Asymptotics at regular singular points

> Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/
[This document is
http://www.math.umn.edu/~garrett/m/mfms/notes_2013-14/11b_reg_sing_pt.pdf]

- Introduction

1. Example
2. Regular singular points
3. Regular singular points at infinity
4. Examples reprise
5. Appendix: ordinary points
6. Appendix: Euler-Cauchy equations
7. Appendix: Abel's theorem on differentiation of convergent power series

- Bibliography

Differential equations ${ }^{[1]}$

$$
x^{2} u^{\prime \prime}+b x u^{\prime}+c u=0 \quad \text { (with constants } b, c \text {) }
$$

have easy-to-understand solutions on $(0,+\infty)$: linear combinations of x^{α}, x^{β} for α, β solutions of the indicial equation

$$
X(X-1)+b X+c=0
$$

when the roots are distinct. Therefore, it is reasonable to imagine that a differential equation

$$
x^{2} u^{\prime \prime}+x b(x) u^{\prime}+c(x) u=0
$$

with b, c analytic near 0 has solutions asymptotic, as $x \rightarrow 0^{+}$, to solutions of the differential equation $x^{2} u^{\prime \prime}+b(0) x u^{\prime}+c(0) u=0$ obtained by freezing the coefficients $b(x), c(x)$ of the original at $x=0^{+}$. That is, solutions of the variable-coefficient equation should be asymptotic to x^{α} for solutions α to the indicial equation $X(X-1)+b(0) X+c(0)=0$. An equation of that form, with b, c analytic near 0 , is said to have a regular singular point at 0 . Discussion below explains the behavior of solutions to such equations.

1. Examples

We give a useful example from the non-Euclidean geometry on the upper half-plane. Recall that the $S L_{2}(\mathbb{R})$ invariant ${ }^{[2]}$ Laplacian on the upper half-plane \mathfrak{H} is ${ }^{[3]}$

$$
\Delta^{\mathfrak{H}}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

[1] These Euler-type or Cauchy-type differential equations are well understood. See the appendix.
[2] As usual, $S L_{2}(\mathbb{R})$ acts by linear fractional transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(z)=\frac{a z+b}{c z+d}$ on \mathfrak{H}. In particular, there are real translations $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)(z)=z+t$ for $t \in \mathbb{R}$, and positive real dilations $\left(\begin{array}{cc}\sqrt{t} & 0 \\ 0 & 1 / \sqrt{t}\end{array}\right)(z)=t z$ for $t>0$.
[3] It is not trivial to verify that this differential operator is $S L_{2}(\mathbb{R})$ invariant. Better, this operator is obtained by computing in coordinates the image of the Casimir operator for $S L_{2}(\mathbb{R})$. We accept the outcome for the present discussion.

[1.1] Translation-equivariant eigenfunctions

We ask for $\Delta^{\mathfrak{H}}$-eigenfunctions $f(z)$ of the special form

$$
f(x+i y)=e^{2 \pi i x} u(y)
$$

That is, such an eigenfunction is equivariant under translations:

$$
f(z+t)=e^{2 \pi i(x+t)} u(y)=e^{2 \pi i t} \cdot\left(e^{2 \pi i x} u(y)\right)=e^{2 \pi i t} \cdot f(z) \quad(\text { with } t \in \mathbb{R} \text { and } z \in \mathfrak{H})
$$

The eigenfunction condition is the partial differential equation

$$
\left(\Delta^{\mathfrak{H}}-\lambda\right) e^{2 \pi i x} u(y)=0
$$

Since the dependence on x is completely specified, this partial differential equation simplifies to the ordinary differential equation ${ }^{[4]}$

$$
y^{2} u^{\prime \prime}-\left(4 \pi^{2} y^{2}+\lambda\right) u=0
$$

The point $y=0$ is not an ordinary point for this equation, because in the form

$$
u^{\prime \prime}-\left(4 \pi^{2}+\frac{\lambda}{y^{2}}\right) u=0
$$

the coefficient of u has a pole at 0 . But $y=0$ is a regular singular point, because that pole is of order at most 2. Thus, following the idea to freeze $y^{2} u^{\prime \prime}+y b(y) u^{\prime}+c(y)$ to $y^{2} u^{\prime \prime}+y b(0) u^{\prime}+c(0) u$, the indicial equation of the frozen equation is

