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The simplest notion of asymptotic F (s) for f(s) as s goes to +∞ on R, or in a sector in C, is a simpler
function F (s) such that lims f(s)/F (s) = 1, written f ∼ F . One might want an error estimate, for example,

f ∼ F ⇐⇒ f(s) = F (s) · (1 +O
( 1

|s|
)
)

That is,

f(s) ∼ f0(s) ·
( c0
sα

+
c1
sα+1

+
c2
sα+2

+ . . .
)

(with an auxiliary function f0) is an asymptotic expansion for f when

f = f0(s) ·
( c0
sα

+
c1
sα+1

+ . . .+
cn
sα+n

+O
( 1

|s|α+n+1

))
We consider two of the simplest methods to obtain asymptotics of integrals: Watson’s lemma and Laplace’s
method. Watson’s lemma dates from at latest [Watson 1918a], and Laplace’s method at latest from
[Laplace 1774].

An important example is the Stirling-Laplace asymptotic for Γ(s):

Γ(s) ∼
√

2π e−s ss−
1
2 (as |s| → ∞, with Re(s) ≥ δ > 0)

A useful result about ratios of gamma functions:

Γ(s+ a)

Γ(s)
∼ sa (as |s| → ∞, for fixed a, for Re(s) ≥ δ > 0)

The latter is very awkward to obtain as a corollary from Stirling’s formula. Laplace’s method is further
illustrated by functions closely related to Bessel functions, namely, for any fixed spectral parameter ν ∈ R,

√
y

∫ ∞
0

e−(u+
1
u )y uiν

du

u
∼
√
π · e−2y (as y → +∞)

To the extent possible, we want to understand the asymptotics of gamma and other important special
functions on general principles.

1. Heuristic for Stirling’s asymptotic

First we give a heuristic for the main term of the Laplace-Stirling asymptotic, namely

Γ(s) ∼ e−s · ss− 1
2 ·
√

2π
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Using Euler’s integral,

s · Γ(s) = Γ(s+ 1) =

∫ ∞
0

e−u us+1 du

u
=

∫ ∞
0

e−u us du =

∫ ∞
0

e−u+s log u du

The trick is to replace the exponent −u + s log u by the quadratic polynomial in u best approximating it
near its maximum, and evaluate the resulting integral. This replacement is justified via Watson’s lemma
and Laplace’s method, below, but the heuristic is simpler than the justification.

The exponent takes its maximum where its derivative vanishes, at the unique solution uo = s of

−1 +
s

u
= 0

The second derivative in u of the exponent is −s/u2, which takes value −1/s at uo = s. Thus, near uo = s,
the quadratic Taylor-Maclaurin polynomial in t approximating the exponent is

−s+ s log s− 1

2! s
· (u− s)2

We imagine that

s · Γ(s) ∼
∫ ∞
0

e−s+s log s−
1
2s ·(u−s)

2

du = e−s · ss ·
∫ ∞
−∞

e−
1
2s ·(u−s)

2

du

The latter integral is taken over the whole real line. Evaluation of the integral over the whole line, and simple
estimates on the integral over (−∞, 0], show that the integral over (−∞, 0] is of a lower order of magnitude
than the whole. Thus, the leading term of the asymptotics of the integral over the whole line is the same
than the integral from 0 to +∞. To simplify the remaining integral, replace u by su and cancel a factor of
s from both sides,

Γ(s) ∼ e−s · ss ·
∫ ∞
−∞

e−s(u−1)
2/2 du

Replace u by u+ 1, and u by u ·
√

2π/s, obtaining∫ ∞
−∞

e−s(u−1)
2/2 du =

∫ ∞
−∞

e−su
2/2 du =

√
2π√
s

∫ ∞
−∞

e−πu
2

du =

√
2π√
s

and
Γ(s) ∼ e−s · ss− 1

2 ·
√

2π

This heuristic can be made rigorous, as below.

