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According to [Erdélyi 1956], Thomé [1] found that differential equations with finite rank irregular singular
points have asymptotic expansions given by the expected recursions. Thus, although the irregularity
typically precludes convergence of the series expression for solutions, the series is still a legitimate asymptotic
expansion.

We approximately follow [Erdélyi 1956] in treating a rank-one irregular singular point of a second-order
differential equation: after normalization to get rid of the first-derivative term, these are of the form

u′′ − q(x)u = 0 with q(x) ∼ qo +
q1
x

+
q2
x2

+ . . . (as x→ +∞, with qo 6= 0)

with q continuous in some range x ≥ a. The series expression for q(x) need not be convergent: it suffices
that it be an asymptotic expansion of q(x) at +∞. Freezing the coefficient q to its value at +∞, gives the
constant-coefficient equation

u′′ − qo u = 0

and suggests that the solutions e±
√
qo x of the constant-coefficient equation should give the leading term in

the asymptotics of solutions of the original equation. This is approximately true: there is an adjustment by
a power of x. Solutions have asymptotics of the form

u(x) ∼ e±
√
qo x · xρ ·

(
1 +

∑
n≥1

an
xn

)
(with ρ =

q1
±2
√
qo

, as x→ +∞)

with coefficients an obtained by a natural recursion. However, the series rarely converges.

The loss of convergence is not a trifling matter. The term-wise differentiability of convergent power series is
extremely useful. In contrast, term-wise differentiation of asymptotic series

f(x) ∼
∑
n≥0

an
xn

(as x→ +∞)

for differentiable f produces an asymptotic series for f ′ only under additional hypotheses, for example,
that f ′ admits such an asymptotic series. (See the appendix.) While a function admitting an asymptotic
expansion of this form determines that expansion uniquely, the expansion does not uniquely determine the
function. For example, as x→ +∞, e−x = o(x−N ) for all N , so e−x has the 0 asymptotic expansion, but is
not the 0 function.

[Olver 1954a] notes that Carlini, [Green 1837], and [Liouville 1837] investigated relatively simple cases,
without complete rigor. [Olver 1954a] further notes the work of [Horn 1899], [Schlesinger 1907],

[1] Probably this is Wilhelm Ludwig Thomé, who, according to [Genealogy 2011], wrote a thesis De seriebus secundum

functiones, quae vocantur sphaericae progredientibus in 1865 at Berlin under K. Weierstraß.
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[Birkhoff 1908], [Tamarkin 1928], [Turritin 1936] on asymptotics on intervals free from transition points,
that is, points where coefficient functions vanish or have singularities, thus changing the qualitative nature
of the equation. Our hypothesis q(∞) = qo 6= 0 and on the asymptotic expansion of q at +∞ assures that
in some neighborhood of +∞ our examples have no transition points.

1. Example: rotationally symmetric eigenfunctions on Rn

[1.1] Rotation-invariant eigenfunctions for ∆ on Rn

A natural example arises from the eigenvalue equation for the radial component of the Euclidean Laplacian
on Rn:

v′′ +
n− 1

r
v′ − λv = 0

For large r, this equation resembles the constant-coefficient equation v′′ − λv = 0, with solutions e±r
√
λ.

Heuristically, we should have solutions with behavior v ∼ e±r
√
λ as v → +∞. This is not quite right: the

true asymptotic expansions have main terms

v ∼ e±r
√
λ

r
n−1
2

That is, the differences between the actual equation and the constant-coefficient approximation do not alter
the constant in the exponential, but do have a significant impact, as we see below.

A natural recursion, carried out just below, produces an apparent solution to differential equations in this
class, of the form

eωx x−ρ
∑
n≥0

cn
xn

However, unlike the regular singular point situation, the series is not convergent! The relation of this non-
convergent series to any genuine solution is a priori unclear. It is natural to suppose that this non-convergent
series is an asymptotic expansion, but this is not obvious. A genuine solution must be identified by other
means, must be proven to have an asymptotic expansion, and the latter must be compared with the series
obtained by the recursion. All this will occupy us in following sections.

[1.2] Recursion

In more detail, the heuristic recursion is as follows, as applied to the eigenvalue equation for the radial
component of the Laplacian on Rn. First, simplify by employing the standard device to eliminate the v′

term: [2] take v = u/r(n−1)/2, and then

u′′ −
(
λ+

(n− 1)(n− 3)

4 r2

)
u = 0

The singular point at infinity is irregular, unless n = 1 or 3. Nevertheless, intuitively, for x → +∞, a
differential equation of the shape

u′′ − (λ+
C

x2
)u = 0

[2] Let v = u · w and set the u′ term equal to 0 in the left-hand side. This gives 2u′w′ + n−1
r u′w = 0, which gives

the differential equation 2w′ + n−1
r w = 0 for w.
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is approximately a constant-coefficient differential equation, suggesting a solution of the form [3]

u(x) = e±x
√
λ ·

+∞∑
`=0

c`
x`

(with c0 = 1, without loss of generality)

Substituting the latter into the differential equation and dividing through by e±x
√
λ, letting s = ±

