
(January 14, 2009)

[21.1] Consider the injection Z/2
t
−→Z/4 which maps

t : x+ 2Z→ 2x+ 4Z

Show that the induced map
t⊗ 1Z/2 : Z/2⊗Z Z/2→ Z/4⊗Z Z/2

is no longer an injection.

We claim that t⊗ 1 is the 0 map. Indeed,

(t⊗ 1)(m⊗ n) = 2m⊗ n = 2 · (m⊗ n) = m⊗ 2n = m⊗ 0 = 0

for all m ∈ Z/2 and n ∈ Z/2. ///

[21.2] Prove that if s : M → N is a surjection of Z-modules and X is any other Z module, then the induced
map

s⊗ 1Z : M ⊗Z X → N ⊗Z X

is still surjective.

Given
∑

i ni ⊗ xi in N ⊗Z X, let mi ∈M be such that s(mi) = ni. Then

(s⊗ 1)(
∑

i

mi ⊗ xi) =
∑

i

s(mi)⊗ xi =
∑

i

ni ⊗ xi

so the map is surjective. ///

[0.0.1] Remark: Note that the only issue here is hidden in the verification that the induced map s ⊗ 1
exists.

[21.3] Give an example of a surjection f : M → N of Z-modules, and another Z-module X, such that the
induced map

f ◦ − : HomZ(X,M)→ HomZ(X,N)

(by post-composing) fails to be surjective.

Let M = Z and N = Z/n with n > 0. Let X = Z/n. Then

HomZ(X,M) = HomZ(Z/n,Z) = 0

since
0 = ϕ(0) = ϕ(nx) = n · ϕ(x) ∈ Z

so (since n is not a 0-divisor in Z) ϕ(x) = 0 for all x ∈ Z/n. On the other hand,

HomZ(X,N) = HomZ(Z/n,Z/n) ≈ Z/n 6= 0

Thus, the map cannot possibly be surjective. ///

[21.4] Let G : {Z − modules} → {sets} be the functor that forgets that a module is a module, and just
retains the underlying set. Let F : {sets} → {Z − modules} be the functor which creates the free module
FS on the set S (and keeps in mind a map i : S → FS). Show that for any set S and any Z-module M

HomZ(FS,M) ≈ Homsets(S,GM)

Prove that the isomorphism you describe is natural in S. (It is also natural in M , but don’t prove this.)
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Our definition of free module says that FS = X is free on a (set) map i : S → X if for every set map
ϕ : S →M with R-module M gives a unique R-module map Φ : X →M such that the diagram

X
Φ

''NNNNNNN

S

i

OO

ϕ // M

commutes. Of course, given Φ, we obtain ϕ = Φ ◦ i by composition (in effect, restriction). We claim that
the required isomorphism is

HomZ(FS,M) oo Φ←→ϕ // Homsets(S,GM)

Even prior to naturality, we must prove that this is a bijection. Note that the set of maps of a set into an
R-module has a natural structure of R-module, by

(r · ϕ)(s) = r · ϕ(s)

The map in the direction ϕ → Φ is an injection, because two maps ϕ,ψ mapping S → M that induce the
same map Φ on X give ϕ = Φ ◦ i = ψ, so ϕ = ψ. And the map ϕ → Φ is surjective because a given Φ is
induced from ϕ = Φ ◦ i.

For naturality, for fixed S and M let the map ϕ→ Φ be named jS,M . That is, the isomorphism is

HomZ(FS,M) oo jS,X

Homsets(S,GM)

To show naturality in S, let f : S → S′ be a set map. Let i′ : S′ → X ′ be a free module on S′. That is,
X ′ = FS′. We must show that

HomZ(FS,M) oo jS,M

Homsets(S,GM)

HomZ(FS′,M) oo
jS′,M

−◦Ff

OO

Homsets(S′, GM)

−◦f

OO

commutes, where − ◦ f is pre-composition by f , and − ◦ Ff is pre-composition by the induced map
Ff : FS → FS′ on the free modules X = FS and X ′ = FS′. Let ϕ ∈ Homset(S′, GM), and
x =

∑
s rs · i(s) ∈ X = FS, Go up, then left, in the diagram, computing,

(jS,M ◦ (− ◦ f)) (ϕ)(x) = jS,M (ϕ ◦ f) (x) = jS,M (ϕ ◦ f)

(∑
s

rsi(s)