2. Watson’s lemma

The often-rediscovered Watson’s lemma [1] gives an asymptotic expansion for certain Laplace transforms,
valid in half-planes in C. For example, let h be a smooth function on (0,+∞) all whose derivatives are of
polynomial growth, and expressible for small x > 0 as

h(x) = xα · g(x)

[1] This lemma appeared in the treatise [Watson 1922] on page 236, citing [Watson 1918a], page 133. Curiously,

the aggregate bibliography of [Watson 1922] omitted [Watson 1918a], and the footnote mentioning it gave no

title. Happily, [Watson 1918a] is mentioned by title in [Blaustein-Handelsman 1975]. We mention [Watson 1917],

[Watson 1918a], [Watson 1918b], for perspective.

2



Paul Garrett: Asymptotics of integrals (September 15, 2019)

for some α ∈ C, where g(x) is differentiable on R near 0. We do not need to assume that g is real-analytic
near 0, only that it and its derivatives have finite Taylor expansions approximating it well as x→ 0+. Thus,
h(x) has an expression

h(x) = xα ·
∞∑
n=0

cn x
n (for 0 < x sufficiently small)

Then there is an asymptotic expansion of the Laplace transform of h,∫ ∞
0

e−xs h(x)
dx

x
∼ Γ(α) c0

sα
+

Γ(α+ 1) c1
sα+1

+
Γ(α+ 2) c2

sα+2
+ . . . (for Re(s) > 0)

A simple corollary of the error estimates given below is that, letting Re(α) + 1 − ε be the greatest integer
less than or equal Re(α) + 1,∫ ∞

0

e−xs h(x)
dx

x
=

∫ ∞
0

e−xs xα g(x)
dx

x
=

Γ(α) g(0)

sα
+O

( 1

|s|Re(α)+1−ε

)
Since

Re(α) + 1− ε > Re(α)

the error term is of strictly smaller order of magnitude in s.

The idea of the proof is straightforward: the expansion is obtained from∫ ∞
0

e−xs h(x)
dx

x
=

∫ ∞
0

e−xs xα
(
c0 + . . .+ cnx

n
) dx
x

+

∫ ∞
0

e−xs xα
(
g(x) −

(
c0 + . . .+ cnx

n
)) dx

x

The first integral gives the asymptotic expansion, and for Re(s) > 0 the second integral can be integrated
by parts essentially Re(α) +n times and trivially bounded to give a O(1/sα+n−ε) error term for some small
ε ≥ 0. For the integration by parts the denominator x in the measure must be moved into the integrand
proper, accounting for a slight reduction of the order of vanishing of the integrand at 0.

To understand the error, let ε ≥ 0 be the smallest such that

N = Re(α) + n− ε ∈ Z

The subtraction of the initial polynomial and re-allocation of the 1/x from the measure makes
xα−1(g(x)− (c0 + . . .+ cnx

n) vanish to order N at 0. This, with the exponential e−sx and the presumed
polynomial growth of h and its derivatives, allows integration by parts N times without boundary terms,
giving ∫ ∞

0

e−xs h(x) dx =
Γ(α) c0
sα

+
Γ(α+ 1) c1

sα+1
+ . . .+

Γ(α+ n) cn
sα+n

+
1

sN

∫ ∞
0

e−sx
( ∂
∂x

)N(
xα ·

(
g(x)− (c0 + . . .+ cnx

n)
))
dx

The last error-like term is O(s−[Re(α)+n−ε]). That is, computing in this fashion, the error term swallows up
the last term in the asymptotic expansion.

