[21.1] Consider the injection $\mathbb{Z} / 2 \xrightarrow{t} \mathbb{Z} / 4$ which maps

$$
t: x+2 \mathbb{Z} \rightarrow 2 x+4 \mathbb{Z}
$$

Show that the induced map

$$
t \otimes 1_{\mathbb{Z} / 2}: \mathbb{Z} / 2 \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \otimes_{\mathbb{Z}} \mathbb{Z} / 2
$$

is no longer an injection.
We claim that $t \otimes 1$ is the 0 map. Indeed,

$$
(t \otimes 1)(m \otimes n)=2 m \otimes n=2 \cdot(m \otimes n)=m \otimes 2 n=m \otimes 0=0
$$

for all $m \in \mathbb{Z} / 2$ and $n \in \mathbb{Z} / 2$.
[21.2] Prove that if $s: M \rightarrow N$ is a surjection of \mathbb{Z}-modules and X is any other \mathbb{Z} module, then the induced map

$$
s \otimes 1_{Z}: M \otimes_{\mathbb{Z}} X \rightarrow N \otimes_{\mathbb{Z}} X
$$

is still surjective.
Given $\sum_{i} n_{i} \otimes x_{i}$ in $N \otimes_{\mathbb{Z}} X$, let $m_{i} \in M$ be such that $s\left(m_{i}\right)=n_{i}$. Then

$$
(s \otimes 1)\left(\sum_{i} m_{i} \otimes x_{i}\right)=\sum_{i} s\left(m_{i}\right) \otimes x_{i}=\sum_{i} n_{i} \otimes x_{i}
$$

so the map is surjective.
[0.0.1] Remark: Note that the only issue here is hidden in the verification that the induced map $s \otimes 1$ exists.
[21.3] Give an example of a surjection $f: M \rightarrow N$ of \mathbb{Z}-modules, and another \mathbb{Z}-module X, such that the induced map

$$
f \circ-: \operatorname{Hom}_{\mathbb{Z}}(X, M) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(X, N)
$$

(by post-composing) fails to be surjective.
Let $M=\mathbb{Z}$ and $N=\mathbb{Z} / n$ with $n>0$. Let $X=\mathbb{Z} / n$. Then

$$
\operatorname{Hom}_{\mathbb{Z}}(X, M)=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Z})=0
$$

since

$$
0=\varphi(0)=\varphi(n x)=n \cdot \varphi(x) \in \mathbb{Z}
$$

so (since n is not a 0 -divisor in \mathbb{Z}) $\varphi(x)=0$ for all $x \in \mathbb{Z} / n$. On the other hand,

$$
\operatorname{Hom}_{\mathbb{Z}}(X, N)=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Z} / n) \approx \mathbb{Z} / n \neq 0
$$

Thus, the map cannot possibly be surjective.
[21.4] Let $G:\{\mathbb{Z}$ - modules $\} \rightarrow\{$ sets $\}$ be the functor that forgets that a module is a module, and just retains the underlying set. Let $F:\{$ sets $\} \rightarrow\{\mathbb{Z}-$ modules $\}$ be the functor which creates the free module $F S$ on the set S (and keeps in mind a map $i: S \rightarrow F S$). Show that for any set S and any \mathbb{Z}-module M

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M) \approx \operatorname{Hom}_{\text {sets }}(S, G M)
$$

Prove that the isomorphism you describe is natural in S. (It is also natural in M, but don't prove this.)

Our definition of free module says that $F S=X$ is free on a (set) map $i: S \rightarrow X$ if for every set map $\varphi: S \rightarrow M$ with R-module M gives a unique R-module map $\Phi: X \rightarrow M$ such that the diagram

commutes. Of course, given Φ, we obtain $\varphi=\Phi \circ i$ by composition (in effect, restriction). We claim that the required isomorphism is

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M)<\stackrel{\Phi \longleftrightarrow \varphi}{\longrightarrow \operatorname{Hom}_{\text {sets }}(S, G M)}
$$

Even prior to naturality, we must prove that this is a bijection. Note that the set of maps of a set into an R-module has a natural structure of R-module, by

$$
(r \cdot \varphi)(s)=r \cdot \varphi(s)
$$

The map in the direction $\varphi \rightarrow \Phi$ is an injection, because two maps φ, ψ mapping $S \rightarrow M$ that induce the same map Φ on X give $\varphi=\Phi \circ i=\psi$, so $\varphi=\psi$. And the map $\varphi \rightarrow \Phi$ is surjective because a given Φ is induced from $\varphi=\Phi \circ i$.