)
=
∑

s

rs(ϕ ◦ f)(s)

On the other hand, going left, then up, gives

((− ◦ Ff) ◦ jS′,M ) (ϕ)(x) = (jS′,M (ϕ) ◦ Ff) (x) = (jS′,M (ϕ))Ff(x)

= (jS′,M (ϕ))

(∑
s

rsi
′(fs)

)
=
∑

s

rsϕ(fs)

These are the same. ///

[21.5] Let M =
(
m21 m22 m23

m31 m32 m33

)
be a 2-by-3 integer matrix, such that the gcd of the three 2-by-2

minors is 1. Prove that there exist three integers m11,m12,m33 such that

det

m11 m12 m13

m21 m22 m23

m31 m32 m33

 = 1
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This is the easiest of this and the following two examples. Namely, let Mi be the 2-by-2 matrix obtained by
omitting the ith column of the given matrix. Let a, b, c be integers such that

a detM1 − bdetM2 + cdetM3 = gcd(detM1,detM2,detM3) = 1

Then, expanding by minors,

det

 a b c
m21 m22 m23

m31 m32 m33

 = adetM1 − bdetM2 + cdetM3 = 1

as desired. ///

[21.6] Let a, b, c be integers whose gcd is 1. Prove (without manipulating matrices) that there is a 3-by-3
integer matrix with top row (a b c) with determinant 1.

Let F = Z3, and E = Z · (a, b, c). We claim that, since gcd(a, b, c) = 1, F/E is torsion-free. Indeed, for
(x, y, z) ∈ F = Z3, r ∈ Z, and r · (x, y, z) ∈ E, there must be an integer t such that ta = rx, tb = ry, and
tc = rz. Let u, v, w be integers such that

ua+ vb+ wz = gcd(a, b, c) = 1

Then the usual stunt gives

t = t · 1 = t · (ua+ vb+ wz) = u(ta) + v(tb) + w(tc) = u(rx) + v(ry) + w(rz) = r · (ux+ vy + wz)

This implies that r|t. Thus, dividing through by r, (x, y, z) ∈ Z · (a, b, c), as claimed.

Invoking the Structure Theorem for finitely-generated Z-modules, there is a basis f1, f2, f3 for F and
0 < d1 ∈ Z such that E = Z · d1f1. Since F/E is torsionless, d1 = 1, and E = Z · f1. Further, since both
(a, b, c) and f1 generate E, and Z× = {±1}, without loss of generality we can suppose that f1 = (a, b, c).

Let A be an endomorphism of F = Z3 such that Afi = ei. Then, writing A for the matrix giving the
endomorphism A,

(a, b, c) ·A = (1, 0, 0)

Since A has an inverse B,
1 = det 13 = det(AB) = detA · detB

so the determinants of A and B are in Z× = {±1}. We can adjust A by right-multiplying by 1 0 0
0 1 0
0 0 −1


to make detA = +1, and retaining the property f1 ·A = e1. Then

A−1 = 13 ·A−1 =

 e1

e2

e3

 ·A−1 =

 a b c
∗ ∗ ∗
∗ ∗ ∗


That is, the original (a, b, c) is the top row of A−1, which has integer entries and determinant 1. ///

[21.7] Let

M =

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35


3
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and suppose that the gcd of all determinants of 3-by-3 minors is 1. Prove that there exists a 5-by-5 integer
matrix M̃ with M as its top 3 rows, such that det M̃ = 1.

Let F = Z5, and let E be the submodule generated by the rows of the matrix. Since Z is a PID and F is
free, E is free.

Let e1, . . . , e5 be the standard basis for Z5. We have shown that the monomials ei1∧ei2∧ei3 with i1 < i2 < i3
are a basis for

∧3
F . Since the gcd of the determinants of 3-by-3 minors is 1, some determinant of 3-by-3

minor is non-zero, so the rows of M are linearly independent over Q, so E has rank 3 (rather than something
less). The structure theorem tells us that there is a Z-basis f1, . . . , f5 for F and divisors d1|d2|d3 (all non-zero
since E is of rank 3) such that

E = Z · d1f1 ⊕ Z · d2f2 ⊕ Z · d3f3

Let i : E → F be the inclusion. Consider
∧3 :

∧3
E →

∧3
F . We know that

∧3
E has Z-basis

d1f1 ∧ d2f2 ∧ d3f3 = (d1d2d3) · (f1 ∧ f2 ∧ f3)

