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We prove the Poincaré-Birkhoff-Witt Theorem on the structure of enveloping algebras of Lie algebras. The
argument here is basically that given in Jacobson. The same argument is reproduced later in Varadarajan.
By contrast, a somewhat different argument is given in Bourbaki, and by Humphreys.

N. Bourbaki, Groupes et algèbres de Lie, Chap. 1, Paris: Hermann, 1960.

N. Jacobson, Lie Algebras, Dover, 1962.

J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972.

V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, Springer-Verlag, 1974, 1984.

It is not clear a priori that the Jacobi identity

[x, [y, z]]− [y, [x, z]] = [[x, y], z]

plays a role in the argument, but it does. At the same time, apart from Jacobson’s device of use of the
endomorphism L (see below), the argument is mostly very natural. And we note that the Jacobi identity is
the assertion that the adjoint action of a Lie algebra on itself is a Lie algebra representation.

The following argument does not use any further properties of the Lie algebra g, so must be general. The
result is constantly invoked, so frequently, in fact, that one might tire of citing it and declare that it is
understood that everyone should keep this in mind. It is surprisingly difficult to prove.

Thinking of the universal property of the universal enveloping algebra, we might interpret the free-ness
assertion of the theorem as an assertion that, in the range of possibilities for abundance or poverty of
representations of the Lie algebra g, the actuality is abundance rather than scarcity.

[0.0.1] Theorem: For any basis {xi : i ∈ I} of a Lie algebra g with ordered index set I, the monomials

xe1
i1
. . . xen

in
(with i1 < . . . < in, and integers ei > 0)

form a basis for the enveloping algebra Ug.

[0.0.2] Corollary: The natural map of a Lie algebra to its universal enveloping algebra is an injection.
///

Proof: Since we do not yet know that g injects to Ug, let i : g→ Ug be the natural Lie homomorphism. The
easy part of the argument is to observe that these monomials span. Indeed, whatever unobvious relations
may hold in Ug,

Ug = R+
∞∑

n=1

i(g) . . . i(g)︸ ︷︷ ︸
n

though we are not claiming that the sum is direct (it is not). Let

Ug≤N = R+
N∑

n=1

i(g) . . . i(g)︸ ︷︷ ︸
n

Start from the fact that i(xk) and i(x`) commute modulo i(g), specifically,

i(xk) i(x`)− i(x`) i(xk) = i[xk, x`]
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This reasonably suggests an induction proving that for α, β in Ug≤n

αβ − βα ∈ Ug≤n−1

This much does not require much insight. We amplify upon this below.

The hard part of the argument is basically from Jacobson, and applies to not-necessarily finite-dimensional
Lie algebras over arbitrary fields k of characteristic 0, using no special properties of R. The assumption
of characteristic 0 is not directly used; rather, the proper definition of Lie algebra in positive characteristic
includes further conditions, which we ignore. Thus, our definition of Lie algebra in positive characteristic is
incomplete.

Let Tn be
Tn = g⊗ . . .⊗ g︸ ︷︷ ︸

n

the space of homogeneous tensors of degree n, and T the tensor algebra

T = k ⊕ T1 ⊕ T2 ⊕ . . .

of g. For x, y ∈ g let
ux,y = (x⊗ y − y ⊗ x)− [x, y] ∈ T2 + T1 ⊂ T

Let J be the two-sided ideal in T generated by the set of all elements ux,y. Since ux,y ∈ T1 + T2, the ideal
J contains no non-zero elements of T0 ≈ k, so J is a proper ideal in T .

Let U = T/J be the quotient, the universal enveloping algebra of g. Let

q : T −→ U

be the quotient map.

For any basis {xi : i ∈ I} of g the images q(xi1 ⊗ . . . ⊗ xin
) in U of tensor monomials xi1 ⊗ . . . ⊗ xin

span
the enveloping algebra over k, since they span the tensor algebra.

With an ordered index set I for the basis of g, using the Lie bracket [, ], we can rearrange the xij
’s in a

monomial. We anticipate that everything in U can be rewritten to be a sum of monomials xi1 . . . xin where

i1 ≤ i2 ≤ . . . in

A monomial in with indices so ordered is a standard monomial.

To form the induction that proves that the (images of) standard monomials span U , consider a monomial
xi1 . . . xin with indices not correctly ordered. There must be at least one index j such that

ij > ij+1

Since
xij
xij+1 − xij+1xij

− [xij
, xij+1 ] ∈ J

we have
xi1 . . . xin

= xi1 . . . xij−1 · (xij
xij+1 − xij+1xij

− [xij
, xij+1 ]) · xij+2 . . . xin

+xi1 . . . xij−1xij+1xij
xij+2 . . . xin

+ xi1 . . . xij−1 [xij
, xij+1 ]xij+2 . . . xin

The first summand lies inside the ideal J , while the third is a tensor of smaller degree. Thus, do induction
on degree of tensors, and for each fixed degree do induction on the number of pairs of indices out of order.
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The serious assertion is linear independence. Given a tensor monomial xi1 ⊗ . . .⊗ xin
, say that the defect

of this monomial is the number of pairs of indices j, j′ such that j < j′ but ij > ij′ . Suppose that we can
define a linear map

L : T → T

such that L is the identity map on standard monomials, and whenever ij > ij+1

L(xi1 ⊗ . . .⊗ xin) = L(xi1 ⊗ . . .⊗ xij+1 ⊗ xij ⊗ . . .⊗ xin)

+L(xi1 ⊗ . . .⊗ [xij
, xij+1 ]⊗ . . .⊗ xin

)

If there is such L, then L(J) = 0, while L acts as the identity on any linear combination of standard
monomials. This would prove that the subspace of T consisting of linear combinations of standard monomials
meets the ideal J just at 0, so maps injectively to the enveloping algebra.

