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Differential equations [1]

x2u′′ + bxu′ + cu = 0 (with constants b, c)

have easy-to-understand solutions on (0,+∞): linear combinations of xα, xβ for α, β solutions of the indicial
equation

X(X − 1) + bX + c = 0

when the roots are distinct. Therefore, it is reasonable to imagine that a differential equation

x2u′′ + xb(x)u′ + c(x)u = 0

with b, c analytic near 0 has solutions asymptotic, as x → 0+, to solutions of the differential equation
x2u′′ + b(0)xu′ + c(0)u = 0 obtained by freezing the coefficients b(x), c(x) of the original at x = 0+. That
is, solutions of the variable-coefficient equation should be asymptotic to xα for solutions α to the indicial
equation X(X − 1) + b(0)X + c(0) = 0. An equation of that form, with b, c analytic near 0, is said to have a
regular singular point at 0. Discussion below explains the behavior of solutions to such equations.

1. Examples

We give a useful example from the non-Euclidean geometry on the upper half-plane. Recall that the SL2(R)-

invariant [2] Laplacian on the upper half-plane H is [3]

∆H = y2
( ∂2
∂x2

+
∂2

∂y2

)

[1] These Euler-type or Cauchy-type differential equations are well understood. See the appendix.

[2] As usual, SL2(R) acts by linear fractional transformations

(
a b

c d

)
(z) =

az + b

cz + d
on H. In particular, there are

real translations

(
1 t

0 1

)
(z) = z + t for t ∈ R, and positive real dilations

(√
t 0

0 1/
√
t

)
(z) = tz for t > 0.

[3] It is not trivial to verify that this differential operator is SL2(R) invariant. Better, this operator is obtained by

computing in coordinates the image of the Casimir operator for SL2(R). We accept the outcome for the present

discussion.
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[1.1] Translation-equivariant eigenfunctions

We ask for ∆H-eigenfunctions f(z) of the special form

f(x+ iy) = e2πixu(y)

That is, such an eigenfunction is equivariant under translations:

f(z + t) = e2πi(x+t)u(y) = e2πit ·
(
e2πixu(y)

)
= e2πit · f(z) (with t ∈ R and z ∈ H)

The eigenfunction condition is the partial differential equation

(∆H − λ) e2πixu(y) = 0

Since the dependence on x is completely specified, this partial differential equation simplifies to the ordinary
differential equation [4]

y2u′′ −
(

4π2y2 + λ
)
u = 0

The point y = 0 is not an ordinary point for this equation, because in the form

u′′ −
(

4π2 +
λ

y2

)
u = 0

the coefficient of u has a pole at 0. But y = 0 is a regular singular point, because that pole is of order at most
2. Thus, following the idea to freeze y2u′′ + yb(y)u′ + c(y) to y2u′′ + yb(0)u′ + c(0)u, the indicial equation
of the frozen equation is

X(X − 1)− λ = 0

Expressing λ as λ = s(s− 1), the roots of the indicial equation are s, 1− s. The frozen equation has distinct
solutions ys and y1−s for s 6= 1

2 . Thus, we could hope that solutions would have asymptotics as y → 0+

beginning
u(y) = Ays(1 +O(y)) +By1−s(1 +O(y)) (as y → 0+)

Indeed, this is the case, as we see below. It seems more difficult to obtain the asymptotics at 0+ from integral
representations of solutions of the differential equation.

[1.1.1] Remark: As we discuss below, y2u′′ − (4π2y2 + λ)u = 0 has an irregular singular point at +∞, so
other methods are needed to obtain asymptotics for solutions as y → +∞.

[1.1.2] Remark: Up to choices of normalizations, the function u above, depending on the spectral parameter
λ or s, is called a Whittaker function or Bessel function, and they enjoy an enormous literature. One point
here is to have direct access to their properties, as examples of simple general phenomena.

[1.2] An irregular singular point

For the translation-equivariant eigenfunctions on H, we check that y = +∞ is not an ordinary point nor a
regular singular point: given

u′′ −
(

4π2 +
λ

y2

)
u = 0

again let u(x) = v(1/x) and put z = 1/x, obtaining(
z4v′′ + 2z3v′

)
− (4π2 + λz2)v = 0

[4] This equation is a type of Bessel equation, with solutions which are K-type and I-type Bessel functions.
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or

z2v′′ + 2zv′ −
(4π2

z2
+ λ
)
v = 0

Since the coefficient of v has a pole at z = 0, this equation falls outside the present discussion. Instead,
a different freezing idea succeeds: letting y → +∞ freezes the original equation at +∞, giving a constant-
coefficient equation

u′′ − 4π2u = 0

with easily-understood solutions e±2πy. Happily the solutions to the original equation do have asymptotics
with main terms e±2πy. Further details and proofs will be given later, in a discussion of irregular singular
points.

