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1. Fourier-Whittaker expansions of cuspforms on GLr
2. The Hecke-type case GLn ×GLn−1

3. The Rankin-Selberg case GLn ×GLn
4. Comments on GLm ×GLn with m ≤ n− 2

We give a quick introduction to Fourier-Whittaker expansions of cuspforms on GLn, and integral
representations of associated L-functions, following a part of Jacquet, Piatetski-Shapiro, and Shalika’s
extensions of Hecke’s work for GL2.

All known ways to analytically continue automorphic L-functions involve integral representations using the
corresponding automorphic forms. The simplest cases, extending Hecke’s treatment of GL2, need no further
analytic devices and very little manipulation beyond Fourier-Whittaker expansions. [1] Poisson summation
is a sufficient device for several accessible classes of examples, as in Riemann, [Hecke 1918,20], [Tate 1950],
[Iwasawa 1952], and [Godement-Jacquet 1972], and including treatment of the degenerate Eisenstein series

needed for the GLn ×GLn Rankin-Selberg convolutions. [2]

For f a cuspform on GLn the most natural L-function obtained by an integral representation is the Hecke-type
integral representation, also involving a cuspform F on GLn−1,

Λ(s, f ⊗ F ) =

∫
GLn−1(k)\GLn−1(A)

|deth|s− 1
2 · f

(
h 0
0 1

)
· F (h) dh

More properly, the integral is a zeta integral Z(s, f × F ), since within a given automorphic representation
there is an essentially unique choice of automorphic form giving the correct local factors everywhere locally
in that zeta integral: see [Jacquet-PS-Shalika 1981], [Jacquet-Shalika 1990], [Cogdell-PS 2003]. At good
primes this is not an issue, but the general case must subsume the theory of newforms, as well as coping
with complications at archimedean places. [3]

Another simple natural case, m = n, is the Rankin-Selberg integral using an auxiliary (degenerate) Eisenstein
series

Es(g) =
∑

γ∈Pn−1,1
k \GLn(k)

ϕs(γ · g)

where Pn−1,1 has Levi component GLn−1 ×GL1, and

ϕs =
⊗
v

ϕs,v

with ϕs,v in a (degenerate) induced representation from Pn−1,1
v . The zeta integral attached to two cuspforms

f, F on GLn is

Λ(s, f ⊗ F ) =

∫
GLn(k)\GLn(A)

Es(h) · f(h) · F (h) dh

[1] See [Hecke 1937a,b]. Apparently the extension to GLn−1 × GLn was considered so apparent that it was not

explicitly mentioned in [Jacquet-PS-Shalika 1979], which was concerned with GL1×GL3 as prototype for GLm×GLn.

[2] We do not discuss examples relying on meromorphic continuation of non-trivial Eisenstein series, as in

[Langlands 1967/1976, 1971] and [Shahidi 1978,1985] have other requirements. See [Shahidi 2010] for a recent survey.

[3] In contrast to [Godement-Jacquet 1972], the standard L-function for f is not produced by this Hecke-type integral

representation, except for n = 2. This was understood by Jacquet, Piatetski-Shapiro, and Shalika in the late 1970’s,

who developed the desired integral representations of a family of L-functions including the standard ones in the

papers in the bibliography below. See also Cogdell’s lecture notes in the bibliography.
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1. Fourier-Whittaker expansions of cuspforms on GLr

Some non-trivial aspects of the group structure of GLr enters in the derivation of the Fourier expansion.
The outcome is not obvious for r > 2.

Let G = GLr, reserving the character n for elements of unipotent subgroups. Let

Nmin =


1 ∗ . . . ∗

1
...

. . . ∗
0 1

 = unipotent radical of standard minimal parabolic

Fix a non-trivial additive character ψo on k\A, and let ψstd be the corresponding standard character on the
unipotent radical of the standard minimal parabolic, namely,

ψstd(u) = ψo(sum super-diagonal entries) = ψo(u12 + u23 + . . .+ ur−1,r) (non-trivial ψo on k\A)

We obtain the Fourier expansion of a cuspform by an induction. First, a cuspform f has a Fourier expansion
along the abelian unipotent radical

N = Nr−1,1 = {nx =

(
1r−1 x

0 1

)
: x = (r − 1)-by-1}

of the form

f(g) =
∑
ψ

∫
Nk\NA

ψ(n) f(ng) dn (ψ summed over characters on Nk\NA)