Incidentally, L would have the property that

L(yi1 ⊗ . . .⊗ yin
) = L(yi1 ⊗ . . .⊗ yij+1 ⊗ yij

⊗ . . .⊗ yin
)

+L(yi1 ⊗ . . .⊗ [yij , yij+1 ]⊗ . . .⊗ yin)

for any vectors yij in g.

Thus, the problem reduces to defining L. Do an induction to define L. First, define L to be the identity
on T0 + T1. Note that the first condition on L is vacuous here, and the second condition follows since every
monomial tensor of degree 1 or 0 is standard.

Now fix n ≥ 2, and attempt to define L on monomials in T≤n inductively by using the second required
property: define L(xi1 ⊗ . . .⊗ xin) by

L(xi1 ⊗ . . .⊗ xin
) = L(xi1 ⊗ . . .⊗ xij+1 ⊗ xij

⊗ . . .⊗ xin
)

+L(xi1 ⊗ . . .⊗ [xij
, xij+1 ]⊗ . . .⊗ xin

)

where ij > ij+1. One term on the right-hand side is of lower degree, and the other is of smaller defect. Thus,
we do induction on degree of tensor monomials, and for each fixed degree do induction on defect.

The potential problem is the well-definedness of this definition. Monomials of degree n and of defect 0 are
already standard. For monomials of degree n and of defect 1 the definition is unambiguous, since there is
just one pair of indices that are out of order.

So suppose that the defect is at least two. Let j < j′ be two indices so that both ij > ij+1 and ij′ > ij′+1.
To prove well-definedness it suffices to show that the two right-hand sides of the defining relation for
L(xi1 ⊗ . . .⊗ xin) are the same element of T .

Consider the case that j + 1 < j′. Necessarily n ≥ 4. (In this case the two rearrangements do not interact
with each other.) Doing the rearrangement specified by the index j,

L(xi1 ⊗ . . .⊗ xin) = L(xi1 ⊗ . . .⊗ xij+1 ⊗ xij ⊗ . . .⊗ xin)

+L(xi1 ⊗ . . .⊗ [xij
, xij+1 ]⊗ . . .⊗ xin

)

The first summand on the right-hand side has smaller defect, and the second has smaller degree, so we can
use the inductive definition to evaluate them both. And still has ij′ > ij′+1. Nothing is lost if we simplify
notation by taking j = 1, j′ = 3, and n = 4, since all the other factors in the monomials are inert. Further,
to lighten the notation write x for xi1 , y for xi2 , z for xi3 , and w for xi4 . We use the inductive definition to
obtain
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L(x⊗ y ⊗ z ⊗ w) = L(y ⊗ x⊗ z ⊗ w) + L([x, y]⊗ z ⊗ w)

= L(y ⊗ x⊗ w ⊗ z) + L(y ⊗ x⊗ [z, w])

+L([x, y]⊗ w ⊗ z) + L([x, y]⊗ [z, w])

But then it is clear (or can be computed analogously) that the same expression is obtained when the roles
of j and j′ are reversed. Thus, the induction step is completed in case j + 1 < j′.

Now consider the case that j + 1 = j′, that is, the case in which the interchanges do interact. Here nothing
is lost if we just take j = 1, j′ = 2, and n = 3. And write x for xi1 , y for xi2 , z for xi3 . Thus,

i1 > i2 > i3

Then, on one hand, applying the inductive definition by first interchanging x and y, and then further
reshuffling,

L(x⊗ y ⊗ z) = L(y ⊗ x⊗ z) + L([x, y]⊗ z) = L(y ⊗ z ⊗ x) + L(y ⊗ [x, z]) + L([x, y]⊗ z)

= L(z ⊗ y ⊗ x) + L([y, z]⊗ x) + L(y ⊗ [x, z]) + L([x, y]⊗ z)

On the other hand, starting by doing the interchange of y and z gives

L(x⊗ y ⊗ z) = L(x⊗ z ⊗ y) + L(x⊗ [y, z]) = L(z ⊗ x⊗ y) + L([x, z]⊗ y) + L(x⊗ [y, z])

= L(z ⊗ y ⊗ x) + L(z ⊗ [x, y]) + L([x, z]⊗ y) + L(x⊗ [y, z])

It remains to see that the two right-hand sides are the same.

Since L is already well-defined, by induction, for tensors of degree n − 1 (here in effect n − 1 = 2), we can
invoke the property

L(v ⊗ w) = L(w ⊗ v) + L([v, w])

for all v, w ∈ g. Apply this to the second, third, and fourth terms in the first of the two previous computations,
to obtain

L(x⊗ y ⊗ z)

= L(z⊗y⊗x)+
(
L(x⊗ [y, z]) + L([[y, z], x])

)
+
(
L([x, z]⊗ y) + L([y, [x, z]])

)
+
(
L(z ⊗ [x, y]) + L([[x, y], z])

)
The latter differs from the right-hand side of the second computation just by the expressions involving
doubled brackets, namely

L([[y, z], x]) + L([y, [x, z]]) + L([[x, y], z])

Thus, we wish to prove that the latter is 0. Having the Jacobi identity in mind motivates some rearrangement:
move L([[x, y], z]) to the right-hand side of the equation, multiply through by −1, and reverse the outer
bracket in the first summand, to give the equivalent requirement

L([x, [y, z]])− L([y, [x, z]]) = L([[x, y], z])

This equality follows from application of L to the Jacobi identity. ///
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