For naturality, for fixed S and M let the $\operatorname{map} \varphi \rightarrow \Phi$ be named $j_{S, M}$. That is, the isomorphism is

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M) \stackrel{j_{S, X}}{\leftarrow} \operatorname{Hom}_{\text {sets }}(S, G M)
$$

To show naturality in S, let $f: S \rightarrow S^{\prime}$ be a set map. Let $i^{\prime}: S^{\prime} \rightarrow X^{\prime}$ be a free module on S^{\prime}. That is, $X^{\prime}=F S^{\prime}$. We must show that

commutes, where $-\circ f$ is pre-composition by f, and $-\circ F f$ is pre-composition by the induced map $F f: F S \rightarrow F S^{\prime}$ on the free modules $X=F S$ and $X^{\prime}=F S^{\prime}$. Let $\varphi \in \operatorname{Hom}_{\text {set }}\left(S^{\prime}, G M\right)$, and $x=\sum_{s} r_{s} \cdot i(s) \in X=F S$, Go up, then left, in the diagram, computing,

$$
\left(j_{S, M} \circ(-\circ f)\right)(\varphi)(x)=j_{S, M}(\varphi \circ f)(x)=j_{S, M}(\varphi \circ f)\left(\sum_{s} r_{s} i(s)\right)=\sum_{s} r_{s}(\varphi \circ f)(s)
$$

On the other hand, going left, then up, gives

$$
\begin{gathered}
\left((-\circ F f) \circ j_{S^{\prime}, M}\right)(\varphi)(x)=\left(j_{S^{\prime}, M}(\varphi) \circ F f\right)(x)=\left(j_{S^{\prime}, M}(\varphi)\right) F f(x) \\
=\left(j_{S^{\prime}, M}(\varphi)\right)\left(\sum_{s} r_{s} i^{\prime}(f s)\right)=\sum_{s} r_{s} \varphi(f s)
\end{gathered}
$$

These are the same.
[21.5] Let $M=\left(\begin{array}{lll}m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right)$ be a 2-by-3 integer matrix, such that the $g c d$ of the three 2-by-2 minors is 1 . Prove that there exist three integers m_{11}, m_{12}, m_{33} such that

$$
\operatorname{det}\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=1
$$

This is the easiest of this and the following two examples. Namely, let M_{i} be the 2-by- 2 matrix obtained by omitting the $i^{\text {th }}$ column of the given matrix. Let a, b, c be integers such that

$$
a \operatorname{det} M_{1}-b \operatorname{det} M_{2}+c \operatorname{det} M_{3}=\operatorname{gcd}\left(\operatorname{det} M_{1}, \operatorname{det} M_{2}, \operatorname{det} M_{3}\right)=1
$$

Then, expanding by minors,

$$
\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=a \operatorname{det} M_{1}-b \operatorname{det} M_{2}+c \operatorname{det} M_{3}=1
$$

as desired.
[21.6] Let a, b, c be integers whose $g c d$ is 1 . Prove (without manipulating matrices) that there is a 3 -by- 3 integer matrix with top row ($a b c$) with determinant 1.

Let $F=\mathbb{Z}^{3}$, and $E=\mathbb{Z} \cdot(a, b, c)$. We claim that, since $\operatorname{gcd}(a, b, c)=1, F / E$ is torsion-free. Indeed, for $(x, y, z) \in F=\mathbb{Z}^{3}, r \in \mathbb{Z}$, and $r \cdot(x, y, z) \in E$, there must be an integer t such that $t a=r x, t b=r y$, and $t c=r z$. Let u, v, w be integers such that

$$
u a+v b+w z=\operatorname{gcd}(a, b, c)=1
$$

Then the usual stunt gives

$$
t=t \cdot 1=t \cdot(u a+v b+w z)=u(t a)+v(t b)+w(t c)=u(r x)+v(r y)+w(r z)=r \cdot(u x+v y+w z)
$$