$$
X(X-1)-\lambda=0
$$

Expressing λ as $\lambda=s(s-1)$, the roots of the indicial equation are $s, 1-s$. The frozen equation has distinct solutions y^{s} and y^{1-s} for $s \neq \frac{1}{2}$. Thus, we could hope that solutions would have asymptotics as $y \rightarrow 0^{+}$ beginning

$$
u(y)=A y^{s}(1+O(y))+B y^{1-s}(1+O(y)) \quad\left(\text { as } y \rightarrow 0^{+}\right)
$$

Indeed, this is the case, as we see below. It seems more difficult to obtain the asymptotics at 0^{+}from integral representations of solutions of the differential equation.
[1.1.1] Remark: As we discuss below, $y^{2} u^{\prime \prime}-\left(4 \pi^{2} y^{2}+\lambda\right) u=0$ has an irregular singular point at $+\infty$, so other methods are needed to obtain asymptotics for solutions as $y \rightarrow+\infty$.
[1.1.2] Remark: Up to choices of normalizations, the function u above, depending on the spectral parameter λ or s, is called a Whittaker function or Bessel function, and they enjoy an enormous literature. One point here is to have direct access to their properties, as examples of simple general phenomena.

[1.2] An irregular singular point

For the translation-equivariant eigenfunctions on \mathfrak{H}, we check that $y=+\infty$ is not an ordinary point nor a regular singular point: given

$$
u^{\prime \prime}-\left(4 \pi^{2}+\frac{\lambda}{y^{2}}\right) u=0
$$

again let $u(x)=v(1 / x)$ and put $z=1 / x$, obtaining

$$
\left(z^{4} v^{\prime \prime}+2 z^{3} v^{\prime}\right)-\left(4 \pi^{2}+\lambda z^{2}\right) v=0
$$

[^0]or
$$
z^{2} v^{\prime \prime}+2 z v^{\prime}-\left(\frac{4 \pi^{2}}{z^{2}}+\lambda\right) v=0
$$

Since the coefficient of v has a pole at $z=0$, this equation falls outside the present discussion. Instead, a different freezing idea succeeds: letting $y \rightarrow+\infty$ freezes the original equation at $+\infty$, giving a constantcoefficient equation

$$
u^{\prime \prime}-4 \pi^{2} u=0
$$

with easily-understood solutions $e^{ \pm 2 \pi y}$. Happily the solutions to the original equation do have asymptotics with main terms $e^{ \pm 2 \pi y}$. Further details and proofs will be given later, in a discussion of irregular singular points.

2. Regular singular points

A homogeneous ordinary differential equation of the form

$$
x^{2} u^{\prime \prime}+x b(x) u^{\prime}+c(x) u=0 \quad(\text { with } b, c \text { analytic near } 0)
$$

is said to have a regular singular point ${ }^{[5]}$ at 0 . Similarly,

$$
\left(x-x_{o}\right)^{2} u^{\prime \prime}+\left(x-x_{o}\right) b(x) u^{\prime}+c(x) u=0 \quad \text { (with } b, c \text { analytic near } x_{o} \text {) }
$$

has a regular singular point at x_{o}. Obviously it suffices to treat $x_{o}=0$, and is notationally convenient. The coefficients in an expansion of the form

$$
u(x)=x^{\alpha} \cdot \sum_{n=0}^{\infty} a_{n} x^{n} \quad\left(\text { with } a_{0} \neq 0, \alpha \in \mathbb{C}\right)
$$

are determined recursively, but we see below that this recursion succeeds only when α satisfies the indicial equation

$$
\alpha(\alpha-1)+b(0) \alpha+c(0)=0
$$

Further, when the two roots α, α^{\prime} of the indicial equation have a relation $n+\alpha-\alpha^{\prime}=0$ for $0<n \in \mathbb{Z}$, the recursion for α may fail, although the recursion for α^{\prime} will succeed. These conditions are easily discovered, as in the following discussion.