3. Watson’s lemma illustrated on B(s, a)

Here is an asymptotic result non-trivial to derive from Stirling’s formula for Γ(s), but easy to obtain from
Watson’s lemma. Euler’s beta integral is

B(s, a) =

∫ 1

0

xs−1 (1− x)a−1 dx =
Γ(s) Γ(a)

Γ(s+ a)
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Fix a with Re(a) > 0, and consider this integral as a function of s. Letting x = e−u gives an integrand
fitting Watson’s lemma,

B(s, a) =

∫ ∞
0

e−su (1− e−u)a−1 du =

∫ ∞
0

e−su (u− u2

2!
+ . . .)a−1 du

=

∫ ∞
0

e−su ua · (1− u

2!
+ . . .)a−1

du

u
∼ Γ(a)

sa

taking just the first term in an asymptotic expansion, using Watson’s lemma. Thus,

Γ(s) Γ(a)

Γ(s+ a)
∼ Γ(a)

sa

giving
Γ(s)

Γ(s+ a)
∼ 1

sa
(for a fixed)

4. Simple form of Laplace’s method, and Γ(s)

Laplace’s method obtains asymptotics in s for certain integrals of the form∫ ∞
0

e−s·f(u) du

with f real-valued. The idea is that the minimum values of f(u) should dominate, and the leading term of
the asymptotics should be∫ ∞

0

e−s·f(u) du ∼ e−sf(uo) ·
√

2π√
f ′′(uo)

· 1√
s

(for |s| → ∞, with Re(s) ≥ δ > 0)

To reduce this to Watson’s lemma, break the integral at points where the derivative f ′ changes sign,
and change variables to convert each fragment to a Watson-lemma integral. For Watson’s lemma to be
legitimately applied, we will find that f must be smooth with all derivatives of at most polynomial growth
and at most polynomial decay, as u→ +∞.

For simplicity assume that there is exactly one point uo at which f ′(uo) = 0, and that f ′′(uo) > 0. Further,
assume that f(u) goes to +∞ at 0+ and at +∞. Since f ′(u) > 0 for u > uo and f ′(u) < 0 for 0 < u < uo,
on each of these two intervals there is a smooth square root

√
f(u)− f(uo) and there are smooth functions

F,G such that F (
√
f(u)− f(uo)) = u (for uo < u < +∞)

G(
√
f(u)− f(uo)) = u (for 0 < u < uo)

Then ∫ ∞
0

e−s f(u) du = e−sf(uo)

∫ uo

0

e−s (f(u)−f(uo)) du+ e−sf(uo)

∫ ∞
uo

e−s (f(u)−f(uo)) du

= e−sf(uo)

(∫ ∞
0

e−s x
2

F ′(x) dx+

∫ ∞
0

e−s x
2

G′(x) dx

)
by letting x =

√
f(u)− f(uo) in the two intervals. In both integrals, replacing x by

√
x gives Watson’s-lemma

integrals ∫ ∞
0

e−s f(u) du = e−sf(uo)

(∫ ∞
0

e−sx 1
2x

1/2 F ′(
√
x)
dx

x
+

∫ ∞
0

e−sx 1
2x

1/2G′(
√
x)
dx

x

)
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At this point the needed conditions on F , hence, on f , become clear: since F must be smooth with all
derivatives of at most polynomial growth, direct chain-rule computations show that it suffices that no
derivative of f increases or decreases faster than polynomially as u→ +∞. The assumptions f ′(uo) = 0 and
f ′′(uo) > 0 assure that F has a Taylor series expansion near 0, giving a suitable expansion

1
2x

1/2F ′(x) = 1
2F
′(0)x1/2 +

1
2F

(2)(0)

1!
x3/2 +

1
2F

(3)(0)

2!
x5/2 +

1
2F

(4)(0)

3!
x7/2 + . . . (small x > 0)

From this, the main term of the Watson’s lemma asymptotics for the integral involving F would be∫ ∞
0

e−sx 1
2x

1/2 F ′(
√
x)
dx

x
∼

Γ( 1
2 )F ′(0)

2
· 1√

s

To determine F ′(0), or any higher coefficients, from F (x) = u, we have F ′(x) · dxdu = 1. Since

x =
√
f(u)− f(uo) =

√
(u− uo)2 ·

f ′′(uo)

2!
+ . . . =

√
f ′′(uo)

2
·
(

(u− uo) + . . .
)

the derivative is
dx

du
=

√
f ′′(uo)