This implies that $r \mid t$. Thus, dividing through by $r,(x, y, z) \in \mathbb{Z} \cdot(a, b, c)$, as claimed.
Invoking the Structure Theorem for finitely-generated \mathbb{Z}-modules, there is a basis f_{1}, f_{2}, f_{3} for F and $0<d_{1} \in \mathbb{Z}$ such that $E=\mathbb{Z} \cdot d_{1} f_{1}$. Since F / E is torsionless, $d_{1}=1$, and $E=\mathbb{Z} \cdot f_{1}$. Further, since both (a, b, c) and f_{1} generate E, and $\mathbb{Z}^{\times}=\{ \pm 1\}$, without loss of generality we can suppose that $f_{1}=(a, b, c)$.
Let A be an endomorphism of $F=\mathbb{Z}^{3}$ such that $A f_{i}=e_{i}$. Then, writing A for the matrix giving the endomorphism A,

$$
(a, b, c) \cdot A=(1,0,0)
$$

Since A has an inverse B,

$$
1=\operatorname{det} 1_{3}=\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B
$$

so the determinants of A and B are in $\mathbb{Z}^{\times}=\{ \pm 1\}$. We can adjust A by right-multiplying by

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

to make $\operatorname{det} A=+1$, and retaining the property $f_{1} \cdot A=e_{1}$. Then

$$
A^{-1}=1_{3} \cdot A^{-1}=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \cdot A^{-1}=\left(\begin{array}{ccc}
a & b & c \\
* & * & * \\
* & * & *
\end{array}\right)
$$

That is, the original (a, b, c) is the top row of A^{-1}, which has integer entries and determinant 1.
[21.7] Let

$$
M=\left(\begin{array}{lllll}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\
m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\
m_{31} & m_{32} & m_{33} & m_{34} & m_{35}
\end{array}\right)
$$

and suppose that the $g c d$ of all determinants of 3 -by- 3 minors is 1 . Prove that there exists a 5 -by- 5 integer matrix \tilde{M} with M as its top 3 rows, such that $\operatorname{det} \tilde{M}=1$.

Let $F=\mathbb{Z}^{5}$, and let E be the submodule generated by the rows of the matrix. Since \mathbb{Z} is a PID and F is free, E is free.

Let e_{1}, \ldots, e_{5} be the standard basis for \mathbb{Z}^{5}. We have shown that the monomials $e_{i_{1}} \wedge e_{i_{2}} \wedge e_{i_{3}}$ with $i_{1}<i_{2}<i_{3}$ are a basis for $\bigwedge^{3} F$. Since the $g c d$ of the determinants of 3 -by- 3 minors is 1 , some determinant of 3 -by- 3 minor is non-zero, so the rows of M are linearly independent over \mathbb{Q}, so E has rank 3 (rather than something less). The structure theorem tells us that there is a \mathbb{Z}-basis f_{1}, \ldots, f_{5} for F and divisors $d_{1}\left|d_{2}\right| d_{3}$ (all non-zero since E is of rank 3) such that

$$
E=\mathbb{Z} \cdot d_{1} f_{1} \oplus \mathbb{Z} \cdot d_{2} f_{2} \oplus \mathbb{Z} \cdot d_{3} f_{3}
$$

Let $i: E \rightarrow F$ be the inclusion. Consider $\bigwedge^{3}: \bigwedge^{3} E \rightarrow \bigwedge^{3} F$. We know that $\bigwedge^{3} E$ has \mathbb{Z}-basis

$$
d_{1} f_{1} \wedge d_{2} f_{2} \wedge d_{3} f_{3}=\left(d_{1} d_{2} d_{3}\right) \cdot\left(f_{1} \wedge f_{2} \wedge f_{3}\right)
$$

On the other hand, we claim that the coefficients of $\left(d_{1} d_{2} d_{3}\right) \cdot\left(f_{1} \wedge f_{2} \wedge f_{3}\right)$ in terms of the basis $e_{i_{1}} \wedge e_{i_{2}} \wedge e_{i_{3}}$ for $\bigwedge^{3} F$ are exactly (perhaps with a change of sign) the determinants of the 3 -by- 3 minors of M. Indeed, since both f_{1}, f_{2}, f_{3} and the three rows of M are bases for the rowspace of M, the f_{i} s are linear combinations of the rows, and vice-versa (with integer coefficients). Thus, there is a 3-by-3 matrix with determinant ± 1 such that left multiplication of M by it yields a new matrix with rows f_{1}, f_{2}, f_{3}. At the same time, this changes the determinants of 3-by- 3 minors by at most \pm, by the multiplicativity of determinants.
The hypothesis that the $g c d$ of all these coordinates is 1 means exactly that $\Lambda^{3} F / \Lambda^{3} E$ is torsion-free. (If the coordinates had a common factor $d>1$, then d would annihilate the quotient.) This requires that $d_{1} d_{2} d_{3}=1$, so $d_{1}=d_{2}=d_{3}=1$ (since we take these divisors to be positive). That is,

$$
E=\mathbb{Z} \cdot f_{1} \oplus \mathbb{Z} \cdot f_{2} \oplus \mathbb{Z} \cdot f_{3}
$$