The cuspform condition implies that the component for the trivial character on Nk\NA is 0. The fragment

H = Hr−1 = {
(
GLr−1 0

0 1

)
}

of the Levi component of the parabolic P r−1,1 acts transitively on the non-trivial characters on Nk\NA.
Letting

ψ1(nx) = ψo(xr−1)

the isotropy subgroup Θ = Θr−1 of ψ1 in H is

Θ = {m ∈ Hk : ψ1(mnm−1) = ψ1(n) for all n ∈ NA} = {

GLr−2 ∗ 0
0 1 0
0 0 1

}
Thus, for a cuspform f ,

f(g) =
∑

γ∈Θk\Hk

∫
Nk\NA

ψ1(γnγ−1) f(ng) dn

Replacing n by γ−1nγ and using the left Gk-invariance of f , this is

f(g) =
∑

γ∈Θk\Hk

∫
Nk\NA

ψ1(n) f(nγg) dn

For the induction step, let

N ′ = {ux =

 1r−2 x 0
0 1 0
0 1

} ⊂ Hr−1
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Note that N ′ normalizes N , and

ψ1(unu−1) = ψ1(n) (for all n ∈ NA and u ∈ N ′A)

Letting

Hr−2 = {

GLr−2 0 0
0 1 0
0 0 1

}
we have Θ = N ′Hr−2 = Hr−2N ′. For each γ, the function

h −→
∫
Nk\NA

ψ1(n) f(nhγg) dn (for h ∈ Hr−1)

is left N ′k-invariant, because∫
Nk\NA

ψ1(n) f(nαhγg) dn =

∫
Nk\NA

ψ1(n) f(αnhγg) dn =

∫
Nk\NA

ψ1(n) f(nhγg) dn (for α ∈ Uk)

by replacing n by αnα−1 and using the left Gk-invariance of f . Thus, for each γ, there is a Fourier expansion
along N ′, namely,∫
Nk\NA

ψ1(n) f(nhγg) dn =
∑
ψ′

∫
N ′k\N

′
A
ψ
′
(u)

∫
Nk\NA

ψ1(n) f(nuhγg) dn du (characters ψ′ of N ′k\N ′A)

In fact, we only need h = 1:∫
Nk\NA

ψ1(n) f(nγg) dn =
∑
ψ′

∫
N ′k\N

′
A
ψ
′
(u)

∫
Nk\NA

ψ1(n) f(nuγg) dn du (characters ψ′ of N ′k\N ′A)

The ψ′ = 1 summand is 0, because f is cuspidal, since

N ′ ·
(

kerψ1 on N
)
⊃ {

 1r−2 ∗ ∗
0 1 0
0 0 1

} = unipotent radical of (r − 2, 2) parabolic

The action of Hr−2 on non-trivial characters ψ′ on N ′ is transitive. Let

ψ′1

 1r−2 x 0
0 1 0
0 0 1

 = ψo(xr−2) (with x (r − 2)-by-1)

The isotropy group of ψ′1 is

Θr−2 = {


GLr−3 ∗ 0 0

0 1 0 0
0 0 1 0
0 0 0 1

}
Thus,∑
ψ′

∫
N ′k\N

′
A
ψ
′
(u)

∫
Nk\NA

ψ1(n) f(nuγg) dn du =
∑

δ∈Θr−2
k \Hr−2

k

∫
N ′k\N

′
A
ψ
′
1(δuδ−1)

∫
Nk\NA

ψ1(n) f(nuγg) dn du

=
∑

δ∈Θr−2
k \Hr−2

k

∫
N ′k\N

′
A
ψ
′
1(u)

∫
Nk\NA

ψ1(n) f(nδ−1uδγg) dn du

3



Paul Garrett: Introduction to zeta integrals and L-functions for GLn (June 6, 2011)

by replacing u by δ−1uδ. We can also replace n by δ−1nδ without affecting ψ1, so this becomes∑
δ∈Θr−2

k \Hr−2
k

∫
N ′k\N

′
A
ψ
′
1(u)

∫
Nk\NA

ψ1(n) f(nuδγg) dn du

Altogether,

f(g) =
∑

γ∈Θr−1
k \Hr−1

k

∑
δ∈Θr−2

k \Hr−2
k

∫
N ′k\N

′
A
ψ
′
1(u)

