Belyi's proof of a conjecture of Grothendieck

Paul Garrett, garrett@math.umn.edu, (c)2001
(This proof is due to Gennady Belyi, mid-to-late 1980's.)
Theorem: Let X be a complete connected curve defined over a number field. Then there is a morphism $\pi: X \rightarrow \mathbf{P}^{1}$ from X to the projective line \mathbf{P}^{1} which is defined over \mathbf{Q} and ramified at most at 0,1 , and ∞.

Proof: For a non-constant meromorphic function f in $\overline{\mathbf{Q}}(X)$, view f as giving a $Q b$-morphism to \mathbf{P}^{1}. Let $S \subset \mathbf{P}^{1}$ be the points ramified for f. By composing with a linear fractional transformation with coefficients in $\overline{\mathbf{Q}}$, we may suppose without loss of generality that such a set S contains $0,1, \infty$ whenever the cardinality of S is at least 3 .

First we reduce to the case that the ramified points are rational, rather than merely algebraic. Let $\alpha \in S \cap \overline{\mathbf{Q}}$ be an algebraic number of maximal degree over Q among all such. Suppose that the degree $[\mathbf{Q}(\alpha): \mathbf{Q}]$ is greater than 1 , and let P be the minimal polynomial of α over \mathbf{Q}. Then $P \circ f: X \rightarrow \mathbf{P}^{1}$ is ramified at

$$
P(S) \cup\left\{\text { zeros of the derivative } P^{\prime}\right\}
$$

Thus, $P \circ f$ has fewer ramified points of degree $[\mathbf{Q}(\alpha): \mathbf{Q}]$ than $\operatorname{did} f$, since $(P \circ f)(\alpha)=0$ and since the degree of P^{\prime} is less than that of P. Therefore, by induction, we may suppose that we are given $f: X \rightarrow \mathbf{P}^{1}$ ramified only at rational points and possibly ∞.

By composing with a linear fractional transformation, we may suppose without loss of generality that all the ramified points are ∞ or rational points in the interval $[0,1]$. If the cardinality of S is strictly greater than 3 , then there is an element of S of the form $m /(m+n)$ with $m \geq 1, n \geq 1$, both integers. Consider the map

$$
g(z)=z^{m}(1-z)^{n}
$$

The derivative g^{\prime} has zeros at most at $0,1, m /(m+n)$. Thus, the composite map $g \circ f$ is ramified over

$$
g\left(S-\left\{0, \frac{m}{m+n}, 1\right\}\right) \cup g\left(0, \frac{m}{m+n}, 1\right)=g\left(S-\left\{0, \frac{m}{m+n}, 1\right\}\right) \cup\left\{g(0), g\left(\frac{m}{m+n}\right)\right\}
$$

since $g(0)=g(1)$. In particular, $g \circ f$ has strictly fewer ramified points than does f.
Continuing the latter process, adjusting by linear fractional transformations over \mathbf{Q} as necessary, by induction the desired result is achieved.