Writing f_{1}, f_{2}, and f_{3} as row vectors, they are \mathbb{Z}-linear combinations of the rows of M, which is to say that there is a 3 -by- 3 integer matrix L such that

$$
L \cdot M=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
$$

Since the f_{i} are also a \mathbb{Z}-basis for E, there is another 3 -by- 3 integer matrix K such that

$$
M=K \cdot\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
$$

Then $L K=L K=1_{3}$. In particular, taking determinants, both K and L have determinants in \mathbb{Z}^{\times}, namely, ± 1.

Let A be a \mathbb{Z}-linear endomorphism of $F=\mathbb{Z}^{5}$ mapping f_{i} to e_{i}. Also let A be the 5 -by- 5 integer matrix such that right multiplication of a row vector by A gives the effect of the endomorphism A. Then

$$
L \cdot M \cdot A=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) \cdot A=\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

Since the endormorphism A is invertible on $F=\mathbb{Z}^{5}$, it has an inverse endomorphism A^{-1}, whose matrix has integer entries. Then

$$
M=L^{-1} \cdot\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \cdot A^{-1}
$$

Paul Garrett: (January 14, 2009)
Let

$$
\Lambda=\left(\begin{array}{ccc}
L^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right)
$$

where the $\pm 1=\operatorname{det} A=\operatorname{det} A^{-1}$. Then

$$
\Lambda \cdot\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5}
\end{array}\right) \cdot A^{-1}=\Lambda \cdot 1_{5} \cdot A^{-1}=\Lambda \cdot A^{-1}
$$

has integer entries and determinant 1 (since we adjusted the ± 1 in Λ). At the same time, it is

$$
\Lambda \cdot A^{-1}=\left(\begin{array}{ccc}
L^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right) \cdot\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
* \\
*
\end{array}\right) \cdot A^{-1}=\left(\begin{array}{c}
M \\
* \\
*
\end{array}\right)=5 \text {-by- } 5
$$

This is the desired integer matrix \tilde{M} with determinant 1 and upper 3 rows equal to the given matrix. //I
[21.8] Let R be a commutative ring with unit. For a finitely-generated free R-module F, prove that there is a (natural) isomorphism

$$
\operatorname{Hom}_{R}(F, R) \approx F
$$

Or is it only

$$
\operatorname{Hom}_{R}(R, F) \approx F
$$

instead? (Hint: Recall the definition of a free module.)
For any R-module M, there is a (natural) isomorphism

$$
i: M \rightarrow \operatorname{Hom}_{R}(R, M)
$$

given by

$$
i(m)(r)=r \cdot m
$$

This is injective, since if $i(m)(r)$ were the 0 homomorphism, then $i(m)(r)=0$ for all r, which is to say that $r \cdot m=0$ for all $r \in R$, in particular, for $r=1$. Thus, $m=1 \cdot m=0$, so $m=0$. (Here we use the standing assumption that $1 \cdot m=m$ for all $m \in M$.) The map is surjective, since, given $\varphi \in \operatorname{Hom}_{R}(R, M)$, we have

$$
\varphi(r)=\varphi(r \cdot 1)=r \cdot \varphi(1)
$$

That is, $m=\varphi(1)$ determines φ completely. Then $\varphi=i(\varphi(m))$ and $m=i(m)(1)$, so these are mutually inverse maps. This did not use finite generation, nor free-ness.

Consider now the other form of the question, namely whether or not

$$
\operatorname{Hom}_{R}(F, R) \approx F
$$

is valid for F finitely-generated and free. Let F be free on $i: S \rightarrow F$, with finite S. Use the natural isomorphism

$$
\operatorname{Hom}_{R}(F, R) \approx \operatorname{Hom}_{\text {sets }}(S, R)
$$