∫
Nk\NA

ψ1(n) f(nuδγg) dn du

Since Θr−1 = Hr−2N ′, the elements δγ with γ ∈ Θr−1
k \Hr−1

k and δ ∈ Θr−2
k \Hr−2

k are in natural bijection
with Θr−2

k N ′k\H
r−1
k . Certainly nu → ψ′1(u)ψ1(n) gives a character ψ2 on NN ′, which is the unipotent

radical Nr−2,1,1 of the (r − 2, 1, 1) parabolic. Thus, so far,

f(g) =
∑

γ∈Θr−2
k N ′k\Hk

∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nγg) dn

We need a separate notation for unipotent radicals inside H = Hr−1 ≈ GLr−1: let U b1,...,bm be the unipotent
radical of the standard parabolic of H with blocks of size b1, . . . , bm along the diagonal. Then

Θr−2 ·N ′ = Hr−3 · Ur−3,1,1

Thus,

f(g) =
∑

γ∈Hr−3
k Ur−3,1,1

k \Hk

∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nγg) dn

We repeat the induction step once more. For each γ ∈ Hr−3
k Ur−3,1,1

k \Hk, the function

h −→
∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nhγg) dn (for h ∈ Hr−2)

is left invariant under N ′k, where

N ′ = {ux =


1r−3 x 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 , with x = (r − 3)-by-1}

For each γ, there is a Fourier expansion along N ′,∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nhγg) dn =

∑
ψ′

∫
N ′k\N

′
A
ψ
′
(u)

∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nuhγg) dn du

The summand for trivial ψ′ is 0, because f is a cuspform, and

N ′ ·
(

kerψ2 on Nr−2,1,1
)
⊃ {


1r−3 ∗ ∗ ∗

0 1 0 0
0 0 1 0
0 0 0 1

} = unipotent radical of (r − 3, 3) parabolic

The rational points of

Hr−3 = {


GLr−3 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

}
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act transitively on non-trivial characters ψ′ of Uk\UA. Let ψ′2(ux) = ψo(xr−3). The isotropy group of ψ′2 is

Θr−3 = {


GLr−4 ∗ 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

}
Note that

Θr−3 · Ur−3,1,1 = Hr−4 · Ur−4,1,1,1

Setting h = 1,

f(g) =
∑

γ∈Hr−3
k Ur−3,1,1

k \Hk

∑
δ∈Θr−3

k \Hr−3
k

∫
N ′k\N

′
A
ψ
′
2(δuδ−1)

∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nuγg) dn du

Replace u by δ−1uδ, and n by δ−1nδ, noting that conjugation by N ′A leaves ψ2 invariant:

f(g) =
∑

γ∈Hr−3
k Ur−3,1,1

k \Hk

∑
δ∈Θr−3

k \Hr−3
k

∫
N ′k\N

′
A
ψ
′
2(u)

∫
Nr−2,1,1

k \Nr−2,1,1

A
ψ2(n) f(nuδγg) dn du

The double sum over δγ can be regrouped into a single sum of γ ∈ Hr−4
k · Ur−4,1,1,1

k \Hk. Let

ψ3


1r−4 0 ∗ ∗ ∗

0 1 xr−3,r−2 ∗ ∗
0 0 1 xr−2,r−1 ∗
0 0 0 1 xr−1,r

0 0 0 0 1

 = ψo(xr−3,r−2 + xr−2,r−1 + xr−1,r)

Then

f(g) =
∑

γ∈Hr−4
k Ur−4,1,1,1

k \Hk

∫
Nr−3,1,1,1

k \Nr−2,1,1,1

A
ψ3(n) f(nγg) dn

By induction, with Umin the unipotent radical of the standard minimal parabolic in H, and Nmin the
unipotent radical of the standard minimal parabolic in G,

f(g) =
∑

γ∈Umin
k \Hk

∫
Nmin

k \Nmin

A
ψstd(n) f(nγg) dn

Letting the Whittaker function attached to f be

Wf (g) =

∫
Nmin

k \Nmin

A
ψstd(n) f(ng) dn

the Fourier expansion is

f(g) =
∑

γ∈Umin
k \Hk

Wf (γg)
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2. The Hecke-type integral representation: GLn ×GLn−1

Still let H denote the copy of GLr−1 in the standard Levi component of the standard (r− 1, 1) parabolic of
G = GLr. For cuspform f on GLr and cuspform F on H ≈ GLr−1, the Hecke-type integral representation∫