The convergence of the recursively defined series is important both because it produces a genuine function, and because it can be differentiated termwise, by Abel's theorem (see appendix).

[2.1] The recursion

The equation is

$$
x^{\alpha+2} \cdot \sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} x^{n-2}+b(x) x^{\alpha+1} \sum_{n=0}^{\infty}(n+\alpha) a_{n} x^{n-1}+c(x) x^{\alpha} \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Dividing through by x^{α} and grouping,

$$
\sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} x^{n}+b(x) \sum_{n=0}^{\infty}(n+\alpha) a_{n} x^{n}+c(x) \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

[5] I must have learned about regular singular points first from [Ahlfors 1966]. The latter mentions several attributions by name, but has no bibliography whatsoever. Meanwhile, current complex analysis textbooks in English discuss regular singular points. [Whittaker-Watson 1926] has extensive bibliographic notes, and treats many useful examples.

The vanishing of the sum of coefficients of x^{0}, and $a_{0} \neq 0$, give the indicial equation. The coefficients a_{n} with $n>0$ are obtained recursively, from the expected

$$
[(n+\alpha)(n+\alpha-1)+b(0)(n+\alpha)+c(0)] \cdot a_{n}=\left(\text { in terms of } a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

The coefficient of a_{n} simplifies by invoking the indicial equation and the fact that the sum of the two roots α, α^{\prime} is $1-b(0)$:

$$
(n+\alpha)(n+\alpha-1)+b(0)(n+\alpha)+c(0)=n(n+(2 \alpha-1)+b(0))=n\left(n+\alpha-\alpha^{\prime}\right)
$$

That is,

$$
n\left(n+\alpha-\alpha^{\prime}\right) \cdot a_{n}=\left(\text { in terms of } a_{0}, a_{1}, \ldots, a_{n-1}\right) \quad(\text { for } n>0)
$$

Since $n>0$, the recursion can fail only when

$$
n+\alpha-\alpha^{\prime}=0 \quad(\text { for some } 0<n \in \mathbb{Z})
$$

[2.2] Convergence

To complete the proof of existence, we prove convergence. Let $A, M \geq 1$ be large enough so that

$$
\begin{array}{ll}
b(x)=\sum_{n \geq 0} b_{n} x^{n} & \left(\text { with }\left|b_{n}\right| \leq A \cdot M^{n}\right) \\
c(x)=\sum_{n \geq 0} c_{n} x^{n} & \left(\text { with }\left|c_{n}\right| \leq A \cdot M^{n}\right)
\end{array}
$$

Inductively, suppose that $\left|a_{\ell}\right| \leq(C M)^{\ell}$, with a constant $C \geq 1$ to be determined in the following. Then

$$
\left|n\left(n+\alpha-\alpha^{\prime}\right) \cdot a_{n}\right| \leq A \sum_{i=1}^{n}|n-i+\alpha| M^{i} \cdot(C M)^{n-i}+A \sum_{i=1}^{n} M^{i} \cdot(C M)^{n-i} \leq A M^{n} C^{n-1}\left(\frac{n(n+1)}{2}+n|\alpha|+n\right)
$$

Dividing through by $n\left|n+\alpha-\alpha^{\prime}\right|$, this is

$$
\left|a_{n}\right| \leq A M^{n} \cdot C^{n-1} \frac{(n+1)+2|\alpha|+2}{2\left|n+\alpha-\alpha^{\prime}\right|}
$$

This motivates the choice

$$
C \geq \sup _{1 \leq n \in \mathbb{Z}} \frac{(n+1)+2|\alpha|+2}{2\left|n+\alpha-\alpha^{\prime}\right|}
$$

which gives $\left|a_{n}\right| \leq A(C M)^{n}$, and a positive radius of convergence.
[2.2.1] Remark: In light of the Monodromy theorem, this estimate is far from best possible, but better estimates are infeasible.