discussed earlier. The right-hand side is the collection of R-valued functions on S. Since S is finite, the collection of all R-valued functions on S is just the collection of functions which vanish off a finite subset. The latter was our construction of the free R-module on S. So we have the isomorphism.
[0.0.2] Remark: Note that if S is not finite, $\operatorname{Hom}_{R}(F, R)$ is too large to be isomorphic to F. If F is not free, it may be too small. Consider $F=\mathbb{Z} / n$ and $R=\mathbb{Z}$, for example.
[0.0.3] Remark: And this discussion needs a choice of the generators $i: S \rightarrow F$. In the language style which speaks of generators as being chosen elements of the module, we have most certainly chosen a basis.
[21.9] Let R be an integral domain. Let M and N be free R-modules of finite ranks r, s, respectively. Suppose that there is an R-bilinear map

$$
B: M \times N \rightarrow R
$$

which is non-degenerate in the sense that for every $0 \neq m \in M$ there is $n \in N$ such that $B(m, n) \neq 0$, and vice-versa. Prove that $r=s$.

All tensors and homomorphisms are over R, so we suppress the subscript and other references to R when reasonable to do so. We use the important identity (proven afterward)

$$
\operatorname{Hom}(A \otimes B, C) \xrightarrow{i_{A, B, C}} \operatorname{Hom}(A, \operatorname{Hom}(B, C))
$$

by

$$
i_{A, B, C}(\Phi)(a)(b)=\Phi(a \otimes b)
$$

We also use the fact (from an example just above) that for F free on $t: S \rightarrow F$ there is the natural (given $t: S \rightarrow F$, anyway!) isomorphism

$$
j: \operatorname{Hom}(F, R) \approx \operatorname{Hom}_{\mathrm{sets}}(S, R)=F
$$

for modules E, given by

$$
j(\psi)(s)=\psi(t(s))
$$

where we use construction of free modules on sets S that they are R-valued functions on S taking non-zero values at only finitely-many elements.

Thus,

$$
\operatorname{Hom}(M \otimes N, R) \xrightarrow{i} \operatorname{Hom}(M, \operatorname{Hom}(N, R)) \xrightarrow{j} \operatorname{Hom}(M, N)
$$

The bilinear form B induces a linear functional β such that

$$
\beta(m \otimes n)=B(m, n)
$$

The hypothesis says that for each $m \in M$ there is $n \in N$ such that

$$
i(\beta)(m)(n) \neq 0
$$

That is, for all $m \in M, i(\beta)(m) \in \operatorname{Hom}(N, R) \approx N$ is 0 . That is, the map $m \rightarrow i(\beta)(m)$ is injective. So the existence of the non-degenerate bilinear pairing yields an injection of M to N. Symmetrically, there is an injection of N to M.

Using the assumption that R is a PID, we know that a submodule of a free module is free of lesser-or-equal rank. Thus, the two inequalities

$$
\operatorname{rank} M \leq \operatorname{rank} N \quad \operatorname{rank} N \leq \operatorname{rank} M
$$

from the two inclusions imply equality.
[0.0.4] Remark: The hypothesis that R is a PID may be too strong, but I don't immediately see a way to work around it.

Now let's prove (again?) that

$$
\operatorname{Hom}(A \otimes B, C) \xrightarrow{i} \operatorname{Hom}(A, \operatorname{Hom}(B, C))
$$

by

$$
i(\Phi)(a)(b)=\Phi(a \otimes b)
$$

is an isomorphism. The map in the other direction is

$$
j(\varphi)(a \otimes b)=\varphi(a)(b)
$$

First,

$$
i(j(\varphi))(a)(b)=j(\varphi)(a \otimes b)=\varphi(a)(b)
$$

Second,

$$
j(i(\Phi))(a \otimes b)=i(\Phi)(a)(b)=\Phi(a \otimes b)
$$

Thus, these maps are mutual inverses, so each is an isomorphism.
[21.10] Write an explicit isomorphism

$$
\mathbb{Z} / a \otimes_{\mathbb{Z}} \mathbb{Z} / b \rightarrow \mathbb{Z} / \operatorname{gcd}(a, b)
$$

and verify that it is what is claimed.
First, we know that monomial tensors generate the tensor product, and for any $x, y \in \mathbb{Z}$

$$
x \otimes y=(x y) \cdot(1 \otimes 1)
$$

so the tensor product is generated by $1 \otimes 1$. Next, we claim that $g=\operatorname{gcd}(a, b)$ annihilates every $x \otimes y$, that is, $g \cdot(x \otimes y)=0$. Indeed, let r, s be integers such that $r a+s b=g$. Then

$$
g \cdot(x \otimes y)=(r a+s b) \cdot(x \otimes y)=r(a x \otimes y)=s(x \otimes b y)=r \cdot 0+s \cdot 0=0
$$