√
λ,

simplifies to
+∞∑
`=0

(
(`− 2)(`− 1)c`−2 − 2s(`− 1)c`−1

) 1

x`
−

+∞∑
`=0

c`−2
C

x`
= 0

where by convention c−1 = c−2 = 0. The case ` = 0 is vacuous, as is ` = 1. The case ` ≥ 2 determines c`−1,
assuming s 6= 0:

(`− 2)(`− 1)c`−2 − 2s(`− 1)c`−1 − C · c`−2 = 0

or

c`+1 =
`(`+ 1)− C

2s(`+ 1)
· c`

[1.2.1] Remark: That recursion causes the coefficients to grow approximately as factorials, and the resulting
series does not converge for any finite non-zero value of 1/x, unless the constant C happens to be of the form
(`− 1)(`− 2) for some positive integer `, in which case the series terminates, and is convergent.

Our later discussion will show that the above recursion does correctly determine asymptotic expansions for
solutions. In particular, the leading part of the asymptotic is

v =
e±r
√
λ

r
n−1
2

·
(
1 +O(

1

r
)
)

(as r → +∞, in Rn)

The denominator r(n−1)/2 might be hard to anticipate. [4] Further, this is an asymptotic and not merely a
bound.

In fact, for n odd, the asymptotic is finite: the recursion for coefficients terminates, so gives a convergent
series: we obtain not merely asymptotics, but equalities. Thus, in odd-dimensional Rn the solutions to the
differential equation for rotationally-invariant λ-eigenfunctions have elementary expressions. For example,

v = e±r
√
λ (on R1)

v =
e±r
√
λ

r
(on R3)

v = e±r
√
λ
( 1

r2
− 1

±r3
√
λ

)
(on R5)

v = e±r
√
λ
( 1

r3
− 3

±r5
√
λ

+
3

r7 λ

)
(on R7)

The first two cases, R1 and R3, are well-known, but the general pattern less so. [5]

[3] Anticipating the adjustment by xρ in general, with ρ determined by the asymptotics qo+ q1
x + . . . of the coefficient

of u by ρ = q1/2
√
qo, in the present example we are fortunate that q1 = 0, so the idea of freezing is exactly right.

[4] The symmetry r → −r imposes a further requirement, and for
√
λ not purely imaginary one of the two solutions

swamps the other. Indeed, for
√
λ not purely imaginary, the asymptotic components of the large solution are all

larger than the main part of the smaller solution.

[5] The differential equation at hand is a Bessel equation: for certain parameter values, Bessel functions are

elementary. In fact, in odd dimensions, Fourier transform methods and residue integration tricks yield elementary

expressions for many eigenfunctions on Rn − 0, at least among tempered distributions.
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[1.2.2] Remark: The same technique applies to differential equations

u′′ − q(x)u = 0

with q(x) continuous in some range x > a and admitting an asymptotic expansion at infinity of the form

q(x) ∼
∑
`≥0

q`
x`

(with qo 6= 0)

The condition qo 6= 0 is essential [6] for the recursion to succeed. Adjustment by xρ with ρ = q1/2
√
qo would

be found necessary when q1 6= 0. In any case, the recursion rarely produces a convergent power series!

[1.3] Comparison to regular singular points

The behavior of the above recursion is is much different from that resulting from a regular singular point. A
power series in z = 1/x behaves differently under d/dx than under d/dz. Indeed, as in the example above,
the power series in 1/x often diverges, while at a regular singular point the analogous power series has a
positive radius of convergence. For u′′ − q(x)u = 0 to have a regular singular point at infinity, changing
variables to u(x) = v(1/x) and z = 1/x,

u′(x) =
−1

x2
v′(1/x) and u′′(x) =

1

x4
v′′(1/x) +

2

x3
v′(1/x)

Putting z = 1/x, this is

u′ = −z2v′ and u′′ = z4v′′ + 2z3v′ (with u = u(x), v = v(z), z = 1/x)

Thus, in the coordinate z at infinity, the differential equation becomes(
z4v′′ + 2z3v′

)
− q
(1

z

)
v = 0

or

v′′ +
2

z
v′ − q(1/z)

z4
v = 0

The point z = 0 is never an ordinary point, because of the pole in the coefficient of v′. The point z = 0 is a
regular singular point only when q(1/z)/z2 is analytic at z = 0, that is, when x2q(x) is analytic at ∞. This
requires that q(x) have the form

q(x) =
q2
x2

+
q3
x3

+ . . .

2. Example: translation-equivariant eigenfunctions on H

Another example of irregular singular point arises from the non-Euclidean geometry on the upper half-plane.
Recall the SL2(R)-invariant Laplacian on the upper half-plane H:

∆H = y2
( ∂2
∂x2

+
∂2

∂y2

)

[6] The condition qo 6= 0 and the assumption that q has the indicated asymptotic at +∞ together imply that there

is xo such that q(x) 6= 0 for x ≥ xo. That is, in the regime x ≥ xo there are no transition points.