On the other hand, we claim that the coefficients of (d1d2d3) · (f1∧f2∧f3) in terms of the basis ei1 ∧ei2 ∧ei3

for
∧3
F are exactly (perhaps with a change of sign) the determinants of the 3-by-3 minors of M . Indeed,

since both f1, f2, f3 and the three rows of M are bases for the rowspace of M , the fis are linear combinations
of the rows, and vice-versa (with integer coefficients). Thus, there is a 3-by-3 matrix with determinant ±1
such that left multiplication of M by it yields a new matrix with rows f1, f2, f3. At the same time, this
changes the determinants of 3-by-3 minors by at most ±, by the multiplicativity of determinants.

The hypothesis that the gcd of all these coordinates is 1 means exactly that
∧3
F/
∧3
E is torsion-free. (If

the coordinates had a common factor d > 1, then d would annihilate the quotient.) This requires that
d1d2d3 = 1, so d1 = d2 = d3 = 1 (since we take these divisors to be positive). That is,

E = Z · f1 ⊕ Z · f2 ⊕ Z · f3

Writing f1, f2, and f3 as row vectors, they are Z-linear combinations of the rows of M , which is to say that
there is a 3-by-3 integer matrix L such that

L ·M =

 f1

f2

f3


Since the fi are also a Z-basis for E, there is another 3-by-3 integer matrix K such that

M = K ·

 f1

f2

f3


Then LK = LK = 13. In particular, taking determinants, both K and L have determinants in Z×, namely,
±1.

Let A be a Z-linear endomorphism of F = Z5 mapping fi to ei. Also let A be the 5-by-5 integer matrix
such that right multiplication of a row vector by A gives the effect of the endomorphism A. Then

L ·M ·A =

 f1

f2

f3

 ·A =

 e1

e2

e3


Since the endormorphism A is invertible on F = Z5, it has an inverse endomorphism A−1, whose matrix has
integer entries. Then

M = L−1 ·

 e1

e2

e3

 ·A−1
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Let

Λ =

L−1 0 0
0 1 0
0 0 ±1


where the ±1 = detA = detA−1. Then

Λ ·


e1

e2

e3

e4

e5

 ·A−1 = Λ · 15 ·A−1 = Λ ·A−1

has integer entries and determinant 1 (since we adjusted the ±1 in Λ). At the same time, it is

Λ ·A−1 =

L−1 0 0
0 1 0
0 0 ±1

 ·

e1

e2

e3

∗
∗

 ·A−1 =

M
∗
∗

 = 5-by-5

This is the desired integer matrix M̃ with determinant 1 and upper 3 rows equal to the given matrix.
///

[21.8] Let R be a commutative ring with unit. For a finitely-generated free R-module F , prove that there
is a (natural) isomorphism

HomR(F,R) ≈ F

Or is it only
HomR(R,F ) ≈ F

instead? (Hint: Recall the definition of a free module.)

For any R-module M , there is a (natural) isomorphism

i : M → HomR(R,M)

given by
i(m)(r) = r ·m

This is injective, since if i(m)(r) were the 0 homomorphism, then i(m)(r) = 0 for all r, which is to say that
r ·m = 0 for all r ∈ R, in particular, for r = 1. Thus, m = 1 ·m = 0, so m = 0. (Here we use the standing
assumption that 1 ·m = m for all m ∈M .) The map is surjective, since, given ϕ ∈ HomR(R,M), we have

ϕ(r) = ϕ(r · 1) = r · ϕ(1)

That is, m = ϕ(1) determines ϕ completely. Then ϕ = i(ϕ(m)) and m = i(m)(1), so these are mutually
inverse maps. This did not use finite generation, nor free-ness. ///

Consider now the other form of the question, namely whether or not

HomR(F,R) ≈ F

is valid for F finitely-generated and free. Let F be free on i : S → F , with finite S. Use the natural
isomorphism

HomR(F,R) ≈ Homsets(S,R)

5
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discussed earlier. The right-hand side is the collection of R-valued functions on S. Since S is finite, the
collection of all R-valued functions on S is just the collection of functions which vanish off a finite subset.
The latter was our construction of the free R-module on S. So we have the isomorphism. ///

[0.0.2] Remark: Note that if S is not finite, HomR(F,R) is too large to be isomorphic to F . If F is not
free, it may be too small. Consider F = Z/n and R = Z, for example.