So the generator $1 \otimes 1$ has order dividing g. To prove that that generator has order exactly g, we construct a bilinear map. Let

$$
B: \mathbb{Z} / a \times \mathbb{Z} / b \rightarrow \mathbb{Z} / g
$$

by

$$
B(x \times y)=x y+g \mathbb{Z}
$$

To see that this is well-defined, first compute

$$
(x+a \mathbb{Z})(y+b \mathbb{Z})=x y+x b \mathbb{Z}+y a \mathbb{Z}+a b \mathbb{Z}
$$

Since

$$
x b \mathbb{Z}+y a \mathbb{Z} \subset b \mathbb{Z}+a \mathbb{Z}=\operatorname{gcd}(a, b) \mathbb{Z}
$$

(and $a b \mathbb{Z} \subset g \mathbb{Z}$), we have

$$
(x+a \mathbb{Z})(y+b \mathbb{Z})+g \mathbb{Z}=x y+x b \mathbb{Z}+y a \mathbb{Z}+a b \mathbb{Z}+\mathbb{Z}
$$

and well-definedness. By the defining property of the tensor product, this gives a unique linear map β on the tensor product, which on monomials is

$$
\beta(x \otimes y)=x y+\operatorname{gcd}(a, b) \mathbb{Z}
$$

The generator $1 \otimes 1$ is mapped to 1 , so the image of $1 \otimes 1$ has order $\operatorname{gcd}(a, b)$, so $1 \otimes 1$ has order divisible by $\operatorname{gcd}(a, b)$. Thus, having already proven that $1 \otimes 1$ has order at most $\operatorname{gcd}(a, b)$, this must be its order.

In particular, the map β is injective on the cyclic subgroup generated by $1 \otimes 1$. That cyclic subgroup is the whole group, since $1 \otimes 1$. The map is also surjective, since $\cdot 1 \otimes 1$ hits $r \bmod \operatorname{gcd}(a, b)$. Thus, it is an isomorphism.
[21.11] Let $\varphi: R \rightarrow S$ be commutative rings with unit, and suppose that $\varphi\left(1_{R}\right)=1_{S}$, thus making S an R-algebra. For an R-module N prove that $\operatorname{Hom}_{R}(S, N)$ is (yet another) good definition of extension of scalars from R to S, by checking that for every S-module M there is a natural isomorphism

$$
\operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \approx \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

where $\operatorname{Res}_{R}^{S} M$ is the R-module obtained by forgetting S, and letting $r \in R$ act on M by $r \cdot m=\varphi(r) m$. (Do prove naturality in M, also.)

Let

$$
i: \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \rightarrow \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

be defined for $\varphi \in \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right)$ by

$$
i(\varphi)(m)(s)=\varphi(s \cdot m)
$$

This makes some sense, at least, since M is an S-module. We must verify that $i(\varphi): M \rightarrow \operatorname{Hom}_{R}(S, N)$ is S-linear. Note that the S-module structure on $\operatorname{Hom}_{R}(S, N)$ is

$$
(s \cdot \psi)(t)=\psi(s t)
$$

where $s, t \in S, \psi \in \operatorname{Hom}_{R}(S, N)$. Then we check:

$$
(i(\varphi)(s m))(t)=i(\varphi)(t \cdot s m)=i(\varphi)(s t m)=i(\varphi)(m)(s t)=(s \cdot i(\varphi)(m))(t)
$$

which proves the S-linearity.
The map j in the other direction is described, for $\Phi \in \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.$, by

$$
j(\Phi)(m)=\Phi(m)\left(1_{S}\right)
$$

where 1_{S} is the identity in S. Verify that these are mutual inverses, by

$$
i(j(\Phi))(m)(s)=j(\Phi)(s \cdot m)=\Phi(s m)\left(1_{S}\right)=(s \cdot \Phi(m))\left(1_{S}\right)=\Phi(m)\left(s \cdot 1_{S}\right)=\Phi(m)(s)
$$

as hoped. (Again, the equality

$$
(s \cdot \Phi(m))\left(1_{S}\right)=\Phi(m)\left(s \cdot 1_{S}\right)
$$

is the definition of the S-module structure on $\operatorname{Hom}_{R}(S, N)$.) In the other direction,

$$
j(i(\varphi))(m)=i(\varphi)(m)\left(1_{S}\right)=\varphi(1 \cdot m)=\varphi(m)
$$

Thus, i and j are mutual inverses, so are isomorphisms.