3. Regular singular points at infinity

With $u(x)=v(1 / x)$,

$$
u^{\prime}(x)=\frac{-1}{x^{2}} v^{\prime}(1 / x) \quad \text { and } \quad u^{\prime \prime}(x)=\frac{1}{x^{4}} v^{\prime \prime}(1 / x)+\frac{2}{x^{3}} v^{\prime}(1 / x)
$$

Putting $z=1 / x$, this is

$$
u^{\prime}=-z^{2} v^{\prime} \quad \text { and } \quad u^{\prime \prime}=z^{4} v^{\prime \prime}+2 z^{3} v^{\prime} \quad(\text { with } u=u(x), v=v(z), z=1 / x)
$$

A differential equation $u^{\prime \prime}+p(x) u^{\prime}+q(x) u=0$ becomes

$$
\left(z^{4} v^{\prime \prime}+2 z^{3} v^{\prime}\right)+p(x)\left(-z^{2} v^{\prime}\right)+q(x) v=0
$$

or

$$
z^{2} v^{\prime \prime}+z\left(2-\frac{p(1 / z)}{z}\right) v^{\prime}+\frac{q(1 / z)}{z^{2}} v=0
$$

The point $z=0$ is a regular singular point when the coefficients

$$
2-\frac{p(1 / z)}{z} \quad \frac{q(1 / z)}{z^{2}}
$$

are analytic at 0 . That is, $z=0$ is a regular singular point when p, q have expansions of the forms

$$
\left\{\begin{array} { l }
{ p (\frac { 1 } { z }) = p _ { 1 } z + p _ { 2 } z ^ { 2 } + \ldots } \\
{ q (\frac { 1 } { z }) = q _ { 2 } z ^ { 2 } + q _ { 3 } z ^ { 3 } + \ldots }
\end{array} \quad \text { or, equivalently } \quad \left\{\begin{array}{l}
p(x)=\frac{p_{1}}{x}+\frac{p_{2}}{x^{2}}+\ldots \\
q(x)=\frac{q_{2}}{x^{2}}+\frac{q_{3}}{x^{3}}+\ldots
\end{array}\right.\right.
$$

4. Example revisited

We return to the earlier example from non-Euclidean geometry on the upper half-plane.

[4.1] Translation-equivariant eigenfunctions

We ask for $\Delta=\Delta^{\mathfrak{H}}$ eigenfunctions $f(z)$ of the special form

$$
f(x+i y)=e^{2 \pi i x} u(y)
$$

The equation $(\Delta-\lambda) f=0$ simplifies to the ordinary differential equation

$$
y^{2} u^{\prime \prime}-\left(4 \pi^{2} y^{2}+\lambda\right) u=0
$$

with regular singular point at $y=0$. The indicial equation is

$$
X(X-1)-\lambda=0
$$

With $\lambda=s(s-1)$, the roots of the indicial equation are $s, 1-s$. By now we know that, unless $s-(1-s)$ is an integer, the equation has solutions of the form

$$
u_{s}(y)=y^{s} \cdot \sum_{\ell \geq 0} a_{\ell} y^{\ell} \quad u_{1-s}(y)=y^{1-s} \cdot \sum_{\ell \geq 0} b_{\ell} y^{\ell}
$$

with coefficients a_{ℓ} and b_{ℓ} determined by the natural recursions. We emphasize that these power series have positive radius of convergence, so certainly give asymptotics as $y \rightarrow 0^{+}$. Further, convergent series can be differentiated termwise, by Abel's theorem.

We execute a few steps of the recursion for the coefficients for y^{s}. The equation

$$
\sum_{\ell \geq 0}(\ell+s)(\ell+s-1) a_{\ell} y^{\ell}-\left(4 \pi^{2} y^{2}+\lambda\right) \sum_{\ell \geq 0} a_{\ell} y^{\ell}=0
$$

simplifies to

$$
\ell(\ell+2 s-1) a_{\ell}=4 \pi^{2} a_{\ell-2} \quad(\text { for } \ell \geq 1)
$$

with $a_{-1}=0$ by convention, and $a_{0}=1$. Thus, the odd-degree terms are all 0 , and

$$
u_{s}(y)=y^{s} \cdot\left(1+\frac{4 \pi^{2} y^{2}}{2(1+2 s)}+\frac{\left(4 \pi^{2}\right)^{2} y^{4}}{2(1+2 s) \cdot 4(3+2 s)}+\ldots\right)
$$