Hk\HA
|deth|s− 1

2 f

(
h 0
0 1

)
F (h) dh

produces the L-function Λ(s, f ×F ), up to normalization, as follows. Expressing f in its Fourier expansion,
as above, unwind:∫

Hk\HA
|deth|s− 1

2

∑
γ∈Umin

k \Hk

Wf

(
γ ·
(
h 0
0 1

))
F (h) dh =

∫
Umin

k \HA
|deth|s− 1

2 Wf

(
h 0
0 1

)
F (h) dh

The function |deth|s− 1
2 Wf

(
h 0
0 1

)
is left ψstd-equivariant under Umin

A , so rewrite∫
Umin

k \HA
|deth|s− 1

2 Wf

(
h 0
0 1

)
F (h) dh

=

∫
Umin

A \HA
|deth|s− 1

2 Wf

(
h 0
0 1

)(∫
Umin

k \Umin

A
ψstd(u) F (uh) du

)
dh

=

∫
Umin

A \HA
|deth|s− 1

2 Wf

(
h 0
0 1

)
WF (h) dh

where we note that the Whittaker function for F is formed with the complex-conjugated character ψstd

restricted from Nmin to Umin .

Under various hypotheses on f, F , the Whittaker functions factor over primes, and, then the zeta integral
factors over primes, giving an Euler product

Z(s, f × F ) =
∏
v

(∫
Umin

v \Hv

|dethv|s−
1
2Wf,v

(
hv 0
0 1

)
WF,v(hv) dhv

)
Further, at places v where f and F are spherical, via an Iwasawa decomposition H = UvM

min
v Kv with Mmin

the standard Levi component of the minimal parabolic in H, the vth local integral becomes a much smaller,
(r − 1)-dimensional integral:

∫
Mmin

v

|detmv|s−
1
2Wf,v

(
m 0
0 1

)
WF,v(m)

dm

δ(m)
(with m =

m1 0
. . .

0 mr−1

 ∈ GLr−1)

where δ(m) is the modular function of Mmin
v on Umin

v .

[2.0.1] Remark: The most important normalization constants are ρf (1) and ρF (1), which are the (higher-
rank analogues of) leading Fourier coefficients of f and F , when f and F are normalized to have L2-norm
1. Further, it is less clear that the archimedean local zeta integral is the correct gamma factor. Thus, even
with everywhere-spherical f and F ,

zeta-integral Z(s, f × F ) = ρf (1) · ρF (1) · (archimedean integrals) · L(s, f × F )
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[2.0.2] Remark: The analytic continuation of this Euler product follows from the original integral
representation, with relatively straightforward estimates on the cuspforms f, F . The functional equation
comes essentially from replacing h by h-transpose-inverse in the integral. The effect of transpose-inverse on
the local representations, hence, on the Euler factors, requires some further attention.

3. The Rankin-Selberg case GLn ×GLn

Now we need an auxiliary (degenerate) Eisenstein series

Es(g) =
∑

γ∈Pn−1,1
k \GLn(k)

ϕs(γ · g)

where Pn−1,1 has Levi component M ≈ GLn−1 ×GL1, and

ϕs =
⊗
v

ϕs,v

with ϕs,v in a (degenerate) induced representation from Pn−1,1
v . Specifically, the representation induced

from M should be of the form

m =

(
A 0
0 d

)
−→

∣∣∣detA

dn−1

∣∣∣s · χ(detA

dn−1

)
(for A ∈ GLn−1 and d ∈ GL1)

where s ∈ C and χ is a Hecke character. [4] We suppress reference to other data specifying the vector ϕs
in the induced representation, although in practice this data must be chosen to accommodate bad-prime
aspects of f, F , for example. The character χ must be chosen so that the central character of Es · f · F is
trivial, or the following integral is not well-defined.