For naturality, let $f: M \rightarrow M^{\prime}$ be an S-module homomorphism. Add indices to the previous notation, so that

$$
i_{M, N}: \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \rightarrow \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

is the isomorphism discussed just above, and $i_{M^{\prime}, N}$ the analogous isomorphism for M^{\prime} and N. We must show that the diagram

commutes, where $-\circ f$ is pre-composition with f. (We use the same symbol for the map $f: M \rightarrow M^{\prime}$ on the modules whose S-structure has been forgotten, leaving only the R-module structure.) Starting in the lower left of the diagram, going up then right, for $\varphi \in \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M^{\prime}, N\right)$,

$$
\left(i_{M, N} \circ(-\circ f) \varphi\right)(m)(s)=\left(i_{M, N}(\varphi \circ f)\right)(m)(s)=(\varphi \circ f)(s \cdot m)=\varphi(f(s \cdot m))
$$

On the other hand, going right, then up,

$$
\left((-\circ f) \circ i_{M^{\prime}, N} \varphi\right)(m)(s)=\left(i_{M^{\prime}, N} \varphi\right)(f m)(s)=\varphi(s \cdot f m)=\varphi(f(s \cdot m))
$$

since f is S-linear. That is, the two outcomes are the same, so the diagram commutes, proving functoriality in M, which is a part of the naturality assertion.
[21.12] Let

$$
M=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad N=\mathbb{Z} \oplus 4 \mathbb{Z} \oplus 24 \mathbb{Z} \oplus 144 \mathbb{Z}
$$

What are the elementary divisors of $\bigwedge^{2}(M / N)$?
First, note that this is not the same as asking about the structure of $\left(\bigwedge^{2} M\right) /\left(\bigwedge^{2} N\right)$. Still, we can address that, too, after dealing with the question that was asked.

First,

$$
M / N=\mathbb{Z} / \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 24 \mathbb{Z} \oplus \mathbb{Z} / 144 \mathbb{Z} \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 24 \oplus \mathbb{Z} / 144
$$

where we use the obvious slightly lighter notation. Generators for M / N are

$$
m_{1}=1 \oplus 0 \oplus 0 \quad m_{2}=0 \oplus 1 \oplus 0 \quad m_{3}=0 \oplus 0 \oplus 1
$$

where the 1 s are respectively in $\mathbb{Z} / 4, \mathbb{Z} / 24$, and $\mathbb{Z} / 144$. We know that $e_{i} \wedge e_{j}$ generate the exterior square, for the 3 pairs of indices with $i<j$. Much as in the computation of $\mathbb{Z} / a \otimes \mathbb{Z} / b$, for e in a \mathbb{Z}-module E with $a \cdot e=0$ and f in E with $b \cdot f=0$, let r, s be integers such that

$$
r a+s b=\operatorname{gcd}(a, b)
$$

Then

$$
\operatorname{gcd}(a, b) \cdot e \wedge f=r(a e \wedge f)+s(e \wedge b f)=r \cdot 0+s \cdot 0=0
$$

Thus, $4 \cdot e_{1} \wedge e_{2}=0$ and $4 \cdot e_{1} \wedge e_{3}=0$, while $24 \cdot e_{2} \wedge e_{3}=0$. If there are no further relations, then we could have

$$
\bigwedge^{2}(M / N) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 4 \oplus \mathbb{Z} / 24
$$

(so the elementary divisors would be $4,4,24$.)

To prove, in effect, that there are no further relations than those just indicated, we must construct suitable alternating bilinear maps. Suppose for $r, s, t \in \mathbb{Z}$

$$
r \cdot e_{1} \wedge e_{2}+s \cdot e_{1} \wedge e_{3}+t \cdot e_{2} \wedge e_{3}=0
$$

Let

$$
B_{12}:\left(\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \mathbb{Z} e_{3}\right) \times\left(\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \mathbb{Z} e_{3}\right) \rightarrow \mathbb{Z} / 4
$$

by

$$
B_{12}\left(x e_{1}+y e_{2}+z e_{3}, \xi e_{1}+\eta e_{2}+\zeta e_{3}\right)=(x \eta-\xi y)+4 \mathbb{Z}
$$