Similarly, replacing s by $1-s$,

$$
u_{1-s}(y)=y^{1-s} \cdot\left(1+\frac{4 \pi^{2} y^{2}}{2(3-2 s)}+\frac{\left(4 \pi^{2}\right)^{2} y^{4}}{2(3-2 s) \cdot 4(5-2 s)}+\ldots\right)
$$

For $\operatorname{Re}(s) \neq \frac{1}{2}$, one of these solutions is obviously asymptotically larger than the other. For $\operatorname{Re}(s)=\frac{1}{2}$, they are the same size, so some cancellation can occur. Write $s=\frac{1}{2}+i \nu$, so $1-s=\frac{1}{2}-i \nu$, and rewrite the expansions in those coordinates:

$$
\left\{\begin{array}{l}
u_{\frac{1}{2}+i \nu}(y)=y^{\frac{1}{2}+i \nu} \cdot\left(1+\frac{\pi^{2} y^{2}}{(1+i \nu)}+\frac{\pi^{4} y^{4}}{(1+i \nu) \cdot 2(2+i \nu)}+\ldots\right) \\
u_{\frac{1}{2}-i \nu}(y)=y^{\frac{1}{2}-i \nu} \cdot\left(1+\frac{\pi^{2} y^{2}}{(1-i \nu)}+\frac{\pi^{4} y^{4}}{(1-i \nu) \cdot 2(2-i \nu)}+\ldots\right)
\end{array}\right.
$$

For example,

$$
\left\{\begin{array}{l}
u_{\frac{1}{2}+i \nu}+u_{\frac{1}{2}-i \nu}=2 y^{\frac{1}{2}} \cos (\log y)+O\left(y^{\frac{3}{2}}\right) \\
u_{\frac{1}{2}+i \nu}-u_{\frac{1}{2}-i \nu}=2 y^{\frac{1}{2}} \sin (\log y)+O\left(y^{\frac{3}{2}}\right)
\end{array}\right.
$$

Further, behavior of the higher terms as functions of ν is clear.

5. Appendix: ordinary points

The following discussion is well-known, although the convergence discussion is often omitted. This is the simpler case extended by the discussion of the regular singular points.
[5.1] Ordinary points A homogeneous ordinary differential equation of the form

$$
u^{\prime \prime}+b(x) u^{\prime}+c(x) u=0 \quad \text { (with } b, c \text { analytic near } 0 \text {) }
$$

is said to have an ordinary point at 0 . The coefficients in a proposed expansion of the form

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad\left(\text { with } a_{0} \neq 0\right)
$$

are determined recursively from a_{0} and a_{1}, as follows. The equation is

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+b(x) \sum_{n=0}^{\infty} n a_{n} x^{n-1}+c(x) \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

or

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+b(x) \sum_{n=0}^{\infty}(n-1) a_{n-1} x^{n-2}+c(x) \sum_{n=0}^{\infty} a_{n-2} x^{n-2}=0
$$

The coefficients a_{n} with $n \geq 2$ are obtained recursively, from the expected

$$
n(n-1) \cdot a_{n}=\left(\text { in terms of } a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

To complete the proof of existence, we prove convergence. Take $A, M \geq 1$ large enough so that

$$
\begin{cases}b(x)=\sum_{n \geq 0} b_{n} x^{n} & \left(\text { with }\left|b_{n}\right| \leq A \cdot M^{n}\right) \\ c(x)=\sum_{n \geq 0} c_{n} x^{n} & \left(\text { with }\left|c_{n}\right| \leq A \cdot M^{n}\right)\end{cases}
$$

Inductively, suppose that $\left|a_{\ell}\right| \leq(C M)^{\ell}$, with a constant $C \geq 1$ to be determined in the following. Then
$n(n-1) \cdot\left|a_{n}\right| \leq A \sum_{i=1}^{n}(n-i) M^{i-1} \cdot(C M)^{n-i}+A \sum_{i=2}^{n} M^{i-2} \cdot(C M)^{n-i} \leq A M^{n-1} \cdot C^{n-1}\left(\frac{n(n+1)}{2}+n-1\right)$
Dividing through by $n(n-1)$, this is

$$
\left|a_{n}\right| \leq A M^{n-1} C^{n-1} \frac{n^{2}+3 n-2}{n(n-1)}
$$

This motivates taking

$$
C \geq A \sup _{2 \leq n \in \mathbb{Z}} \frac{n^{2}+3 n-2}{n(n-1)}
$$

which gives $\left|a_{n}\right| \leq(C M)^{n}$. In particular, for arbitrary a_{0} and a_{1} the resulting power series has a positive radius of convergence. In particular, these series can be differentiated termwise, by Abel's theorem.