[0.0.3] Remark: And this discussion needs a choice of the generators i : S → F . In the language style
which speaks of generators as being chosen elements of the module, we have most certainly chosen a basis.

[21.9] Let R be an integral domain. Let M and N be free R-modules of finite ranks r, s, respectively.
Suppose that there is an R-bilinear map

B : M ×N → R

which is non-degenerate in the sense that for every 0 6= m ∈ M there is n ∈ N such that B(m,n) 6= 0, and
vice-versa. Prove that r = s.

All tensors and homomorphisms are over R, so we suppress the subscript and other references to R when
reasonable to do so. We use the important identity (proven afterward)

Hom(A⊗B,C)
iA,B,C // Hom(A,Hom(B,C))

by
iA,B,C(Φ)(a)(b) = Φ(a⊗ b)

We also use the fact (from an example just above) that for F free on t : S → F there is the natural (given
t : S → F , anyway!) isomorphism

j : Hom(F,R) ≈ Homsets(S,R) = F

for modules E, given by
j(ψ)(s) = ψ(t(s))

where we use construction of free modules on sets S that they are R-valued functions on S taking non-zero
values at only finitely-many elements.

Thus,

Hom(M ⊗N,R) i // Hom(M,Hom(N,R))
j // Hom(M,N)

The bilinear form B induces a linear functional β such that

β(m⊗ n) = B(m,n)

The hypothesis says that for each m ∈M there is n ∈ N such that

i(β)(m)(n) 6= 0

That is, for all m ∈M , i(β)(m) ∈ Hom(N,R) ≈ N is 0. That is, the map m→ i(β)(m) is injective. So the
existence of the non-degenerate bilinear pairing yields an injection of M to N . Symmetrically, there is an
injection of N to M .

Using the assumption that R is a PID, we know that a submodule of a free module is free of lesser-or-equal
rank. Thus, the two inequalities

rankM ≤ rankN rankN ≤ rankM

6
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from the two inclusions imply equality. ///

[0.0.4] Remark: The hypothesis that R is a PID may be too strong, but I don’t immediately see a way
to work around it.

Now let’s prove (again?) that

Hom(A⊗B,C) i // Hom(A,Hom(B,C))

by
i(Φ)(a)(b) = Φ(a⊗ b)

is an isomorphism. The map in the other direction is

j(ϕ)(a⊗ b) = ϕ(a)(b)

First,
i(j(ϕ))(a)(b) = j(ϕ)(a⊗ b) = ϕ(a)(b)

Second,
j(i(Φ))(a⊗ b) = i(Φ)(a)(b) = Φ(a⊗ b)

Thus, these maps are mutual inverses, so each is an isomorphism. ///

[21.10] Write an explicit isomorphism

Z/a⊗Z Z/b→ Z/gcd(a, b)

and verify that it is what is claimed.

First, we know that monomial tensors generate the tensor product, and for any x, y ∈ Z

x⊗ y = (xy) · (1⊗ 1)

so the tensor product is generated by 1⊗ 1. Next, we claim that g = gcd(a, b) annihilates every x⊗ y, that
is, g · (x⊗ y) = 0. Indeed, let r, s be integers such that ra+ sb = g. Then

g · (x⊗ y) = (ra+ sb) · (x⊗ y) = r(ax⊗ y) = s(x⊗ by) = r · 0 + s · 0 = 0

So the generator 1⊗ 1 has order dividing g. To prove that that generator has order exactly g, we construct
a bilinear map. Let

B : Z/a× Z/b→ Z/g

by
B(x× y) = xy + gZ

To see that this is well-defined, first compute

(x+ aZ)(y + bZ) = xy + xbZ+ yaZ+ abZ

Since
xbZ+ yaZ ⊂ bZ+ aZ = gcd(a, b)Z

(and abZ ⊂ gZ), we have

(x+ aZ)(y + bZ) + gZ = xy + xbZ+ yaZ+ abZ+ Z

7
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and well-definedness. By the defining property of the tensor product, this gives a unique linear map β on
the tensor product, which on monomials is

β(x⊗ y) = xy + gcd(a, b)Z

The generator 1⊗ 1 is mapped to 1, so the image of 1⊗ 1 has order gcd(a, b), so 1⊗ 1 has order divisible by
gcd(a, b). Thus, having already proven that 1⊗ 1 has order at most gcd(a, b), this must be its order.

