Number theory exercises 09

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Mon, 05 Mar 2012, preferably as PDF emailed to me.
[number theory 09.1] For $y \in \mathbb{Z}_{p}$, what are the eigenvalues and eigenvectors of the unitary operator $T: L^{2}\left(\mathbb{Z}_{p}\right) \rightarrow L^{2}\left(\mathbb{Z}_{p}\right)$ defined by $T f(x)=f(x+y)$?
[number theory 09.2] With $G=\mathbb{Z} / n$, let $T: L^{2}(G) \rightarrow L^{2}(G)$ be the first difference operator

$$
T f(x)=f(x+1)-f(x)
$$

Find the eigenvalues and eigenvectors of T.
[number theory 09.3] With $G=\mathbb{Z} / n$, let $T: L^{2}(G) \rightarrow L^{2}(G)$ be the second difference operator

$$
T f(x)=(f(x+1)-f(x))-(f(x)-f(x-1))=f(x+1)-2 f(x)+f(x-1)
$$

Find the eigenvalues and eigenvectors of T.
[number theory 09.4] With $G=\mathbb{Z} / n \oplus \mathbb{Z} / n$, let $T: L^{2}(G) \rightarrow L^{2}(G)$ be the discrete Laplacian

$$
T f(x)=f(x+(1,0))-2 f(x)+f(x+(1,0))+f(x+(0,1))-2 f(x)+f(x+(0,1))
$$

Find the eigenvalues and eigenvectors of T.
[number theory 09.5] What are the eigenvalues and eigenvectors of the compact self-adjoint operator $T: L^{2}\left(\mathbb{Z}_{p}\right) \rightarrow L^{2}\left(\mathbb{Z}_{p}\right)$ defined by

$$
T f(x)=\int_{\mathbb{Z}_{p}}|x-y| \cdot f(y) d y
$$

[number theory 09.6] * [Starred problems are optional] Define a Hilbert-Schmidt operator $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ by the continuous kernel

$$
K(x, y)= \begin{cases}(x-1) \cdot y & (\text { for } 0 \leq y<x) \\ x \cdot(y-1) & (\text { for } x<y \leq 1)\end{cases}
$$

Find mild hypotheses on f so that the function $u=T f$ solves the differential equation $u^{\prime \prime}=f$. That is, the differential operator $d^{2} / d x^{2}$ has a (one-sided) inverse which is a compact operator.
[number theory 09.7] * [Starred problems are optional] Show that Volterera operator $V: L^{2}[0,1] \rightarrow L^{2}[0,1]$ given by

$$
V f(x)=\int_{0}^{x} f(t) d t \quad\left(\text { for } f \in L^{2}[0,1]\right)
$$

is compact, although not self-adjoint. Show that $\lim _{n \rightarrow \infty}\left|V^{n}\right|=0$, and that V has no eigenvectors.