2. Regular singular points

A homogeneous ordinary differential equation of the form

x2u′′ + xb(x)u′ + c(x)u = 0 (with b, c analytic near 0)

is said to have a regular singular point [5] at 0. Similarly,

(x− xo)2u′′ + (x− xo)b(x)u′ + c(x)u = 0 (with b, c analytic near xo)

has a regular singular point at xo. Obviously it suffices to treat xo = 0, and is notationally convenient. The
coefficients in an expansion of the form

u(x) = xα ·
∞∑
n=0

an x
n (with a0 6= 0, α ∈ C)

are determined recursively, but we see below that this recursion succeeds only when α satisfies the indicial
equation

α(α− 1) + b(0)α+ c(0) = 0

Further, when the two roots α, α′ of the indicial equation have a relation n+ α− α′ = 0 for 0 < n ∈ Z, the
recursion for α may fail, although the recursion for α′ will succeed. These conditions are easily discovered,
as in the following discussion.

The convergence of the recursively defined series is important both because it produces a genuine function,
and because it can be differentiated termwise, by Abel’s theorem (see appendix).

[2.1] The recursion

The equation is

xα+2 ·
∞∑
n=0

(n+ α)(n+ α− 1)an x
n−2 + b(x)xα+1

∞∑
n=0

(n+ α)an x
n−1 + c(x)xα

∞∑
n=0

an x
n = 0

Dividing through by xα and grouping,

∞∑
n=0

(n+ α)(n+ α− 1)an x
n + b(x)

∞∑
n=0

(n+ α)an x
n + c(x)

∞∑
n=0

an x
n = 0

[5] I must have learned about regular singular points first from [Ahlfors 1966]. The latter mentions several attributions

by name, but has no bibliography whatsoever. Meanwhile, current complex analysis textbooks in English discuss

regular singular points. [Whittaker-Watson 1926] has extensive bibliographic notes, and treats many useful examples.
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The vanishing of the sum of coefficients of x0, and a0 6= 0, give the indicial equation. The coefficients an
with n > 0 are obtained recursively, from the expected[

(n+ α)(n+ α− 1) + b(0)(n+ α) + c(0)
]
· an = (in terms of a0, a1, . . . , an−1)

The coefficient of an simplifies by invoking the indicial equation and the fact that the sum of the two roots
α, α′ is 1− b(0):

(n+ α)(n+ α− 1) + b(0)(n+ α) + c(0) = n(n+ (2α− 1) + b(0)) = n(n+ α− α′)

That is,
n(n+ α− α′) · an = (in terms of a0, a1, . . . , an−1) (for n > 0)

Since n > 0, the recursion can fail only when

n+ α− α′ = 0 (for some 0 < n ∈ Z)

[2.2] Convergence

To complete the proof of existence, we prove convergence. Let A,M ≥ 1 be large enough so that

b(x) =
∑
n≥0

bn x
n (with |bn| ≤ A ·Mn)

c(x) =
∑
n≥0

cn x
n (with |cn| ≤ A ·Mn)

Inductively, suppose that |a`| ≤ (CM)`, with a constant C ≥ 1 to be determined in the following. Then

|n(n+α−α′)·an| ≤ A

n∑
i=1

|n−i+α|M i ·(CM)n−i+A

n∑
i=1

M i ·(CM)n−i ≤ AMnCn−1
(n(n+ 1)

2
+n|α|+n

)
Dividing through by n|n+ α− α′|, this is

|an| ≤ AMn · Cn−1 (n+ 1) + 2|α|+ 2

2|n+ α− α′|

This motivates the choice

C ≥ sup
1≤n∈Z

(n+ 1) + 2|α|+ 2

2|n+ α− α′|

which gives |an| ≤ A(CM)n, and a positive radius of convergence.

[2.2.1] Remark: In light of the Monodromy theorem, this estimate is far from best possible, but better
estimates are infeasible.

