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The specific goal here is to prove that the unitary dual of the adele quotient A/k is k, for any number field
k. Other than the compactness of A/k and the self-duality of A, the argument rests on general principles.

The specific fact that the unitary dual of the adele quotient A/k is isomorphic to k is essential to the Iwasawa-
Tate treatment of automorphic zeta-functions and L-functions for GL1: [Iwasawa 1950/52], [Tate 1950/67],
[Iwasawa 1952/92].

See [Weil 1940/1965] for a bibliography of the development of the theory of topological groups prior to 1938.

1. Compact-discrete duality

Consider abelian topological groups G. Let S1 be the unit circle in C. The unitary dual of G is

Ĝ = Homo(G,S1) = {continuous group homs G→ S1}

Pointwise multiplication makes Ĝ an abelian group. A reasonable topology [1] on Ĝ is the compact-open
topology, with a sub-basis of opens

U = UC,E = {f ∈ Ĝ : f(C) ⊂ E} (for compact C in G, open E in S1)

Granting that the compact-open topology makes Ĝ a abelian (locally-compact, Hausdorf) topological group,

[1.0.1] Theorem: The unitary dual of a compact abelian group is discrete. The unitary dual of a discrete
abelian group is compact.

Proof: Let G be compact. Let E be a small-enough open in S1 so that E contains no non-trivial subgroups

of G. Noting that G itself is compact, let U ⊂ Ĝ be the open

U = {f ∈ Ĝ : f(G) ⊂ E}

Since E is small, f(G) = {1}. That is, f is the trivial homomorphism. This proves discreteness of Ĝ.

For G discrete, every group homomorphism to S1 is continuous. The space of all functions G → S1 is the
cartesian product of copies of S1 indexed by G. By Tychonoff’s theorem, with the product topology, this
product is compact. Indeed, for discrete X, the compact-open topology on the space Co(X,Y ) of continuous
functions from X → Y is the product topology on copies of Y indexed by X.

[1] The reasonable-ness of the compact-open topology is in its function. First, on a compact topological space X,

the space Co(X) of continuous C-valued functions with the sup-norm (of absolute value) is a Banach space . On

non-compact X, the semi-norms given by sups of absolute values on compacts make Co(X) a Fréchet space. The

compact-open topology accommodates spaces of continuous functions Co(X,Y ) where the target space Y is not a

subset of a normed real or complex vector space, and is most interesting when Y is a topological group. In the latter

case, when the source X is also a topological group, the subset of all continuous functions f : X → Y consisting of

group homomorphisms is a (locally compact, Hausdorff) topological group. This is proven in an appendix.
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The subset of functions f satisfying the group homomorphism condition

f(gh) = f(g) · f(h) (for g, h ∈ G)

is closed, since the group multiplication f(g)× f(h)→ f(g) · f(h) in S1 is continuous. Since the product is

also Hausdorff, Ĝ is also compact. ///

2. (A/k)̂ ≈ k

Without other details, for a (discretely topologized) field k with adeles A, we grant that A/k is compact, and
that A is self-dual. In fact, the same argument succeeds for any field k sitting discretely inside a self-dual
abelian topological group A, such that the quotient A/k is compact.

[2.0.1] Theorem: The unitary dual of the compact quotient A/k is isomorphic to k. In particular, given
any non-trivial character ψ on A/k, all characters on A/k are of the form x→ ψ(α · x) for some α ∈ k.

Proof: Because A/k is compact, (A/k)̂ is discrete. Since multiplication by elements of k respects cosets
x+ k in A/k, the unitary dual has a k-vectorspace structure given by

(α · ψ)(x) = ψ(α · x) (for α ∈ k, x ∈ A/k)

There is no topological issue in this k-vectorspace structure, because (A/k)̂ is discrete. The quotient map

A→ A/k gives a natural injection (A/k)̂→ Â.

