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(The present proof of this old result roughly follows the proof given in Hörmander’s An Introduction to
Complex Analysis in Several Variables, which I believe roughly follows Hartogs’ original argument.)

Theorem: Let f be a C-valued function defined in an open set U ⊂ Cn. Suppose that f is analytic in
each variable zj when the other coordinates zk for k 6= j are fixed. Then f is analytic as a function of all n
coordinates.

Remark: Absolutely no additional hypothesis on f is used beyond its separate analyticity. Specifically,
there is no assumption of continuity, nor even of measurability. Indeed, the beginning of the proof illustrates
the fact that an assumption of continuity trivializes things. The strength of the theorem is that no hypothesis
whatsoever is necessary.

Proof: The assertion is local, so it suffices to prove it when the open set U is a polydisk. The argument
approaches the full assertion in stages.

First, suppose that f is continuous on the closure Ū of a polydisk U , and separately analytic. Even without
continuity, simply by separate analyticity, an n-fold iterated version of Cauchy’s one-variable integral formula
is valid, namely

f(z) =
1

(2πi)n

∫
C1

. . .

∫
Cn

f(ζ)
(ζ1 − z1) . . . (ζn − zn)

dζ1 . . . dζn

where Cj is the circle bounding the disk in which zj lies, traversed in the positive direction. The integral is
a compactly supported integral of the function

(ζ1, . . . , ζn) → f(ζ1, . . . , ζn)
(ζ1 − z1) . . . (ζn − zn)

For |zj | < |ζj |, the geometric series expansion

1
ζj − zj

=
∑
n≥0

zn
j

ζn+1
j

can be substituted into the latter integral. Fubini’s theorem justifies interchange of summation and
integration, yielding a (convergent) power series for f(z). Thus, continuity of f(z) (with separate analyticity)
implies joint continuity.

Note that if we could be sure that every conceivable integral of analytic functions were analytic, then this
iterated one-variable Cauchy formula would prove (joint) analyticity immediately. However, it is not obvious
that separate analyticity implies continuity, for example.

Next we see that boundedness of a separately analytic function on a closed polydisk implies continuity, using
Schwarz’ lemma and its usual corollary:

Lemma: (Schwarz) Let g(z) be a holomorphic function on {z ∈ C : |z| < 1}, with g(0) = 0 and |g(z)| ≤ 1.
Then |g(z)| ≤ |z| and |g′(0)| ≤ 1. (Proof: Apply the maximum modulus principle to f(z)/z on disks of
radius less than 1.)

Corollary: Let g(z) be a holomorphic function on {z ∈ C : |z| < r}, with |g(z)| ≤ B for a bound B. Then
for z, ζ in that disk,

|g(z)− g(ζ)| ≤ 2 ·B ·
∣∣∣∣r(z − ζ)
r2 − ζ̄z

∣∣∣∣
Proof: (of corollary) The linear fractional transformation

µ : z → r ·
(

1 ζ/r
ζ̄/r 1

)
(rz) = r · z + rζ

ζ̄z + r
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sends the disk of radius 1 to the disk of radius r, and sends 0 to ζ. Then the function

z → g(µ(z))− g(ζ)
2B

is normalized to match Schwarz’ lemma, namely that it vanishes at 0, and is bounded by 1 on the open unit
disk. Thus, we conclude that for |z| < 1 ∣∣∣∣g(µ(z))− g(ζ)

2B

∣∣∣∣ ≤ |z|

Replace z by

µ−1(z) =
r(z − ζ)
r2 − ζ̄z

to obtain ∣∣∣∣g(z)− g(ζ)
2B

∣∣∣∣ ≤ ∣∣∣∣r(z − ζ)
r2 − ζ̄z

∣∣∣∣
as asserted in the corollary. ///

Now let f be separately analytic and bounded on the closure of the polydisk {(z1, . . . , zn) : |zj | < rj}. We
show that f is (jointly) analytic by proving it is continuous, invoking the first part of the proof (above). Let
B be a bound for |f | on the closed polydisk. We claim that the inequality

|f(z)− f(ζ)| ≤ 2B
∑

1≤j≤n

rj |zj − ζj |
|r2

j − ζ̄jzj |

holds, which would prove continuity. Because of the telescoping expression

f(z)− f(ζ) =
∑

1≤j≤n

(f(ζ1, . . . , ζj−1, zj , . . . , zn)− f(ζ1, . . . , ζj , ζj , zj+1, . . . , zn))

it suffices to prove the inequality in the single-variable case, which is the immediate corollary to Schwarz’
lemma as above. Thus, a bounded separately analytic f is continuous, and (from above) jointly analytic.