4



Paul Garrett: Asymptotics at irregular singular points (January 1, 2014)

[2.1] The ordinary differential equation

We ask for ∆H-eigenfunctions f(z) of the special form

f(x+ iy) = e2πixu(y)

that is, equivariant under translations:

f(z + t) = e2πi(x+t)u(y) = e2πit ·
(
e2πixu(y)

)
= e2πit · f(z) (with t ∈ R and z ∈ H)

The eigenfunction condition
(∆H − λ) e2πixu(y) = 0

simplifies to the ordinary differential equation

y2u′′ −
(

4π2y2 + λ
)
u = 0

This equation has an irregular singular point at +∞, seen by changing coordinates, as follows. Let
u(x) = v(1/x) and put z = 1/x, obtaining(

z4v′′ + 2z3v′
)
− (4π2 + λz2)v = 0

or

z2v′′ + 2zv′ −
(4π2

z2
+ λ
)
v = 0

Since the coefficient of v has a pole at z = 0, the singular point of this equation in the new coordinate z at
0 is irregular.

[2.2] Recursion

Happily, following our present prescription, in the form

u′′ −
(

4π2 +
λ

y2

)
u = 0

the coefficient

q(y) = qo +
q1
y

+
q2
y2

+ . . . = 4π2 +
λ

y2

is analytic at y = ∞, and q(∞) = qo = 4π2 6= 0 while q1 = 0, so our later discussion justifies freezing y at
+∞, obtaining the constant-coefficient equation

u′′ − 4π2u = 0

with solutions e±2πy, and assuring existence of solutions of the original equation with asymptotics of the
form

u(y) = e±2πy ·
∑
`≥0

a`
y`

Substituting this into the differential equation and dividing through by e±2πy gives

+∞∑
`=0

(
(`− 2)(`− 1)a`−2 ∓ 2π(`− 1)a`−1

) 1

y`
−

+∞∑
`=0

a`−2
λ

y`
= 0

or
±2π(`− 1)a`−1 =

(
(`− 2)(`− 1)− λ

)
a`−2
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or

a` =
(`− 1)`− λ
±2π`

a`−1 =
(
`− 1− λ

`

) a`
±2π

As usual, a−2 = a−1 = 0 by convention, and a0 = 1. The cases ` ≤ 0 are vacuous. With a0 = 1, the
recursion begins

a1 =
−λ
±2π

a2 =
(

1− λ

2

) a1
±2π

=
(

1− λ

2

)(
− λ
) 1

(±2π)2

a3 =
(

2− λ

3

) a2
±2π

=
(

2− λ

3

)(
1− λ

2

)(
− λ
) 1

(±2π)3

[2.2.1] Remark: If λ is of the form λ = `(` − 1) for 0 < ` ∈ Z, the recursion terminates. Then the

asymptotic expansion is convergent, and produces an elementary solution to the eigenfunction equation. [7]

3. Beginning of construction of solutions

According to [Erdélyi 1956] p. 64, there are roughly two proofs that the above argument produces genuine
asymptotic expansions for solutions of the differential equation. Poincaré’s approach, elaborated by J. Horn,
expresses solutions as Laplace transforms and invokes Watson’s lemma to obtain asymptotics. G.D. Birkhoff
and his students constructed auxiliary differential equations from partial sums of the asymptotic expansion,
and compared these auxiliary equations to the original. Volterra integral operators are important in both
approaches, insofar as asymptotic expansions behave better under integration than under differentiation.
The following version of the Birkhoff argument is largely adapted from [Erdélyi 1956], which refers to
[Hoheisel 1924] and [Tricomi 1953].

[3.1] Heuristic for asymptotic expansion

Consider the equation
u′′ − q(x)u = 0

as x→ +∞, where q is continuous in some range x > a and itself admits an asymptotic expansion

q(x) ∼
∑
n≥0

qn
xn

(as x→ +∞, with qo 6= 0)

The qo 6= 0 condition is essential. We look for a solution of the form

u(x) ∼ eωx · x−ρ ·
∑
n≥0

co
xn

(with co non-zero)

Substituting this expansion in the differential equation and dividing through by eωx x−ρ, setting the
coefficient of 1/xn to 0,(

(ρ+ n− 2)(ρ+ n− 1)cn−2 − 2ω(ρ+ n− 1)cn−1 + ω2cn

)
−
(
qocn + q1cn−1 + . . .+ qn−1c1 + qnco

)
= 0

By convention, c−2 = c−1 = 0 and q−2 = q−1 = 0. For n = 0, the relation is

ω2co − qoco = 0

[7] These elementary solutions arise from the finite-dimensional representations of SL2(R).
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so ω = ±√qo 6= 0, since co 6= 0. For n = 1,(
− 2ωρco + ω2c1

)
−
(
qoc1 + q1co

)
= 0

so, using ω2 = qo and ω 6= 0, this is
−2ωρ− q1 = 0

so ρ = −q1/(2ω). Thus, the choice of ±ω is reflected in the choice of ±ρ. For n ≥ 2, using ω2 = qo,(
− 2ω(ρ+ n− 1)− q1

)
cn−1 = −(ρ+ n− 2)(ρ+ n− 1)cn−2 +

(
q2cn−2 + . . .+ qn−1c1 + qnco

)
and using −2ωρ− q1 = 0,

−2ω(n− 1)cn−1 = −(ρ+ n− 2)(ρ+ n− 1)cn−2 +
(
q2cn−2 + . . .+ qn−1c1 + qnco

)
Since ω 6= 0, this gives a successful recursion. The following discussion will show that the two asymptotics,
with ±ω and corresponding ±ρ, are asymptotic expansions of two solutions of the differential equation
u′′ − q(x)u = 0.