Given non-trivial ψ ∈ (A/k)̂, the k-vectorspace k · ψ inside (A/k)̂ injects to a copy of k · ψ inside Â ≈ A.
Assuming for a moment that the image in A is essentially the same as the diagonal copy of k, the quotient
(A/k)̂/k injects to the compact A/k. The topology of (A/k)̂ is discrete, and the quotient (A/k)̂/k is
still discrete. Since all these maps are continuous group homomorphisms, the image of (A/k)̂/k in A/k is
a discrete subgroup of a compact group, so is finite. Since (A/k)̂ is a k-vectorspace, the quotient (A/k)̂/k
must be a singleton. This proves that (A/k)̂ ≈ k, granting that the image of k · ψ in A ≈ Â is the usual
diagonal copy.

To see how k · ψ is imbedded in A ≈ Â, fix non-trivial ψ on A/k, and let ψ be the induced character on A.

The self-duality of A is that the action of A on Â by (x ·ψ)(y) = ψ(xy) gives an isomorphism. The subgroup
x · ψ with x ∈ k is certainly the usual diagonal copy. ///

3. Appendix: compact-open topology

Again, the space Co(X,Y ) of continuous functions from topological space X to topological space Y is most
often given the compact-open topology, which has a sub-basis of opens consisting of sets

U(C,E) = {f ∈ Ĝ : f(C) ⊂ E} (for compact C in X, open E in Y )

Because the topologies in G and S1 are group-invariant, any compact is of the form gC for a compact C
containing e ∈ G, and any open neighborhood of h is of the form hE for an open E containing e.

[3.1] The main point The unitary dual Ĝ of an abelian (locally compact, Hausdorff) topological group
is given the subset topology from the compact-open topology on the collection Co(G,S1) of all continuous

maps from G to the circle group S1. The elements of Ĝ are characters of G. Our goal is to prove:

[3.1.1] Theorem: The unitary dual Ĝ of an abelian (locally compact, Hausdorff) topological group is an
abelian (locally compact, Hausdorff) topological group.
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[3.1.2] Remark: We do not prove the local compactness in general. The important special cases considered
earlier, that the dual of discrete is compact, and vice-versa, give the local compactness of the duals in those
cases.

Proof: That the unitary dual is abelian is immediate, since the multiplication is pointwise by values, and
the target group S1 is abelian. The proof has several components, which we separate:

[3.2] Invariance of the topology First, verify that the topology is invariant. That is, given a sub-basis
open

U(C,E) = {f ∈ Ĝ : f(c) ∈ E, for all c ∈ C} (with C compact in G, E open in S1)

and given fo ∈ Ĝ, show that fo · U(C,E) is open. This is not completely trivial, as fo · U(C,E) is not
obviously of the form U(C ′, E′):

fo · U(C,E) = {f ∈ Ĝ : f(c) ∈ fo(c) · E, for all c ∈ C}

To show that fo ·U(C,E) is open, we show that every point is contained in a finite intersection of the basic
opens, with that intersection contained in fo · U(C,E).

Fix f ∈ fo ·U(C,E). Since f−1o (c)f(c) ∈ E, each c ∈ C has a neighborhood Nc such that f−1o (Nc)·f(Nc) ⊂ E.
Shrink each Nc to have compact closure N c, and so that f−1o (N c) · f(N c) ⊂ E. By compactness of C, it has
a finite subcover Ni = Nci . Thus,

f(N i) ⊂ fo(c
′) · E (for all i, for all c′ ∈ N i)

From the result of the following subsection, an intersection of a compact family of opens is open, so

Ei =
⋂

c′∈Ni

fo(c
′) · E = open

This open Ei is non-empty, since it contains f(N i). Thus,

f ∈
⋂
i

U(N i, Ei) (a finite intersection)

On the other hand, with ci and N i determined by f , take

f ′ ∈
⋂
i

U(N i, Ei)

Then
f ′(N i) ⊂ fo(c) · E (for all c ∈ N i)

In particular,
f ′(c) ∈ fo(c) · E (for all c ∈ N i)

Since the sets N i cover C, we have f ′ ∈ fo · U(C,E). That is,⋂
i

U(N i, Ei) ⊂ fo · U(C,E)