3. Regular singular points at infinity

With u(x) = v(1/x),

u′(x) =
−1

x2
v′(1/x) and u′′(x) =

1

x4
v′′(1/x) +

2

x3
v′(1/x)

Putting z = 1/x, this is

u′ = −z2v′ and u′′ = z4v′′ + 2z3v′ (with u = u(x), v = v(z), z = 1/x)
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A differential equation u′′ + p(x)u′ + q(x)u = 0 becomes(
z4v′′ + 2z3v′

)
+ p(x)

(
− z2v′

)
+ q(x)v = 0

or

z2v′′ + z
(

2− p(1/z)

z

)
v′ +

q(1/z)

z2
v = 0

The point z = 0 is a regular singular point when the coefficients

2− p(1/z)

z

q(1/z)

z2

are analytic at 0. That is, z = 0 is a regular singular point when p, q have expansions of the forms
p
(1

z

)
= p1z + p2z

2 + . . .

q
(1

z

)
= q2z

2 + q3z
3 + . . .

or, equivalently


p(x) =

p1
x

+
p2
x2

+ . . .

q(x) =
q2
x2

+
q3
x3

+ . . .

4. Example revisited

We return to the earlier example from non-Euclidean geometry on the upper half-plane.

[4.1] Translation-equivariant eigenfunctions

We ask for ∆ = ∆H eigenfunctions f(z) of the special form

f(x+ iy) = e2πixu(y)

The equation (∆− λ)f = 0 simplifies to the ordinary differential equation

y2u′′ −
(

4π2y2 + λ
)
u = 0

with regular singular point at y = 0. The indicial equation is

X(X − 1)− λ = 0

With λ = s(s− 1), the roots of the indicial equation are s, 1− s. By now we know that, unless s− (1− s) is
an integer, the equation has solutions of the form

us(y) = ys ·
∑
`≥0

a` y
` u1−s(y) = y1−s ·

∑
`≥0

b` y
`

with coefficients a` and b` determined by the natural recursions. We emphasize that these power series have
positive radius of convergence, so certainly give asymptotics as y → 0+. Further, convergent series can be
differentiated termwise, by Abel’s theorem.

We execute a few steps of the recursion for the coefficients for ys. The equation∑
`≥0

(`+ s)(`+ s− 1)a` y
` − (4π2y2 + λ)

∑
`≥0

a` y
` = 0

simplifies to
`(`+ 2s− 1) a` = 4π2a`−2 (for ` ≥ 1)
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with a−1 = 0 by convention, and a0 = 1. Thus, the odd-degree terms are all 0, and

us(y) = ys ·
(

1 +
4π2 y2

2(1 + 2s)
+

(4π2)2 y4

2(1 + 2s) · 4(3 + 2s)
+ . . .

)
Similarly, replacing s by 1− s,

u1−s(y) = y1−s ·
(

1 +
4π2 y2

2(3− 2s)
+

(4π2)2 y4

2(3− 2s) · 4(5− 2s)
+ . . .

)
For Re(s) 6= 1

2 , one of these solutions is obviously asymptotically larger than the other. For Re(s) = 1
2 ,

they are the same size, so some cancellation can occur. Write s = 1
2 + iν, so 1− s = 1

2 − iν, and rewrite the
expansions in those coordinates:

u 1
2+iν

(y) = y
1
2+iν ·

(
1 +

π2 y2

(1 + iν)
+

π4 y4

(1 + iν) · 2(2 + iν)
+ . . .

)
u 1

2−iν
(y) = y

1
2−iν ·

(
1 +

π2 y2

(1− iν)
+

π4 y4

(1− iν) · 2(2− iν)
+ . . .

)
For example, 

u 1
2+iν

+ u 1
2−iν

= 2y
1
2 cos(log y) +O(y

3
2 )

u 1
2+iν

− u 1
2−iν

= 2y
1
2 sin(log y) +O(y

3
2 )

Further, behavior of the higher terms as functions of ν is clear.

5. Appendix: ordinary points

The following discussion is well-known, although the convergence discussion is often omitted. This is the
simpler case extended by the discussion of the regular singular points.