[3.1.1] Remark: However, since the above expansions usually do not converge, genuine solutions must be
constructed by other means, and must be shown to have asymptotic expansions at +∞.

[3.2] Small renormalization

For a solution u to u′′ − q(x)u = 0, let

u(x) = eωx · x−ρ · v(x)

with ω and ρ determined as above. Then
u′ = eωxx−ρ

((
ω − ρ

x

)
v + v′

)
u′′ = eωxx−ρ

(
ω − ρ

x

)2
v + eωxx−ρ

ρ

x2
v + 2eωxx−ρ

(
ω − ρ

x

)
v′ + eωxx−ρv′′

Dividing through by eωxx−ρ gives the differential equation for v, namely,

v′′ + 2
(
ω − ρ

x

)
v′ +

(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
v = 0

Unsurprisingly, the ω2 and −2ωρ/x cancel the first two terms of q(x). Thus, the function

F (x) = x2 ·
(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
is bounded. The differential equation is

v′′ + 2
(
ω − ρ

x

)
v′ +

F (x)

x2
v = 0

Rewrite the equation as
d

dx

(
e2ωxx−2ρ

dv

dx

)
+ e2ωxx−2ρ−2F (x) v(x) = 0

Integrate this from b ≥ a to x ≥ b, and multiply through by e−2ωxx2ρ, to obtain

dv

dx
+ e−2ωxx2ρ

∫ x

b

e2ωt t−2ρ−2 F (t) v(t) dt = const · e−2ωxx2ρ

7
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Take the constant of integration to be 0 and integrate from a to x, to obtain

v(x) +

∫ x

a

e−2ωs s2ρ
(∫ s

b

e2ωt t−2ρ−2 F (t) v(t) dt
)
ds = const

Rearrange the double integral:∫ x

a

e−2ωs s2ρ
(∫ s

b

e2ωt t−2ρ−2 F (t) v(t) dt
)
ds =

∫ x

b

(∫ x

t

e2ω(t−s)
(s
t

)2ρ
ds
)
F (t) v(t)

dt

t2

Let K(x, t) denote the inner integral

K(x, t) =

∫ x

t

e2ω(t−s)
(s
t

)2ρ
ds

Then the equation is

v(x) −
∫ x

b

K(x, t)F (t) v(t)
dt

t2
= const

Take the constant to be 1. With b = +∞, this gives an integral equation

v(x) = 1 +

∫ ∞
x

K(x, t)F (t) v(t)
dt

t2

We claim that this equation can be solved by successive approximations. With the obvious operator

Tf(x) =

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2

take wo(x) = 1, wn+1 = Twn, and then show that the limit

v(x) = wo(x) + w1(x) + w2(x) + . . . =
(

1 + T + T 2 + . . .)wo

exists pointwise, is twice differentiable, and satisfies the differential equation.

4. Kernel K(x, t) is bounded

We claim that, with correct choice of ±ω, the kernel

−K(x, t) =

∫ t

x

e2ω(t−s)
(s
t

)2ρ
ds

is bounded for t ≥ x ≥ a. Choose ±ω so that either Re(ω) < 0, or Re(ω) = 0 and Re(ρ) ≥ 0.

[4.1] Very easy case ρ = 0

To illustrate the reasonableness of the boundedness assertion, consider the special case ρ = 0, where the
integral can be computed explicitly:

−K(x, t) =

∫ t

x

e2ω(t−s) ds =
1

−2ω

(
1− e2ω(t−x)

)
Since Re ω ≤ 0 and ω 6= 0, this is bounded, for a ≤ x ≤ t.
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[4.2] Easy case Re ω < 0

When Re ω < 0, absolute value estimates suffice to prove boundedness of K(x, t).

|K(x, t)| ≤
∫ t

x

e2Reω(t−s)
(s
t

)2Reρ

ds ≤
∫ t

a

e2Reω(t−s)
(s
t

)2Reρ

ds

Lighten the notation by taking ω, ρ real. For ρ ≥ 0,∫ t

a

e2ω(t−s)
(s
t

)2ρ
ds ≤

∫ t

0

e2ω(t−s) ds = e2ωt · e
−2ωt − 1

2|ω|
≤ 1

2|ω|
(for ρ ≥ 0)

For ρ < 0, still with ω < 0,∫ t

a

e2ω(t−s)
(s
t

)2ρ
ds ≤

∫ t

t/2

e2ω(t−s)
( t/2
t

)2ρ
ds+

∫ t/2

0

e2ω(t−s)
(1

t

)2ρ
ds (for ρ < 0)

The two integrals are bounded in t ≥ a, for elementary reasons. Thus, for Re(ω) < 0, the kernel K(x, t) is
bounded.

