& T)4 & 7,/24

(so the elementary divisors would be 4,4,24.)
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To prove, in effect, that there are no further relations than those just indicated, we must construct suitable
alternating bilinear maps. Suppose for r,s,t € Z

r-egNes+s-egANeg+t-eaNe3 =0

Let
By : (Zel ® Zes ® Zeg) X (Z€1 @ Zea ® Zeg) — Z/4

by
Bia(zer + yea + zes, L1 +nex + Ces) = (an — Ly) +4Z

(As in earlier examples, since 4|4 and 4|24, this is well-defined.) By arrangement, this Bis is alternating,
and induces a unique linear map B12 on A*(M/N), with

Bra(er Nea) =1 Pra(er ANez) =0 Bra(ez Aez) =0

Applying this to the alleged relation, we find that » = 0 mod 4. Similar contructions for the other two pairs
of indices ¢ < j show that s = 0 mod 4 and ¢t = 0 mod 24. This shows that we have all the relations, and

N (M/N) ~ 7/A & 7./4 & 7./ 24
as hoped/claimed. ///
Now consider the other version of this question. Namely, letting
M=7Z0ZOLDL N =7 ® 47 © 247 & 1447
compute the elementary divisors of (A*M)/(A’N).

Let eq, es, e3, e4 be the standard basis for Z*. Let i : N — M be the inclusion. We have shown that exterior
powers of free modules are free with the expected generators, so M is free on

e1 Nea, egNes, e1 Neg, ea Ne3, ea/Neyg, ez /Ney
and N is free on
(14) €1 /\627 (124) €1 /\637 (1144) 61/\64, (424) 62/\63, (4144) 62/\64, (24144) 63/\64

The inclusion i : N — M induces a natural map A% : A> — A\°M, taking 7 - e; Ae; (in N) to r-e; Aej (in
M). Thus, the quotient of A*M by (the image of) A*N is visibly

7)4® 724 & 7.)144 & 7./96 & 7./576 & 7,/ 3456

The integers 4,24,144,96,576,3456 do not quite have the property 4]24]/144]|96|576|3456, so are not
elementary divisors. The problem is that neither 144|96 nor 96/144. The only primes dividing all these
integers are 2 and 3, and, in particular,

4=2%24=2%.3 144=2%.32 96 =12°.3, 576 = 2% .32, 3456 = 27 - 33,

From Sun-Ze’s theorem,
7/(2¢ - 3%) ~ Z./2° & 7./3

so we can rewrite the summands Z/144 and Z/96 as
Z)144©7/96 ~ (Z/2* © Z/3%) © (Z)2° © 7)3) ~ (Z)2* @ 7.)3) ® (Z.)2° © 7./3?) ~ 7./48 © 7./288
Now we do have 4|24|48|288|576|3456, and
(AN°M)/(N°N) ~ 7.)4 & 7.)24 & 7,/48 & 7.) 288 & 7./ 576 & 7,/ 3456

is in elementary divisor form. ///
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