[5.2] Ordinary points at infinity

Let $u(x)=v(1 / x)$ and $z=1 / x$. Then

$$
u^{\prime}(x)=\frac{-1}{x^{2}} v^{\prime}(1 / x) \quad \text { and } \quad u^{\prime \prime}(x)=\frac{1}{x^{4}} v^{\prime \prime}(1 / x)+\frac{2}{x^{3}} v^{\prime}(1 / x)
$$

or

$$
u^{\prime}=-z^{2} v^{\prime} \quad \text { and } \quad u^{\prime \prime}=z^{4} v^{\prime \prime}+2 z^{3} v^{\prime} \quad(\text { with } u=u(x), v=v(z), z=1 / x)
$$

A differential equation $u^{\prime \prime}+b(x) u^{\prime}+c(x) u=0$ becomes

$$
\left(z^{4} v^{\prime \prime}+2 z^{3} v^{\prime}\right)+p(x)\left(-z^{2} v^{\prime}\right)+q(x) v=0
$$

or

$$
v^{\prime \prime}+\frac{2 z-p\left(\frac{1}{z}\right)}{z^{2}} v^{\prime}+\frac{q\left(\frac{1}{z}\right)}{z^{4}} v=0
$$

The point $z=0$ is an ordinary point when the coefficient of v^{\prime} is analytic and vanishes to first order at 0 , and the coefficient of v is analytic. That is, $z=0$ is an ordinary point when p, q have expansions at infinity of the form

$$
\left\{\begin{array}{l}
p\left(\frac{1}{z}\right)=2 z+p_{2} z^{2}+p_{3} z^{3} \ldots \\
q\left(\frac{1}{z}\right)=q_{4} z^{4}+q_{5} z^{5}+\ldots
\end{array}\right.
$$

[5.3] Not-quite-ordinary points

Consider a differential equation with coefficients having poles of at most first order at 0 :

$$
u^{\prime \prime}+\frac{b(x)}{x} u^{\prime}+\frac{c(x)}{x} u=0
$$

with b, c analytic at 0 . The coefficients in a proposed expansion of the form

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad\left(\text { with } a_{0} \neq 0\right)
$$

are determined recursively as follows. The equation is

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+b(x) \sum_{n=0}^{\infty} n a_{n} x^{n-2}+c(x) \sum_{n=0}^{\infty} a_{n} x^{n-1}=0
$$

or

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+b(x) \sum_{n=0}^{\infty} n a_{n} x^{n-2}+c(x) \sum_{n=0}^{\infty} a_{n-1} x^{n-2}=0
$$

We expect to determine the coefficients a_{n} with $n \geq 2$ recursively, from

$$
(n(n-1)+b(0) n) \cdot a_{n}=\left(\text { in terms of } a_{0}, a_{1}, \ldots, a_{n-1}\right) \quad(\text { for } n \geq 1)
$$

For $b(0)$ not a non-positive integer, the recursion succeeds, and a_{0} determines all the other coefficients a_{n}.
For $b(0)=0$, so that the coefficient of v^{\prime} has no pole, the relation from the coefficient of x^{-1},

$$
b(0) a_{1}+c(0) a_{0}=0
$$

implies that either $c(0)=0$ and the coefficient of v has no pole, returning us to the ordinary-point case, or $a_{0}=0$, and there is no non-zero solution of this form.

For $b(0)$ a negative integer $-\ell$, the recursion for a_{ℓ} gives a_{ℓ} the coefficient 0 , and imposes a non-trivial relation on the prior coefficients a_{n}.