[5.1] Ordinary points A homogeneous ordinary differential equation of the form

u′′ + b(x)u′ + c(x)u = 0 (with b, c analytic near 0)

is said to have an ordinary point at 0. The coefficients in a proposed expansion of the form

u(x) =

∞∑
n=0

an x
n (with a0 6= 0)

are determined recursively from a0 and a1, as follows. The equation is

∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

nan x
n−1 + c(x)

∞∑
n=0

an x
n = 0

or
∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

(n− 1)an−1 x
n−2 + c(x)

∞∑
n=0

an−2 x
n−2 = 0

The coefficients an with n ≥ 2 are obtained recursively, from the expected

n(n− 1) · an = (in terms of a0, a1, . . . , an−1)
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To complete the proof of existence, we prove convergence. Take A,M ≥ 1 large enough so that b(x) =
∑
n≥0 bn x

n (with |bn| ≤ A ·Mn)

c(x) =
∑
n≥0 cn x

n (with |cn| ≤ A ·Mn)

Inductively, suppose that |a`| ≤ (CM)`, with a constant C ≥ 1 to be determined in the following. Then

n(n−1) · |an| ≤ A

n∑
i=1

(n− i)M i−1 · (CM)n−i+A

n∑
i=2

M i−2 · (CM)n−i ≤ AMn−1 ·Cn−1
(n(n+ 1)

2
+n−1

)
Dividing through by n(n− 1), this is

|an| ≤ AMn−1Cn−1
n2 + 3n− 2

n(n− 1)

This motivates taking

C ≥ A sup
2≤n∈Z

n2 + 3n− 2

n(n− 1)

which gives |an| ≤ (CM)n. In particular, for arbitrary a0 and a1 the resulting power series has a positive
radius of convergence. In particular, these series can be differentiated termwise, by Abel’s theorem.

[5.2] Ordinary points at infinity

Let u(x) = v(1/x) and z = 1/x. Then

u′(x) =
−1

x2
v′(1/x) and u′′(x) =

1

x4
v′′(1/x) +

2

x3
v′(1/x)

or
u′ = −z2v′ and u′′ = z4v′′ + 2z3v′ (with u = u(x), v = v(z), z = 1/x)

A differential equation u′′ + b(x)u′ + c(x)u = 0 becomes(
z4v′′ + 2z3v′

)
+ p(x)

(
− z2v′

)
+ q(x)v = 0

or

v′′ +
2z − p

(1

z

)
z2

v′ +
q
(1

z

)
z4

v = 0

The point z = 0 is an ordinary point when the coefficient of v′ is analytic and vanishes to first order at 0,
and the coefficient of v is analytic. That is, z = 0 is an ordinary point when p, q have expansions at infinity
of the form 

p
(1

z

)
= 2z + p2z

2 + p3z
3 . . .

q
(1

z

)
= q4z

4 + q5z
5 + . . .

[5.3] Not-quite-ordinary points

Consider a differential equation with coefficients having poles of at most first order at 0:

u′′ +
b(x)

x
u′ +

c(x)

x
u = 0
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with b, c analytic at 0. The coefficients in a proposed expansion of the form

u(x) =

∞∑
n=0

an x
n (with a0 6= 0)

are determined recursively as follows. The equation is

∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

nan x
n−2 + c(x)

∞∑
n=0

an x
n−1 = 0

or
∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

nan x
n−2 + c(x)

∞∑
n=0

an−1 x
n−2 = 0

We expect to determine the coefficients an with n ≥ 2 recursively, from(
n(n− 1) + b(0)n

)
· an = (in terms of a0, a1, . . . , an−1) (for n ≥ 1)

For b(0) not a non-positive integer, the recursion succeeds, and a0 determines all the other coefficients an.

For b(0) = 0, so that the coefficient of v′ has no pole, the relation from the coefficient of x−1,

b(0)a1 + c(0) a0 = 0

implies that either c(0) = 0 and the coefficient of v has no pole, returning us to the ordinary-point case, or
a0 = 0, and there is no non-zero solution of this form.

For b(0) a negative integer −`, the recursion for a` gives a` the coefficient 0, and imposes a non-trivial
relation on the prior coefficients an.

To complete the proof of existence, we prove convergence, assuming b(0) is not a non-positive integer.
Dividing through by a constant if necessary, we can take M ≥ 1 large enough so that b(x) =

∑
n≥0 bn x

n (with |bn| ≤Mn)

c(x) =
∑
n≥0 cn x

n (with |cn| ≤Mn)

Inductively, suppose that |a`| ≤ (CM)`, with a constant C ≥ 1 to be determined in the following. Then

(
n(n− 1) + b(0)n

)
· |an| =

∣∣∣ n∑
i=1

(n− i)M i−1(CM)n−i +

n∑
i=1

M i−1(CM)n−i
∣∣∣ ≤ Mn−1Cn−1

(n(n+ 1)

2
+ n
)