Now we do induction on the dimension n: suppose that Hartogs’ theorem is proven on Cn−1, and prove it
for Cn. Here the Baire Category Theorem intervenes, getting started on the full statement of the theorem
by first showing that a separately analytic function must be bounded on some polydisk, hence (from above)
continuous on that polydisk, hence (from above) analytic on that polydisk.

Let f be separately analytic on a (non-empty) closed polydisk D =
∏

1≤j≤n Dj , where Dj is a disk in
C. We claim that there exist non-empty closed disks Ej ⊂ Dj with En = Dn such that f is bounded on
E =

∏
1≤j≤n Ej (and, hence, f is analytic in E).

To see this, for each bound B > 0 let

ΩB = {z′ ∈
∏

1≤j≤n−1

Ej : |f(z′, zn)| ≤ B for all zn ∈ En}

By induction, for fixed zn the function z′ → f(z′, zn) is analytic, so continuous, so ΩB is closed. For any
fixed z′, the function zn → f(z′, zn) is assumed analytic, so is continuous on the closed disk En = Dn, hence
bounded. Thus

∞⋃
B=1

ΩB =
∏

1≤j≤n−1

Dj

Then the Baire Category Theorem shows that some ΩB must have non-empty interior, so must contain a
(non-empty) closed polydisk, as claimed
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Now let f be separately analytic in a polydisk

D = {(z1, . . . , zn) : |zj | < r} ⊂ Cn

analytic in z′ = (z1, . . . , zn−1) for fixed zn, and suppose that f is analytic in a smaller (non-empty) polydisk

E =

 ∏
1≤j≤n−1

{zj ∈ C : |zj | < ε}

× {zn ∈ C : |zn| < r}

inside D. Then we claim that f is analytic on the original polydisk D.

By the iterated form of Cauchy’s formula, the function z′ → f(z′, zn) has a Taylor expansion in z′

f(z′, z) =
∑
α

cα(zn) z′α

where the coefficients depend upon zn, given by the usual formula

cα(zn) =
∂α

∂z′α
f(0, zn)/α!

using multi-index notation. Cauchy’s integral formula in z′ for derivatives

∂α

∂z′α
f(0, zn) = α!

1
(2πi)n−1

∫
C1

. . .

∫
Cn−1

f(ζ)
(ζ1 − z1)α1+1 . . . (ζn−1 − zn−1)αn−1+1

dζ1 . . . dζn−1

shows that cα(zn) is analytic in zn, again by expanding convergent geometric series and their derivatives,
and interchanging summation and integration.

Fix 0 < r1 < r2 < r and fix zn with |zn| < r. Then

|cα(zn)| · r|α|2 → 0

as |α| → ∞, by the convergence of the power series. Let B be a bound for |f | on the smaller polydisk E.
Then on that smaller polydisk the Cauchy integral formula for the derivative gives

|cα(zn)| ≤ B/ε|α|

Therefore, the subharmonic functions

uα(zn) =
1
|α|

log |cα(zn)|

are uniformly bounded from above for |zn| < r. And the property |cα(zn)| · r|α|2 → 0 shows that for fixed zn

log(1/r2) is an upper bound for these subharmonic functions as |α| → ∞. Thus, Hartogs’ lemma (recalled
below) on subharmonic functions implies that for large |α|, uniformly in |zn| < r1

1
|α|

log |cα(zn)| ≤ log(1/r1)

Thus, for large |α|
|cα(zn)| · r|α|1 ≤ 1

uniformly in |zn| < r1. Therefore, since the summands cα(zn) z′α are analytic, the series

f(z′, z) =
∑
α

cα(zn) z′α
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converges to a function analytic in the polydisk D.

Thus, in summary, given z ∈ U , choose r > 0 so that the polydisk of radius 2r centered at z is contained in
U . The Baire category argument above shows that there is w such that z is inside a polydisk D of radius
r centered at w, and such that f is holomorphic on some smaller polydisk E inside D (still centered at w).
Finally one uses Hartogs’ lemma on subharmonic functions (below) to see that the power series for f on the
small polydisk E at w converges on the larger polydisk D at w. Since D contains the given point z, f is
analytic on a neighborhood of z. Thus, f is analytic throughout U . ///

Lemma: (Hartogs) Let uj be a sequence of real-valued subharmonic functions in an open set U in C.
Suppose that the functions are uniformly bounded from above, and that

lim sup
k

uk(z) ≤ C

for every z ∈ U . Then, given ε > 0 and compact K ⊂ U there exists ko such that for z ∈ K and k ≥ ko

uk(z) ≤ C + ε

Proof: Without loss of generality, replacing U by an open subset with compact closure contained inside U ,
we may suppose that the functions uk are uniformly bounded in U , for example uk(z) ≤ 0 for all z ∈ U . Let
r > 0 be small enough so that the distance from K to every point of the complement of U is more than 3r.
Using the proposition below characterizing subharmonic functions, we have, for every z ∈ K,