[4.3] Re(ω) = 0 and cancellation

When Re(ω) = 0, absolute value estimates no longer suffice to prove boundedness. Cancellation must be
exploited by an integration by parts. Choose ±ω so that Re(ρ) ≥ 0. One integration by parts gives∫ t

x

e2ω(t−s)
(s
t

)2ρ
ds =

[e2ω(t−s)
−2ω

(s
t

)2ρ]t
x

+

∫ t

x

e2ω(t−s)

2ω

2ρ

s

(s
t

)2ρ
ds

=
1

−2ω
− e2ω(t−x)

−2ω

(x
t

)2ρ
+

∫ t

x

e2ω(t−s)

2ω

2ρ

s

(s
t

)2ρ
ds

The leading terms are bounded for t ≥ x ≥ a. The latter integral can be estimated by absolute values, for
Reρ 6= 0: ∣∣∣ ∫ t

x

e2ω(t−s)
1

s

(s
t

)2ρ
ds
∣∣∣ ≤ ∫ t

x

1

s

(s
t

)2Reρ

ds =
1

2 Reρ

(
1−

(x
t

)2Reρ)
When Reρ = 0, a second integration by parts gives∫ t

x

e2ω(t−s)
1

s

(s
t

)2ρ
ds =

[e2ω(t−s)
−2ω

1

s

(s
t

)2ρ]t
x

+
2ρ− 1

2ω

∫ t

x

e2ω(t−s)
1

s2

(s
t

)2ρ
ds

The latter integral is estimated by∣∣∣ ∫ t

x

e2ω(t−s)
1

s2

(s
t

)2ρ
ds
∣∣∣ ≤ ∫ t

x

ds

s2
=

1

x
− 1

t
≤ 1

a

Thus, in all cases, K(x, t) is bounded on t ≥ x ≥ a > 0.

5. End of construction of solutions

[5.1] Bound for T

As observed above, there is a bound A so that |F (x)| ≤ A for x ≥ a. Let |K(x, t)| ≤ B. For f satisfying a
bound |f(x)| ≤ x−λ for x ≥ a, with λ > −1,

|(Tf)(x)| ≤ AB

λ+ 1
x−(λ+1) (for x ≥ a)

9



Paul Garrett: Asymptotics at irregular singular points (January 1, 2014)

Indeed,

|Tf(x)| =
∣∣∣ ∫ ∞
x

K(x, t)F (t) f(t)
dt

t2
≤ AB

∫ ∞
x

t−(λ+2) dt

[5.2] Bound on fn

With f0 = 1 and fn+1 = Tfn, we claim that

|fn(x)| ≤ (AB)n

n!
x−n (for n = 0, 1, 2, . . . and x ≥ a)

This holds for n = 0, and induction using the bound on T gives the result.

[5.3] Convergence of the series

Now we show that the series
f(x) =

∑
n≥0

fn(x) =
∑
n≥0

Tnf0(x)

converges uniformly absolutely, and satisfies the integral equation

f(x) = 1 +

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2

Uniform absolute convergence in Co[a,+∞) follows from the previous estimate. This justifies interchange of
summation and integration:

Tf(x) =

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2
=
∑
n≥0

∫ ∞
x

K(x, t)F (t)Tnf0(t)
dt

t2

=
∑
n≥0

Tn+1f0(x) = −1 +
∑
n≥0

Tnf0(x) = −1 + f(x)

Thus, f satisfies the integral equation. Since K(x, t) is differentiable in x, and since the integral for T
converges well, the expression

f(x) = 1 +

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2

demonstrates the differentiability of f . Further, since K(x, x) = 0, the derivative is

f ′(x) =

∫ ∞
x

∂K(x, t)

∂x
F (t) f(t)

dt

t2
=

∫ ∞
x

e2ω(t−x)
(x
t

)2ρ
F (t) f(t)

dt

t2

The integral is again continuously differentiable in x, so f is in C2.

[5.4] Back to the differential equation

From the integral expression,

f ′′(x) = −F (x)

x2
f(x) +

∫ ∞
x

(
− 2ω +

2ρ

x

)
e2ω(t−x)

(x
t

)2ρ
F (t) f(t)

dt

t2

Substituting into the differential equation,

f ′′ + 2
(
ω − ρ

x

)
f ′ +

F

x2
f =

10
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− F
x2

f +

∫ ∞
x

(
− 2ω +

2ρ

x

)
e2ω(t−x)

(x
t

)2ρ
F (t) f(t)

dt

t2

+ 2
(
ω − ρ

x

)∫ ∞
x

e2ω(t−x)
(x
t

)2ρ
F (t) f(t)

dt

t2
+

F

x2
f = 0

Then

u(x) = eωxx−ρ f(x)

satisfies the original equation

u′′ − q(x)u = 0

[5.5] Two independent solutions

In the special case that qo < 0 and q1 ∈ R, ω =
√
ω has Re ω = 0 and Re ρ = 0. In that case, the successive

approximation solution to the integral equation can proceed with either values ±ω, ±ρ, and two linearly
independent solutions are obtained.