In particular, the map β is injective on the cyclic subgroup generated by 1 ⊗ 1. That cyclic subgroup is
the whole group, since 1 ⊗ 1. The map is also surjective, since ·1 ⊗ 1 hits r mod gcd(a, b). Thus, it is an
isomorphism. ///

[21.11] Let ϕ : R → S be commutative rings with unit, and suppose that ϕ(1R) = 1S , thus making S
an R-algebra. For an R-module N prove that HomR(S,N) is (yet another) good definition of extension of
scalars from R to S, by checking that for every S-module M there is a natural isomorphism

HomR(ResS
RM,N) ≈ HomS(M,HomR(S,N)

where ResS
RM is the R-module obtained by forgetting S, and letting r ∈ R act on M by r ·m = ϕ(r)m. (Do

prove naturality in M , also.)

Let
i : HomR(ResS

RM,N)→ HomS(M,HomR(S,N)

be defined for ϕ ∈ HomR(ResS
RM,N) by

i(ϕ)(m)(s) = ϕ(s ·m)

This makes some sense, at least, since M is an S-module. We must verify that i(ϕ) : M → HomR(S,N) is
S-linear. Note that the S-module structure on HomR(S,N) is

(s · ψ)(t) = ψ(st)

where s, t ∈ S, ψ ∈ HomR(S,N). Then we check:

(i(ϕ)(sm)) (t) = i(ϕ)(t · sm) = i(ϕ)(stm) = i(ϕ)(m)(st) = (s · i(ϕ)(m)) (t)

which proves the S-linearity.

The map j in the other direction is described, for Φ ∈ HomS(M,HomR(S,N), by

j(Φ)(m) = Φ(m)(1S)

where 1S is the identity in S. Verify that these are mutual inverses, by

i(j(Φ))(m)(s) = j(Φ)(s ·m) = Φ(sm)(1S) = (s · Φ(m)) (1S) = Φ(m)(s · 1S) = Φ(m)(s)

as hoped. (Again, the equality
(s · Φ(m)) (1S) = Φ(m)(s · 1S)

is the definition of the S-module structure on HomR(S,N).) In the other direction,

j(i(ϕ))(m) = i(ϕ)(m)(1S) = ϕ(1 ·m) = ϕ(m)

Thus, i and j are mutual inverses, so are isomorphisms.

8
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For naturality, let f : M → M ′ be an S-module homomorphism. Add indices to the previous notation, so
that

iM,N : HomR(ResS
RM,N)→ HomS(M,HomR(S,N)

is the isomorphism discussed just above, and iM ′,N the analogous isomorphism for M ′ and N . We must
show that the diagram

HomR(ResS
RM,N)

iM,N // HomS(M,HomR(S,N)

HomR(ResS
RM

′, N)
iM′,N //

−◦f

OO

HomS(M ′,HomR(S,N)

−◦f

OO

commutes, where − ◦ f is pre-composition with f . (We use the same symbol for the map f : M → M ′ on
the modules whose S-structure has been forgotten, leaving only the R-module structure.) Starting in the
lower left of the diagram, going up then right, for ϕ ∈ HomR(ResS

RM
′, N),

(iM,N ◦ (− ◦ f) ϕ) (m)(s) = (iM,N (ϕ ◦ f)) (m)(s) = (ϕ ◦ f)(s ·m) = ϕ(f(s ·m))

On the other hand, going right, then up,

((− ◦ f) ◦ iM ′,N ϕ) (m)(s) = (iM ′,N ϕ) (fm)(s) = ϕ(s · fm) = ϕ(f(s ·m))

since f is S-linear. That is, the two outcomes are the same, so the diagram commutes, proving functoriality
in M , which is a part of the naturality assertion. ///

[21.12] Let
M = Z⊕ Z⊕ Z⊕ Z N = Z⊕ 4Z⊕ 24Z⊕ 144Z

What are the elementary divisors of
∧2(M/N)?

First, note that this is not the same as asking about the structure of (
∧2
M)/(

∧2
N). Still, we can address

that, too, after dealing with the question that was asked.