(As in earlier examples, since $4 \mid 4$ and $4 \mid 24$, this is well-defined.) By arrangement, this B_{12} is alternating, and induces a unique linear map β_{12} on $\bigwedge^{2}(M / N)$, with

$$
\beta_{12}\left(e_{1} \wedge e_{2}\right)=1 \quad \beta_{12}\left(e_{1} \wedge e_{3}\right)=0 \quad \beta_{12}\left(e_{2} \wedge e_{3}\right)=0
$$

Applying this to the alleged relation, we find that $r=0 \bmod 4$. Similar contructions for the other two pairs of indices $i<j$ show that $s=0 \bmod 4$ and $t=0 \bmod 24$. This shows that we have all the relations, and

$$
\bigwedge^{2}(M / N) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 4 \oplus \mathbb{Z} / 24
$$

as hoped/claimed.
Now consider the other version of this question. Namely, letting

$$
M=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad N=\mathbb{Z} \oplus 4 \mathbb{Z} \oplus 24 \mathbb{Z} \oplus 144 \mathbb{Z}
$$

compute the elementary divisors of $\left(\bigwedge^{2} M\right) /\left(\bigwedge^{2} N\right)$.
Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis for \mathbb{Z}^{4}. Let $i: N \rightarrow M$ be the inclusion. We have shown that exterior powers of free modules are free with the expected generators, so M is free on

$$
e_{1} \wedge e_{2}, \quad e_{1} \wedge e_{3}, \quad e_{1} \wedge e_{4}, \quad e_{2} \wedge e_{3}, \quad e_{2} \wedge e_{4}, \quad e_{3} \wedge e_{4}
$$

and N is free on

$$
(1 \cdot 4) e_{1} \wedge e_{2}, \quad(1 \cdot 24) e_{1} \wedge e_{3}, \quad(1 \cdot 144) e_{1} \wedge e_{4}, \quad(4 \cdot 24) e_{2} \wedge e_{3}, \quad(4 \cdot 144) e_{2} \wedge e_{4}, \quad(24 \cdot 144) e_{3} \wedge e_{4}
$$

The inclusion $i: N \rightarrow M$ induces a natural map $\bigwedge^{2} i: \bigwedge^{2} \rightarrow \bigwedge^{2} M$, taking $r \cdot e_{i} \wedge e_{j}\left(\right.$ in N) to $r \cdot e_{i} \wedge e_{j}$ (in $M)$. Thus, the quotient of $\bigwedge^{2} M$ by (the image of) $\bigwedge^{2} N$ is visibly

$$
\mathbb{Z} / 4 \oplus \mathbb{Z} / 24 \oplus \mathbb{Z} / 144 \oplus \mathbb{Z} / 96 \oplus \mathbb{Z} / 576 \oplus \mathbb{Z} / 3456
$$

The integers $4,24,144,96,576,3456$ do not quite have the property $4|24| 144|96| 576 \mid 3456$, so are not elementary divisors. The problem is that neither $144 \mid 96$ nor $96 \mid 144$. The only primes dividing all these integers are 2 and 3 , and, in particular,

$$
4=2^{2}, 24=2^{3} \cdot 3,144=2^{4} \cdot 3^{2}, 96=2^{5} \cdot 3,576=2^{6} \cdot 3^{2}, 3456=2^{7} \cdot 3^{3}
$$

From Sun-Ze's theorem,

$$
\mathbb{Z} /\left(2^{a} \cdot 3^{b}\right) \approx \mathbb{Z} / 2^{a} \oplus \mathbb{Z} / 3^{b}
$$

so we can rewrite the summands $\mathbb{Z} / 144$ and $\mathbb{Z} / 96$ as

$$
\mathbb{Z} / 144 \oplus \mathbb{Z} / 96 \approx\left(\mathbb{Z} / 2^{4} \oplus \mathbb{Z} / 3^{2}\right) \oplus\left(\mathbb{Z} / 2^{5} \oplus \mathbb{Z} / 3\right) \approx\left(\mathbb{Z} / 2^{4} \oplus \mathbb{Z} / 3\right) \oplus\left(\mathbb{Z} / 2^{5} \oplus \mathbb{Z} / 3^{2}\right) \approx \mathbb{Z} / 48 \oplus \mathbb{Z} / 288
$$

Now we do have $4|24| 48|288| 576 \mid 3456$, and

$$
\left(\bigwedge^{2} M\right) /\left(\bigwedge^{2} N\right) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 24 \oplus \mathbb{Z} / 48 \oplus \mathbb{Z} / 288 \oplus \mathbb{Z} / 576 \oplus \mathbb{Z} / 3456
$$

is in elementary divisor form.