This proves that the translate fo ·U(C,E) is open, in the compact-open topology. That is, the compact-open
topology is translation-invariant.
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[3.3] Intersections of compact families of opens Now we prove the fact needed above, that compact
intersections of opens are open, in the following sense. Let H be a topological group, Hausdorff, but not
necessarily locally compact. We claim that⋂

k∈K

k · U = open (for U ⊂ H open, and K ⊂ H compact)

For u ∈ k · U for all k, by the continuity of inversion and the group operation, there are neighborhoods Uk
of u and Vk of k such that

V −1k · Uk ⊂ U

Let Vi = Vki be a finite subcover of K, and put Ui = Uki . Thus, for k ∈ Vi,

k−1 · Ui ⊂ U (for k ∈ Vi)

Thus,

k−1 ·
⋂
i

Ui ⊂ U (for all k ∈ K)

Since finite intersections of opens are open, the intersection of the Ui, each containing u, is an open
neighborhood of u. That is, the intersection of the translates k · U is open. This proves the claim

[3.4] Continuity of multiplication Next, show that the pointwise multiplication operation

(f1 · f2)(x) = f1(x) · f2(x) (for fi ∈ Ĝ and x ∈ G)

in Ĝ is continuous in the compact-open topology. Given a sub-basis neighborhood U(C,E) of f1 · f2, the
already-demonstrated invariance of the topology implies that (f1f2)−1U(C,E) is open, and is a neighborhood
of the trivial character. Thus, without loss of generality, take f1 = f and f2 = f−1. Given a sub-basic
neighborhood U(C,E) of the trivial character in Ĝ, show that there are neighborhoods U1 of f and U2 of
f−1 such that U1 · U2 ⊂ U(C,E). For U(C,E) to be a neighborhood of the trivial character means exactly
that 1 ∈ E (and C 6= φ).

Let E′ be an open neighborhood of 1 such that E′ · E′ ⊂ E. For

f ′ ∈
(
f · U(C,E′)

)
·
(
f−1 · U(C,E′)

)
we have

f ′(c) ∈
(
f(c) · E′

)
·
(
f−1(c) · E′

)
= E′ · E′ ⊂ E (for all c ∈ C)

That is, (
f · U(C,E′)

)
·
(
f−1 · U(C,E′)

)
⊂ U(C,E)

This proves continuity of multiplication. Continuity of inversion is similar.

[3.5] Hausdorff-ness Take f1 6= f2 in Ĝ. For some g ∈ G, f1(g) 6= f2(g). Since the target S1 is Hausdorff,
there are opens E1 3 f1(g) and E2 3 f2(g) with E1 ∩E2 = φ. Since the source G is Hausdorff, the singleton
{g} is compact. Thus, fi ∈ U({g}, Ei), and these opens are disjoint.

[3.6] Summary Apart from proving the local compactness in the general case, the above discussion verifies
several foundational aspects of unitary dual groups of abelian topological groups. This fully legitimizes the
earlier argument that unitary duals of discrete groups are are compact, and vice-versa. ///

4. Appendix: no small subgroups
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The circle group S1 has no small subgroups, in the sense that there is a neighborhood U of the identity
1 ∈ S1 such that the only subgroup of S1 inside U is the trivial group {1}.

We recall a proof. [2]

Use the copy of S1 inside the complex plane. Specifically, we claim that taking U to be the open right half

U = S1 ∩ {z ∈ C : Re(z) > 0}

suffices: the only subgroup G of S1 inside this U is G = {1}. Indeed, suppose not. Let 1 6= eiθ ∈ G∩U . We
can take 0 < θ < π/2, since both ±θ must appear. Using the archimedean property of R, let 0 < ` ∈ Z be
the smallest positive integer such that ` · θ > π/2. Then, since (`− 1) · θ < π/2 and 0 < θ < π/2,

π

2
< ` · θ = (`− 1) · θ + θ <

π

2
+
π

2
= π

Thus, ` · θ falls outside U , contradiction. ///
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