Dividing through by n(n− 1) + b(0)n, this is

|an| ≤ Mn−1Cn−1
n2 + 3n

n(n− 1) + b(0)n

This motivates taking

C ≥ sup
2≤n∈Z

n2 + 3n

n(n− 1) + b(0)n

which gives |an| ≤ (CM)n. In particular, for arbitrary a0 the resulting power series has a positive radius of
convergence. For example, the series can be differentiated termwise, by Abel’s theorem.
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6. Appendix: Euler-Cauchy equations

The differential operator x d
dx has readily-understood eigenfunctions on (0,+∞): from xu′ = λu we have

u′/u = λ/x, then log u = λ log x+ C, and

u = const · xλ (for x > 0)

Differential operators

x2
d2

dx2
+ bx

d

dx
+ c (with constants, b, c)

or

xk
dk

dxk
+ ck−1x

k−1 d
k−1

dxk−1
+ . . .+ c1x

d

dx
+ c0

where the power of x matches the order of differentiation can be understood as composites of operators of
the form x d

dx − α. These differential operators are of Euler type, or Cauchy type, or Euler-Cauchy type. In
the order-two case, (

x
d

dx
− α

)(
x
d

dx
− β

)
= x2

d2

dx2
+ (1− α− β)x

d

dx
+ αβ

That is, given coefficients b, c ∈ C, the parameters α, β are solutions of the indicial equation

X(X − 1) + bX + c = 0

Then the differential equation
x2u′′ + bxu′ + cu = 0

has solutions xα and xβ . When the roots α, β coincide, a second solution for x > 0 is xα log x. This can be
verified by computation, or we can use a more general principle, as follows.

For brevity, let D = x d
dx . Suppose (D − α)u = 0. Viewing u as a function of the spectral parameter α as

well as the physical variable x, differentiating with respect to α gives

0 =
∂

∂α

(
(D − α)u

)
= −u+ (D − α)

∂u

∂α

That is,

(D − α)
∂u

∂α
= u 6= 0

Then

(D − α)2
∂u

∂α
= (D − α)u = 0

That is, ∂u/∂α is a solution of (D − α)2v = 0 and not a solution of (D − α)v = 0.

In particular,
∂u

∂α
xα = log x · xα

The same discussion shows that (
x
∂

∂x
− α

)k+1

(log x)k · xα = 0

while (
x
∂

∂x
− α

)k
(log x)k · xα 6= 0
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7. Appendix: Abel’s theorem on power series

[7.0.1] Theorem: (Abel) Let f(z) =
∑
n≥0 cn (z− zo)n be a power series in one (real or complex) variable

z. Suppose that the series is absolutely convergent for |z − zo| < r. Then the function given by f(z) is
differentiable for |z − z| < r, and the derivative is given by the (absolutely convergent) series∑

n≥0

ncn z
n−1

[7.0.2] Corollary: By repeated differentiation,

f (k)(z) =
∑
n≥0

n(n− 1) . . . (n− k + 1) cn z
n−k

In particular, f (k)(zo) = k(k−1) . . . (k−k+1) ck = k! ck, so the power series coefficients of f(z) are uniquely
determined. ///

Proof: Without loss of generality, zo = 0. Fix 0 < ρ < r, and |ζ| < ρ, |z| < r. The obvious candidate for
the derivative is

g(z) =
∑
n≥0

ncn z
n−1

Then
f(z)− f(ζ)

z − ζ
− g(ζ) =

∑
n≥1

cn

(
zn − ζn

z − ζ
− nζn−1

)
For n = 1, the expression in the parentheses is 1. For n > 1, it is

zn−1 + zn−2ζ + zn−3ζ2 + . . .+ zζn−2 + ζn−1 − nζn−1

= (zn−1−ζn−1)+(zn−2ζ−ζn−1)+(zn−3ζ2−ζn−1)+ . . .+(z2ζn−3−ζn−1)+(zζn−2−ζn−1)+(ζn−1−ζn−1)

= (z − ζ)
[
(zn−2 + . . .+ ζn−2) + ζ(zn−3 + . . .+ ζn−3) + . . .+ ζn−3(z + ζ) + ζn−2 + 0

]
= (z − ζ)

n−2∑
k=0

(k + 1) zn−2−k ζk

For |z| and |ζ| both smaller than ρ, the latter sum is dominated by

|z − ζ| ρn−2 n(n− 1)

2
< n2 |z − ζ| ρn−2

Thus, ∣∣∣∣f(z)− f(ζ)

z − ζ
− g(ζ)

∣∣∣∣ ≤ |z − ζ|∑
n≥2

|cn|n2 ρn−2

Since ρ < r the latter series converges absolutely, so the left-hand side goes to 0 as z → ζ. ///
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