First,
M/N = Z/Z⊕ Z/4Z⊕ Z/24Z⊕ Z/144Z ≈ Z/4⊕ Z/24⊕ Z/144

where we use the obvious slightly lighter notation. Generators for M/N are

m1 = 1⊕ 0⊕ 0 m2 = 0⊕ 1⊕ 0 m3 = 0⊕ 0⊕ 1

where the 1s are respectively in Z/4, Z/24, and Z/144. We know that ei ∧ ej generate the exterior square,
for the 3 pairs of indices with i < j. Much as in the computation of Z/a⊗Z/b, for e in a Z-module E with
a · e = 0 and f in E with b · f = 0, let r, s be integers such that

ra+ sb = gcd(a, b)

Then
gcd(a, b) · e ∧ f = r(ae ∧ f) + s(e ∧ bf) = r · 0 + s · 0 = 0

Thus, 4 · e1 ∧ e2 = 0 and 4 · e1 ∧ e3 = 0, while 24 · e2 ∧ e3 = 0. If there are no further relations, then we could
have ∧2(M/N) ≈ Z/4⊕ Z/4⊕ Z/24

(so the elementary divisors would be 4, 4, 24.)

9
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To prove, in effect, that there are no further relations than those just indicated, we must construct suitable
alternating bilinear maps. Suppose for r, s, t ∈ Z

r · e1 ∧ e2 + s · e1 ∧ e3 + t · e2 ∧ e3 = 0

Let
B12 : (Ze1 ⊕ Ze2 ⊕ Ze3)× (Ze1 ⊕ Ze2 ⊕ Ze3)→ Z/4

by
B12(xe1 + ye2 + ze3, ξe1 + ηe2 + ζe3) = (xη − ξy) + 4Z

(As in earlier examples, since 4|4 and 4|24, this is well-defined.) By arrangement, this B12 is alternating,
and induces a unique linear map β12 on

∧2(M/N), with

β12(e1 ∧ e2) = 1 β12(e1 ∧ e3) = 0 β12(e2 ∧ e3) = 0

Applying this to the alleged relation, we find that r = 0 mod 4. Similar contructions for the other two pairs
of indices i < j show that s = 0 mod 4 and t = 0 mod 24. This shows that we have all the relations, and∧2(M/N) ≈ Z/4⊕ Z/4⊕ Z/24

as hoped/claimed. ///

Now consider the other version of this question. Namely, letting

M = Z⊕ Z⊕ Z⊕ Z N = Z⊕ 4Z⊕ 24Z⊕ 144Z

compute the elementary divisors of (
∧2
M)/(

∧2
N).

Let e1, e2, e3, e4 be the standard basis for Z4. Let i : N →M be the inclusion. We have shown that exterior
powers of free modules are free with the expected generators, so M is free on

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4

and N is free on

(1 · 4) e1 ∧ e2, (1 · 24) e1 ∧ e3, (1 · 144) e1 ∧ e4, (4 · 24) e2 ∧ e3, (4 · 144) e2 ∧ e4, (24 · 144) e3 ∧ e4

The inclusion i : N →M induces a natural map
∧2
i :
∧2 →

∧2
M , taking r · ei ∧ ej (in N) to r · ei ∧ ej (in

M). Thus, the quotient of
∧2
M by (the image of)

∧2
N is visibly

Z/4⊕ Z/24⊕ Z/144⊕ Z/96⊕ Z/576⊕ Z/3456

The integers 4, 24, 144, 96, 576, 3456 do not quite have the property 4|24|144|96|576|3456, so are not
elementary divisors. The problem is that neither 144|96 nor 96|144. The only primes dividing all these
integers are 2 and 3, and, in particular,

4 = 22, 24 = 23 · 3, 144 = 24 · 32, 96 = 25 · 3, 576 = 26 · 32, 3456 = 27 · 33,

From Sun-Ze’s theorem,
Z/(2a · 3b) ≈ Z/2a ⊕ Z/3b

so we can rewrite the summands Z/144 and Z/96 as

Z/144⊕ Z/96 ≈ (Z/24 ⊕ Z/32)⊕ (Z/25 ⊕ Z/3) ≈ (Z/24 ⊕ Z/3)⊕ (Z/25 ⊕ Z/32) ≈ Z/48⊕ Z/288

Now we do have 4|24|48|288|576|3456, and

(
∧2
M)/(

∧2
N) ≈ Z/4⊕ Z/24⊕ Z/48⊕ Z/288⊕ Z/576⊕ Z/3456

is in elementary divisor form. ///
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