In all other cases, the successive approximation argument succeeds for only one choice of sign, producing a
solution u as above. Nevertheless, a second solution can be constructed as follows, by a standard device.
Since f(x) = 1 +O(1/x), there is b ≥ a large enough so that u(x) 6= 0 for x ≥ b. Then let v = u ·w, require
that v satisfy v′′ − q v = 0, and see what condition this imposes on w. From

v′′ − q v = u′′w + 2u′w′ + uw′′ − q uw = 0

using u′′ − q u = 0, we obtain
w′′

w′
=
−2u′

u

Then

logw′ = −2 log u+ C

and

w(x) =

∫ x

b

u(t)−2 dt

Thus, a second solution is

u(x) ·
∫ x

b

u(t)−2 dt

That integral is not constant, so the two solutions are linearly independent.

6. Asymptotics of solutions

We show that the solutions on x ≥ a have the same asymptotics as the heuristic indicated earlier.

[6.1] Some elementary asymptotics

Use the standard device (ρ)` = ρ(ρ+1) . . . (ρ+`−1) and (ρ)0 = 1. Let 0 6= ω ∈ C with Re ω ≤ 0. If Re ω = 0,
require that Re ρ > 1. Repeated integration by parts and easy estimates yield asymptotic expansions,

∫ ∞
x

eωt t−ρ dt ∼ eωx ·
∑
`≥0

(ρ)`
(−ω)`+1

1

xρ+`∫ x

b

e−ωt t−ρ dt ∼ e−ωx ·
∑
`≥0

(ρ)`
ω`+1

1

xρ+`

11
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Since the sup of |eωtt−ρ| occurs farther to the right for larger Re(ρ) < 0, these asymptotics are not uniform
in ρ. Note that the boundedness of the kernel K(x, t) proven earlier has a weaker hypothesis than the second
asymptotic assertion, requires a slightly more complicated argument, and has a weaker conclusion.

[6.2] Asymptotics of T nf0

With f0 = 1, we claim that fn = Tnf0 has an asymptotic expansion at +∞, of the form

fn ∼
∑
`≥n

cn` x
−`

This holds for f0 = 1. To do the induction step, assume fn has such an asymptotic expansion. Then
F (x) · fn(x) has a similar expansion

F fn ∼
∑
`≥n

b` x
−`

because [8]

F (x) = x2 ·
(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
and q is assumed to have an asymptotic expansion in the functions 1/xn at +∞. We want to insert the
asymptotic expansion for F fn into the integral in the differentiated form of fn+1 = Tfn, namely, into the
equation

f ′n+1(x) =

∫ ∞
x

e2ω(t−x)
(x
t

)2ρ
F (t) fn(t)

dt

t2

Indeed, from

F (x) fn(x)−
∑

n≤`≤N

b` x
−` = O(x−(N+1))

and from the boundedness of K(x, t) we have∣∣∣ ∫ ∞
x

e2ω(t−x)
(x
t

)2ρ (
F (t) fn(t)−

∑
n≤`≤N

b` t
−`
) dt
t2

∣∣∣ =
∣∣∣ ∫ ∞
x

e2ω(t−x)
(x
t

)2ρ
O(t−(N+1))

dt

t2

∣∣∣
�ω,ρ,N x−(N+1)

∫ ∞
x

dt

t2
= O(x−(N+2)) = o(x−(N+1))

Thus, the desired asymptotics for f ′n+1 would follow from asymptotics for the collection∫ ∞
x

e2ω(t−x)
(x
t

)2ρ ( ∑
n≤`≤N

b` t
−`
) dt
t2

(for N ≥ n)

As noted above, ∫ ∞
x

eωt t−ρ dt ∼ eωx ·
∑
`≥0

(ρ)`
(−ω)`+1

1

xρ+`

Note that for each N only finitely-many asymptotic expansions are used, so uniformity is not an issue. After
some preliminary rearrangements, this gives∫ ∞

x

e2ω(t−x)
(x
t

)2ρ ( ∑
n≤`≤N

b` t
−`
) dt
t2

=
∑

n≤`≤N

b`

∫ ∞
x

e2ω(t−x)
(x
t

)2ρ
t−`

dt

t2

[8] The product of two asymptotic expansions in 1/xn is readily shown to be an asymptotic expansion for the product

function.

12
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=
∑

n≤`≤N

b` e
−2ωxx2ρ

∫ ∞
x

e2ωt t−(2ρ+`+2) dt

=
∑

n≤`≤N

b` e
−2ωxx2ρ · e2ωx

( ∑
0≤m≤N−(2+`)

(ρ+ `+ 2)m
(−2ω)m+1

1

x2ρ+`+2+m
+ O

( 1

x2ρ+N+1

))

=
∑

n≤`≤N

b`
∑

0≤m≤N−(2+`)

(ρ+ `+ 2)m
(−2ω)m+1

1

x`+2+m
+ O

( 1

xN+1

)
This holds for all N , so we have an asymptotic expansion for f ′n+1:

f ′n+1(x) ∼
∑

k≥n+1

( ∑
` : n≤`≤k

b`
(ρ+ `+ 2)k−`

(−2ω)m+1

) 1

xk+2

Integrating this in x gives the asymptotic expansion of fn+1. (See the appendix.)