To complete the proof of existence, we prove convergence, assuming $b(0)$ is not a non-positive integer. Dividing through by a constant if necessary, we can take $M \geq 1$ large enough so that

$$
\begin{cases}b(x)=\sum_{n \geq 0} b_{n} x^{n} & \left(\text { with }\left|b_{n}\right| \leq M^{n}\right) \\ c(x)=\sum_{n \geq 0} c_{n} x^{n} & \left(\text { with }\left|c_{n}\right| \leq M^{n}\right)\end{cases}
$$

Inductively, suppose that $\left|a_{\ell}\right| \leq(C M)^{\ell}$, with a constant $C \geq 1$ to be determined in the following. Then

$$
(n(n-1)+b(0) n) \cdot\left|a_{n}\right|=\left|\sum_{i=1}^{n}(n-i) M^{i-1}(C M)^{n-i}+\sum_{i=1}^{n} M^{i-1}(C M)^{n-i}\right| \leq M^{n-1} C^{n-1}\left(\frac{n(n+1)}{2}+n\right)
$$

Dividing through by $n(n-1)+b(0) n$, this is

$$
\left|a_{n}\right| \leq M^{n-1} C^{n-1} \frac{n^{2}+3 n}{n(n-1)+b(0) n}
$$

This motivates taking

$$
C \geq \sup _{2 \leq n \in \mathbb{Z}} \frac{n^{2}+3 n}{n(n-1)+b(0) n}
$$

which gives $\left|a_{n}\right| \leq(C M)^{n}$. In particular, for arbitrary a_{0} the resulting power series has a positive radius of convergence. For example, the series can be differentiated termwise, by Abel's theorem.

6. Appendix: Euler-Cauchy equations

The differential operator $x \frac{d}{d x}$ has readily-understood eigenfunctions on $(0,+\infty)$: from $x u^{\prime}=\lambda u$ we have $u^{\prime} / u=\lambda / x$, then $\log u=\lambda \log x+C$, and

$$
u=\text { const } \cdot x^{\lambda} \quad(\text { for } x>0)
$$

Differential operators

$$
x^{2} \frac{d^{2}}{d x^{2}}+b x \frac{d}{d x}+c \quad \quad(\text { with constants, } b, c)
$$

or

$$
x^{k} \frac{d^{k}}{d x^{k}}+c_{k-1} x^{k-1} \frac{d^{k-1}}{d x^{k-1}}+\ldots+c_{1} x \frac{d}{d x}+c_{0}
$$

where the power of x matches the order of differentiation can be understood as composites of operators of the form $x \frac{d}{d x}-\alpha$. These differential operators are of Euler type, or Cauchy type, or Euler-Cauchy type. In the order-two case,

$$
\left(x \frac{d}{d x}-\alpha\right)\left(x \frac{d}{d x}-\beta\right)=x^{2} \frac{d^{2}}{d x^{2}}+(1-\alpha-\beta) x \frac{d}{d x}+\alpha \beta
$$

That is, given coefficients $b, c \in \mathbb{C}$, the parameters α, β are solutions of the indicial equation

$$
X(X-1)+b X+c=0
$$

Then the differential equation

$$
x^{2} u^{\prime \prime}+b x u^{\prime}+c u=0
$$

has solutions x^{α} and x^{β}. When the roots α, β coincide, a second solution for $x>0$ is $x^{\alpha} \log x$. This can be verified by computation, or we can use a more general principle, as follows.

For brevity, let $D=x \frac{d}{d x}$. Suppose $(D-\alpha) u=0$. Viewing u as a function of the spectral parameter α as well as the physical variable x, differentiating with respect to α gives

$$
0=\frac{\partial}{\partial \alpha}((D-\alpha) u)=-u+(D-\alpha) \frac{\partial u}{\partial \alpha}
$$