2
·
(

1 +O(u− uo)
)

Thus,

F ′(x) =
1
dx
du

=

√
2

f ′′(uo)
·
(

1 +O(u− uo)
)

which allows evaluation at x = 0, namely

F ′(0) =

√
2

f ′′(uo)

The same argument applied to G gives G′(0) = F ′(0). Thus,

∫ ∞
0

e−s f(u) du ∼ e−sf(uo) ·
Γ( 1

2 ) · 2 ·
√

2
f ′′(uo)

2
√
s

= e−sf(uo) ·
√

2π√
f ′′(uo)

· 1√
s

Last, we verify that this outcome is what would be obtained by replacing f(u) by its quadratic approximation

f(uo) +
f ′′(0)

2!
· (u− uo)2

in the exponent in the original integral, integrated over the whole line. The latter would be∫ ∞
−∞

es·
(
f(uo)+

1
2 f

′′(uo)(u−uo)
2
)
du = esf(uo)

∫ ∞
−∞

es·
1
2 f

′′(uo)(u−uo)
2

du =

= esf(uo)

∫ ∞
−∞

es·
1
2 f

′′(uo)u
2

du = esf(uo) ·
√
π√

1
2f
′′(uo)

· 1√
s

= esf(uo) ·
√

2π√
f ′′(uo)

· 1√
s

This does indeed agree. Last, verify that the integral of the exponentiated quadratic approximation over
(−∞, 0] is of a lower order of magnitude. Indeed, for u ≤ 0 and uo > 0 we have (u − uo)2 ≥ u2 + u2o, and
f ′′(uo) < 0 by assumption, so

esf(uo)

∫ 0

−∞
es·
(

1
2 f

′′(uo)(u−uo)
2
)
du ≤ esf(uo) · es· 12 f

′′(uo)·u2
o

∫ 0

−∞
es·

1
2 f

′′(uo)u
2

du
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≤ esf(uo) · es· 12 f
′′(uo)·u2

o

∫ ∞
−∞

es·
1
2 f

′′(uo)u
2

du = esf(uo) · es· 12 f
′′(uo)·u2

o ·
√

2π√
f ′′(uo)

· 1√
s

Thus, the integral over (−∞, 0] has an additional exponential decay by comparison to the integral over the
whole line, so the leading-term of the asymptotics of the integral from 0 to +∞ is the same as those of the
integral from −∞ to +∞.

The case of Γ(s) can be converted to this situation as follows. For real s > 0, in the integral

s · Γ(s) = Γ(s+ 1) =

∫ ∞
0

e−u us du =

∫ ∞
0

e−u+s log u du

can replace u by su, to put the integral into the desired form

s · Γ(s) =

∫ ∞
0

e−su+s log u+s log s s du = s · es log s
∫ ∞
0

e−s(u+log u) du

For complex s with Re(s) > 0, both s · Γ(s) and the integral s · es log s
∫∞
0
e−s(u+log u) du are holomorphic in

s, and they agree for real s. Thus, by the identity principle, they are equal for Re(s) > 0.
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de Physique, Tome Sixi‘eme. (English trans. S.M. Stigler, 1986. Statist. Sci., 1 19 364-378).

[Lebedev 1963] N. Lebedev, Special functions and their applications, translated by R. Silverman, Prentice-
Hall 1965, reprinted Dover, 1972.

[Watson 1917] G.N. Watson, Bessel functions and Kapteyn series, Proc. London Math. Soc. (2) xvi (1917),
150-174. 277-308, 1918.

[Watson 1918a] G.N. Watson, Harmonic functions associated with the parabolic cylinder, Proc. London
Math. Soc. (2) 17 (1918), 116-148.

[Watson 1918b] G.N. Watson, Asymptotic expansions of hypergeometric functions, Trans. Cambridge Phil.
Soc. 22, 277-308, 1918.

[Watson 1922] G.N. Watson, Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1922.

[Whittaker-Watson 1927] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University
Press, 1927, 4th edition, 1952.

7