[6.3] Asymptotics of the solution f

Obviously we expect the asymptotic expansion of f =
∑
n fn to be the sum of those of fn, all the more so

since the 1/xm terms in the expansion of fn vanish for m < n. The uniform pointwise bound

|fn(x)| ≤ (AB)n

n!
x−n (for n = 0, 1, 2, . . . and x ≥ a)

proven earlier legitimizes this. Thus, the solution f has an asymptotic expansion of the desired type.

To prove that this asymptotic expansion is the same as the expansion obtained by a recursion earlier, we
show that the coefficients satisfy the same recursion.

The integral expression for f ′ in terms of f (above) proves that f ′ has an asymptotic expansion, and similarly
for f ′′. As proven in the appendix, this justifies two termwise differentiations of the asymptotic for f .

The asymptotics for f, f ′, and f ′′ can be inserted in the differential equation

f ′′ + 2
(
ω − ρ

x

)
f ′ +

(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
f = 0

for f . We have assumed that the coefficient of f has an asymptotic expansion, and this equation gives the
expected recursive relation on the coefficients of the asymptotic for f . Therefore, the solution

u(x) = eωx x−ρ f(x)

to the original differential equation has the asymptotics inherited from f , which match the heuristic
asymptotics from the earlier formal/heuristic solution.

[6.4] The second solution

Now we show that the second solution

v(x) = u(x) ·
∫ x

b

u(t)−2 dt

to the original differential equation has the asymptotics given by the heuristic recursion, but with the opposite
choice of ±ω and ±ρ. In terms of f ,

v(x) = u(x) ·
∫ x

b

u(t)−2 dt = eωx x−ρ f(x)

∫ x

b

e−2ωt x−2ρ f(t) dt

13
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= e−ωx xρ f(x)

∫ x

b

e2ω(x−s)
( s
x

)2ρ
f(s)−2 ds

This motivates taking

g(x) = f(x)

∫ x

b

e2ω(x−s)
( s
x

)2ρ
f(s)−2 ds

The lower bound b has been chosen large enough so that f(x) is bounded away from 0 for x ≥ b. Since f
has an asymptotic expansion with leading coefficient 1, it is elementary that there are coefficients an so that
1/f2 has asymptotics

1

f(x)2
= 1 +

∑
1≤n≤N

an
xn

+O
( 1

xN+1

)
(with a0 = 1)

Then
g(x)

f(x)
=

∑
0≤n≤N

an

∫ x

b

e2ω(x−s)
( s
x

)2ρ 1

sn
ds+

∫ x

b

e2ω(x−s)
( s
x

)−2ρ
O
( 1

sN+1

)
ds

The last integral is O(1/xN+1), from the elementary asymptotics. For each fixed N , the finitely-many
integrals inside the summation have elementary asymptotics. Since for fixed N there are only finitely-many
such asymptotics, they are trivially uniform, so the asymptotics can be added. The asymptotic expansion
for ∫ x

b

e2ω(x−s)
( s
x

)2ρ 1

sn
ds

begins with 1/xn, so the coefficient of each 1/xn is a finite sum, and there is no issue of convergence.
Multiplying this asymptotic by that of f(g) give the asymptotic expansion of g(x).

As with f , the derivatives g′ and g′′ of g have integral representations which yield asymptotic expansions.
Thus, as in the appendix, the asymptotic expansion for g can be twice differentiated term-wise to give those
of g′ and g′′. Thus, their asymptotic expansions can be inserted in the differential equation. Their coefficients
must satisfy the same recursion with some choice of ±ω and corresponding ±ρ. Arguing that the asymptotic
for g cannot be identical to that of f , we infer that the recursion for the coefficients of g uses the opposite
choice −ω,−ρ from the choice ω, ρ used to construct f .

[6.4.1] Remark: When ω and ρ are both purely imaginary, u and v are bounded, neither approaches 0,
and they are uniquely determined up to constant factors. In all other cases, one solution approaches 0, and
is uniquely determined up to a constant, while the other is unbounded and ambiguous by multiples of the
first, insofar as it depends on the choice of lower bound b in the integral above.

[6.4.2] Remark: Stokes’ phenomenon When the coefficient q(x) of the differential equation u′′ − q(x)u = 0
is analytic in a sector in C, and when q admits the same sort of asymptotic expansion

q(eiθx) ∼
∑
n≥0

qn e
−inθ

xn
(uniformly in θ)

in that sector, uniformly in the argument θ, with qo 6= 0, the above discussion still applies. In the real-
variable discussion, with ω = ±√qo, the case Re ω = 0 was at the interface between the regimes Re ω ≤ 0
and Re ω ≥ 0 in which behaviors of solutions differed. Similarly, in the complex-variable situation the line
Re(z · √qo) = 0 is the boundary between regimes of different behavior. On that line, the behavior is as in
the Re ω = 0 case. On either side of that line, one solution is exponentially larger than the other, etc. This
is Stokes’ phenomenon.
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7. Appendix: asymptotic expansions

We essentially follow [Erdélyi 1956].