That is,

$$
(D-\alpha) \frac{\partial u}{\partial \alpha}=u \neq 0
$$

Then

$$
(D-\alpha)^{2} \frac{\partial u}{\partial \alpha}=(D-\alpha) u=0
$$

That is, $\partial u / \partial \alpha$ is a solution of $(D-\alpha)^{2} v=0$ and not a solution of $(D-\alpha) v=0$.
In particular,

$$
\frac{\partial u}{\partial \alpha} x^{\alpha}=\log x \cdot x^{\alpha}
$$

The same discussion shows that

$$
\left(x \frac{\partial}{\partial x}-\alpha\right)^{k+1}(\log x)^{k} \cdot x^{\alpha}=0
$$

while

$$
\left(x \frac{\partial}{\partial x}-\alpha\right)^{k}(\log x)^{k} \cdot x^{\alpha} \neq 0
$$

7. Appendix: Abel's theorem on power series

[7.0.1] Theorem: (Abel) Let $f(z)=\sum_{n>0} c_{n}\left(z-z_{o}\right)^{n}$ be a power series in one (real or complex) variable z. Suppose that the series is absolutely convergent for $\left|z-z_{o}\right|<r$. Then the function given by $f(z)$ is differentiable for $|z-z|<r$, and the derivative is given by the (absolutely convergent) series

$$
\sum_{n \geq 0} n c_{n} z^{n-1}
$$

[7.0.2] Corollary: By repeated differentiation,

$$
f^{(k)}(z)=\sum_{n \geq 0} n(n-1) \ldots(n-k+1) c_{n} z^{n-k}
$$

In particular, $f^{(k)}\left(z_{o}\right)=k(k-1) \ldots(k-k+1) c_{k}=k!c_{k}$, so the power series coefficients of $f(z)$ are uniquely determined.

Proof: Without loss of generality, $z_{o}=0$. Fix $0<\rho<r$, and $|\zeta|<\rho,|z|<r$. The obvious candidate for the derivative is

$$
g(z)=\sum_{n \geq 0} n c_{n} z^{n-1}
$$

Then

$$
\frac{f(z)-f(\zeta)}{z-\zeta}-g(\zeta)=\sum_{n \geq 1} c_{n}\left(\frac{z^{n}-\zeta^{n}}{z-\zeta}-n \zeta^{n-1}\right)
$$

For $n=1$, the expression in the parentheses is 1 . For $n>1$, it is

$$
\begin{gathered}
z^{n-1}+z^{n-2} \zeta+z^{n-3} \zeta^{2}+\ldots+z \zeta^{n-2}+\zeta^{n-1}-n \zeta^{n-1} \\
=\left(z^{n-1}-\zeta^{n-1}\right)+\left(z^{n-2} \zeta-\zeta^{n-1}\right)+\left(z^{n-3} \zeta^{2}-\zeta^{n-1}\right)+\ldots+\left(z^{2} \zeta^{n-3}-\zeta^{n-1}\right)+\left(z \zeta^{n-2}-\zeta^{n-1}\right)+\left(\zeta^{n-1}-\zeta^{n-1}\right) \\
=(z-\zeta)\left[\left(z^{n-2}+\ldots+\zeta^{n-2}\right)+\zeta\left(z^{n-3}+\ldots+\zeta^{n-3}\right)+\ldots+\zeta^{n-3}(z+\zeta)+\zeta^{n-2}+0\right] \\
=(z-\zeta) \sum_{k=0}^{n-2}(k+1) z^{n-2-k} \zeta^{k}
\end{gathered}
$$

For $|z|$ and $|\zeta|$ both smaller than ρ, the latter sum is dominated by

$$
|z-\zeta| \rho^{n-2} \frac{n(n-1)}{2}<n^{2}|z-\zeta| \rho^{n-2}
$$

Thus,

$$
\left|\frac{f(z)-f(\zeta)}{z-\zeta}-g(\zeta)\right| \leq|z-\zeta| \sum_{n \geq 2}\left|c_{n}\right| n^{2} \rho^{n-2}
$$

Since $\rho<r$ the latter series converges absolutely, so the left-hand side goes to 0 as $z \rightarrow \zeta$.

Bibliography:

[Ahlfors 1966], L. Ahlfors, Complex Analysis, McGraw-Hill, 1966.
[Whittaker-Watson 1927] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, 1927 (many subsequent editions and printings).

[^0]: [4] This equation is a type of Bessel equation, with solutions which are K-type and I-type Bessel functions.