The Rankin-Selberg zeta integral attached to two cuspforms f, F on GLn is [5]

Z(s, f ⊗ F ) =

∫
ZAGLn(k)\GLn(A)

Es(g) · f(g) · F (g) dg

Let H be the GLn−1 factor of the Levi component M . In the region of convergence, unwind the zeta integral
by unwinding the Eisenstein series:

Z(s, f ⊗ F ) =

∫
ZAHkN

n−1,1
k \GLn(A)

ϕs(g) · f(g) · F (g) dh

Let Umin be the unipotent radical of the standard minimal parabolic in H. Expanding f in its Fourier-
Whittaker expansion and unwinding, using the Hk-invariance of ϕs,

Z(s, f ⊗ F ) =

∫
ZAHkN

n−1,1
k \GLn(A)

ϕs(g) ·
∑

γ∈Uk\Hk

Wf (γg) · F (g) dg

=

∫
ZAUmin

kN
n−1,1
k \GLn(A)

ϕs(g) ·Wf (g) · F (g) dh =

∫
ZANmin

k \GLn(A)

ϕs(g) ·Wf (g) · F (g) dh

[4] The case of trivial χ is already useful. On the other hand, the character | · |s can be incorporated into χ, if

desired. Nevertheless, for analytical purposes, it is often convenient to separate the continuous parameter s from a

parametrization of the compact part of the idele-class group: J1/k× where J1 is ideles of idele-norm 1.

[5] The complex conjugation on F avoids certain uninteresting technicalities, as will become apparent.

7



Paul Garrett: Introduction to zeta integrals and L-functions for GLn (June 6, 2011)

where Nmin = UminNn−1,1 is the unipotent radical of the standard minimal parabolic Pmin in GLn.
Since ϕs is left NA-invariant, and the Whittaker function Wf is left NA, ψstd-equivariant, with the standard
character ψstd on NA,

∫
ZANmin

k \GLn(A)

ϕs(g) ·Wf (g) ·F (g) dh =

∫
ZANmin

A \GLn(A)

ϕs(g) ·Wf (g)
(∫

Nmin
k \Nmin

A
ψstd(u) ·F (ug) du

)
dh

=

∫
ZANmin

A \GLn(A)

ϕs(g) ·Wf (g) ·WF (g) dg

It is here that the pre-emptive complex-conjugation of F gives the Whittaker function of F with respect to
ψstd, rather than with respect to its complex conjugate.

Under various hypotheses, the Whittaker functions factor over primes. When we take ϕs to be a monomial
tensor, we have an Euler product

Z(s, f ⊗ F ) =
∏
v

∫
ZvNmin

v \GLn(kv)

ϕs(g) ·Wf,v(g) ·WF,v(g) dg (with inducing data suppressed)

[3.0.1] Remark: The most important normalization constants are ρf (1) and ρF (1), the (higher-rank
analogues of) leading Fourier coefficients of f and F , when f and F are normalized to have L2-norm 1.
It is less clear that the archimedean local zeta integral is the correct gamma factor. Thus, even with
everywhere-spherical f and F ,

zeta-integral Z(s, f × F ) = ρf (1) · ρF (1) · (archimedean integrals) · L(s, f × F )

[3.0.2] Remark: The analytic continuation of the zeta integral follows from the original integral
representation, with relatively straightforward estimates on the cuspforms f, F , and from the meromorphic
continuation and function equation of Es. For this very degenerate Eisenstein series, the analytic continuation
and functional equation follow from Poisson summation.

4. Comments on GLm ×GLn with m ≤ n− 2

As Jacquet, Piatetski-Shapiro, and Shalike found, for m < n − 1 an intermediate integration is necessary.
In the literature, such auxiliary integrations are often called unipotent integrations, and occur in other
situations, as well. In the end, one has a zeta integral

Z(s, f ⊗ F ) =

∫
GLm(k)\GLm(A)

|deth|s− 1
2 · (projnmf)

(
h 0
0 1n−m

)
· F (h) dh

where the projection operator projnm is the identity map for m = n− 1, but non-trivial otherwise, described
as follows. Let

N = Nr
m =


1m+1 ∗ . . . ∗

1
...

. . . ∗
1

 = unipotent radical of (m+ 1, 1, 1, . . . , 1) parabolic

The proper definition of the projection turns out to be

(projrmf)(g) = |deth|
r−(m+1)

2

∫
Nk\NA

ψ(n) f(ng) dn

8
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For example, for r = 3 and m = 1, with F trivial on GL1, the standard L-function attached to f is essentially
the zeta integral

Z(s, f) =

∫
GL1(k)\GL1(A)

|h|s− 1
2 +

3−(1+1)
2 proj31f

h
1

1

 dh

=

∫
GL1(k)\GL1(A)

|h|s
∫
k\A

∫
k\A

ψo(y) f
( 1 x

1 y
1

h
1

1

) dx dy dh
See [Cogdell 2003,07,08] for many further details about this general case.
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