To say that ϕ` is an asymptotic sequence at xo means that ϕ`+1(x) = o(ϕ`(x)) as x → xo, for all `. A
function f has an asymptotic expansion in terms of the ϕn, expressed with coefficients cn as

f(x) ∼
∑
n≥0

cnϕn

when, for all N ≥ 0,

f(x)−
∑

0≤n≤N

cnϕn = o(ϕN )

It is not surprising that a sum or integral of asymptotic expansions uniform in a parameter has the expected
asymptotics. Circumstances under which an asymptotic expansion can be differentiated are more special.

[7.1] Summing asymptotic expansions

Let functions fn have asymptotic expansions fn ∼
∑
`≥0 cn` ϕ`, uniform in n, meaning that

fn(x)−
∑
`≤N

cn` ϕ` = o(ϕN ) (implied constant and neighborhood of xo uniform in n)

Let an be coefficients such that
∑
n an · cn` is convergent and

∑
n an is absolutely convergent. We claim that∑

n anfn converges in a neighborhood of xo and has the expected asymptotic expansion∑
n

an fn ∼
∑
`

(∑
n

an cn`

)
ϕn

The uniformity of the asymptotic expansions, and
∑
n |an| <∞, give∑

n≥1

an

(
fn(x)− cn1 ϕ1(x)

)
= o(ϕ1(x)) (uniformly in x)

In particular, the sum on the left-hand side converges for fixed x. Since
∑
n ancn1 converges,

∑
n≥1 an fn(x)

converges. Similarly, ∑
anfn(x)−

∑
`≤N

(∑
n

ancn`
)
ϕ` = o(ϕN )

[7.2] Integrals

The general case is readily extrapolated from the example of an infinite sum. Namely, let f(x, y) ∼∑
` c`(y)ϕ` be asymptotic expansions uniform in a parameter y ∈ Y , where Y is a measure space. Suppose

that y → f(x, y) is measurable for each x, and that every c`(y) is measurable. Let a(y) be absolutely
integrable on Y , and assume that the integrals∫

Y

a(y) c`(y) dy

converge for all n. Then ∫
Y

a(y) f(x, y) dy

15
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exists for x close to xo, and has asymptotic expansion∫
Y

a(y) f(x, y) dy ∼
∑
`

(∫
Y

a(y) c`(y) dy
)
ϕ`

[7.3] Differentiation of asymptotics in 1/xn

Asymptotic power series are asymptotic expansions

f(x) ∼ co +
c1
x

+
c2
x2

+ . . . (as x→ +∞)

Unlike general situations, two such asymptotic expansions can be multiplied. A special property of asymptotic
power series is the absolute integrability of f(x)− co − c1/x = O(x−2) on intervals [a,+∞). Let

F (x) =

∫ ∞
x

(
f(t)− co −

c1
t

)
dt

We claim that F has an asymptotic expansion obtained from that of f(x)−co−c1/x by integrating termwise,
namely,

F (x) ∼ c2
t

+
c3
2t2

+
c4
3t3

+ . . .

To prove this, use

f(x)−
(
co +

c1
x

+ . . .+
cN
xN

)
= O(x−(N+1))

Then

F (x)−
(c2
t

+
c3
2t2

+ . . .+
cN

NxN−1

)
=

∫ ∞
x

(
f(t)− co −

c1
t

)
dt−

∫ ∞
x

(c2
t2

+
c3
t3

+ . . .+
cN
xN
)
dt

=

∫ ∞
x

O(t−(N+1)) dt = O(x−N ) = o(x−(N−1))

This has a surprising corollary about differentiation: for f with an asymptotic power series at +∞ as above,
if f is differentiable, and if f ′ has an asymptotic power series at +∞, then the asymptotics of f ′ are obtained
by differentiating that of f termwise:

f ′(x) ∼ − c1
x2
− 2c2
x3
− 3c3
x4
− . . .

When f is holomorphic in a region in which the asymptotic holds uniformly in the argument of x, Cauchy’s
integral formula for f ′ produces an asymptotic for f ′ from that for f , thus avoiding the need to make a
hypothesis that f ′ admits an asymptotic expansion.
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[Erdélyi 1956] A. Erdélyi, Asymptotic Expansions, Technical Report 3, Office of Naval Research Reference
No. NR-043-121, reprinted by Dover, 1956.

[Genealogy 2011] Mathematics Genealogy Project, http://www.genealogy.ams.org/, accessed 17 March 2011.

[Green 1837] G. Green, title?, Trans. Camb. Phil. Soc. 68 (1837), 457-462.

[Horn 1899] J. Horn, title?, Math. Ann. 52 (1899), 271-292.

[Hoheisel 1924] G.K.H. Hoheisel, [title?], J. Reine und Angew. Math. 153 (1924), 228-248.
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