πr2uk(z) ≤
∫
|z−ζ|<r

uk(ζ) dζ

By Fatou’s lemma, the lim sup of the right hand side is at most πr2C as k → ∞. Thus, for every z ∈ K
there is ko such that for k ≥ ko ∫

|z−ζ|<r

uk(ζ) dζ ≤ πr2(C + ε/2)

Since uk(z) ≤ 0, for |z − w| < δ < r

π(r + δ)2 uk(w) ≤
∫
|ζ−w|<r+δ|

uk(ζ) dζ ≤
∫
|ζ−z|≤r

uk(ζ) dζ

Thus, for δ > 0 sufficiently small, for k ≥ ko and |w − z| < δ,

uk(w) < C + ε

Since K is compact the lemma follows. ///

For convenience, we recall the following basic property of subharmonic functions.

Proposition: For a real-valued subharmonic function u bounded above on an open set U , for every positive
measure µ on [0, δ], and for z ∈ U of distance more than δ from the complement of U ,

u(z) · 2π ·
∫

dµ ≤
∫ 2π

0

∫
u(z + reiθ) dθ dµ(r)

Proof: The definition of a function u being subharmonic on an open set Ω is that u is upper semicontinuous
(that is, {z ∈ Ω : u(z) < c} is open for every constant c), and for every compact K ⊂ Ω, for every continuous
function h on K harmonic on K and h(β) ≥ u(β) for β on the boundary of K, u(z) ≤ h(z) throughout K.
The condition may be vacuous unless u is assumed bounded from above.
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Let z ∈ U be distance more than δ away from the complement of U , and fix r with 0 < r ≤ δ. Let D be the
closed disk of radius r about z. Since r ≤ δ, D ⊂ U . For a trigonometric polynomial

g(θ) =
∑

k

ck eiθ

with real coefficients ck with u(z + reiθ) ≤ g(θ), the polynomial

G(ζ) = c0 +
∑
k>0

(ck + c−k)
(ζ − z)k

rk

has real part ReG which is an upper bound for u on the boundary of the disk D. Thus, u ≤ ReG on D by
the subharmonicness of u, and in particular at the center of D, at z,

u(z) ≤ co +
1
2π

∫ 2π

0

g(θ) dθ

Then for an arbitrary continuous real-valued function h on the boundary of D and with u(z + reiθ) ≤ h(θ),
(by Weierstrass approximation, for example) given ε > 0 we can find a trigonometric polynomial g so that
sup |g(θ)− h(θ)| < ε. Thus, for every ε > 0,

u(z) ≤ co +
1
2π

∫ 2π

0

h(θ) dθ + ε

Thus, the latter inequality must hold with ε = 0, for continuous h. Since the integral of an upper-
semicontinuous function is the infimum of the integrals of continuous functions dominating it, we have the
same inequality with u in place of h. Integration with respect to the radius r gives the result.
///

In fact, suppose that for every δ > 0 and for every z at distance more than δ from the complement of U
there exists a positive measure µ on [0, δ] with support not just {0} and

u(z) · 2π ·
∫

dµ ≤
∫ 2π

0

∫
u(z + reiθ) dθ dµ(r)

Then u is subharmonic. To see this, let K be a compact subset of U , h a continuous function on K which
is harmonic in the interior of K and such that u ≤ g on the boundary of K. If the supremum of u− h over
K is strictly positive, the upper semicontinuity of u− h implies that u− h attains its sup S on a non-empty
compact subset M of the interior of K. Let zo be a point of M closest to the boundary of K. If the distance
is greater than δ, then every circle |z − zo| = r with 0 < r ≤ δ contains a non-empty arc of points where
u− h < S. Then∫

(u− h)(zo + reiθ)) dθ dµ(r) < S · 2π ·
∫

dµ(r) = (u− h)(zo) · 2π ·
∫

dµ(r)

when µ is a measure not supported just at {0}. The mean value property for harmonic functions gives∫
h(zo + reiθ)) dθ dµ(r) = h(zo) · 2π ·

∫
dµ(r)

Thus, ∫
u(zo + reiθ)) dθ dµ(r) < u(zo) · 2π ·

∫
dµ(r)

contradicting the hypothesis. Thus, supK(u− h) ≤ 0, which proves that u is subharmonic. ///
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