Newton polygons

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Let k be the field of fractions of a discrete valuation ring \mathbf{o} , with *ord*-function ord, and suppose that \mathbf{o} and k are *complete*. Let

$$f(x) = x^n + c_{n-1}x^{n-1} + \dots + c_2x^2 + c_1x + c_0$$

be in k[x]. Consider piecewise-linear convex (bending upward) functions P on the interval [0, n] such that for each integer i

$$P(i) \leq \text{ord } c_i$$

Let N be the maximum among these, and let $i_1 < \ldots < i_m$ be the integer indices such that we have equality

$$N(i_i) = \text{ord } c_{i+i}$$

The line segements

$$\ell_j$$
 = line segment connecting $N(i_j)$ and $N(i_{j+1})$

form the **Newton polygon** attached to f.

Theorem: Suppose that the roots of f generate a separable extension of k. Let m_j be the negative of the slope of ℓ_j , and let p_j be the length of the projection of ℓ_j to the horizontal axis. Then there are exactly p_j roots of f in k_{sep} with ord equal to m_j .

Proof: Let $\nu_1 < \ldots < \nu_m$ be the distinct ords of the roots, and suppose that there are exactly μ_i roots with ord ν_i . Let σ_j be the j^{th} symmetric function of the roots, so $c_i = \pm \sigma_i$.

Let $\rho_1, \ldots, \rho_{\mu_1}$ be the roots with largest ord. Since

$$\sigma_{\mu_1} = \rho_1 \dots \rho_{\mu_1} + (\text{other products})$$

where the other products of μ_1 factors have strictly smaller ords. By the ultrametric inequality,

$$\operatorname{ord}(\sigma_{\mu_1}) = \operatorname{ord}(\rho_1 \dots \rho_{\mu_1}) = \mu_1 \nu_1$$

Similarly, let $\tau_1, \ldots, \tau_{\mu_2}$ be the second-largest batch of roots, namely, roots with ord ν_2 . Then

$$\sigma_{\mu_1+\mu_2} = \rho_1 \dots \rho_{\mu_1} \tau_1 \dots \tau_{\mu_2} + (\text{other products})$$

where all the other products have strictly smaller ord. Again by the ultrametric inequality

$$\operatorname{ord}(\sigma_{\mu_1+\mu_2}) = \operatorname{ord}(\rho_1 \dots \rho_{\mu_1} \tau_1 \dots \tau_{\mu_2}) = \mu_1 \nu_1 + \mu_2 \nu_2$$

Generally,

$$\operatorname{ord}(\sigma_{\mu_1+\ldots+\mu_j}) = \mu_1\nu_1 + \ldots + \mu_j\nu_j$$

Therefore, the line segment connecting $N(n - \mu_1 - \ldots - \mu_j)$ and $N(n - \mu_1 - \ldots - \mu_{j+1})$ has slope $-\nu j + 1$ and the projecting to the horizontal axis has length μ_{j+1} .

On the other hand, for

$$\mu_1 \nu_1 + \ldots + \mu_j \nu_j < M < \mu_1 \nu_1 + \ldots + \mu_{j+1} \nu_{j+1}$$

by the ultrametric inequality

ord
$$M \ge \min$$
 (ord of products of M roots) = $\mu_1 \nu_1 + \ldots + \mu_i \nu_i + (M - \mu_1 - \ldots - \mu_i) \nu_{i+1}$

That is, N(n-M) lies on or above the line segment connecting the two points $N(n-\mu_1-\ldots-\mu_j)$ and $N(n-\mu_1-\ldots-\mu_{j+1})$.

Corollary: (Irreducibility criterion) Let f be monic of degree n over an ultrametric local field k as above. Suppose that the Newton polygon consists of a single line segment of slope -a/n where a is relatively prime to n. Then f is irreducible in k[x].

Proof: By the theorem, there are n roots of ord a/n. Since a is prime to n, the field $k(\alpha)$ generated over k by any one of these roots has ramification index divisible by n, by the following lemma, for example. But $[k(\alpha):k] \leq n$, so the field extension degree is exactly n.

Lemma: Let α belong to the separable closure of the ultrametric field k, and suppose that ord $\alpha = a/n$ with a relatively prime to n. Then $k(\alpha)$ has ramification index divisible by n (and, thus n divides $[k(\alpha):k]$).

Proof: Let ϖ be a local parameter in the extension $k(\alpha)$. Then

$$\operatorname{ord} \varpi = \frac{1}{e}$$

where e is the ramification index of the extension. Since α differs by a unit from some integer power of ϖ ,

$$\frac{a}{n} = \operatorname{ord}\alpha \in \frac{1}{e} \cdot \mathbf{Z}$$

That is, $ea \in n\mathbf{Z}$. Since a is prime to n, it must be that n divides e, which divides the field extension degree in general.

Corollary: (Eisenstein's criterion) Let f be monic of positive degree over a principal ideal domain R. Let E be the field of fractions of E. Let π be a prime element of E dividing all the coefficients of E (apart from the leading one, that of E), and suppose that E0 does not divide the constant coefficient. Then E1 is irreducible in E1.

Proof: Let k be the π -adic completion of E, and \mathbf{o} the valuation ring in k. In fact, f is irreducible in k[x]. The hypothesis implies that the Newton polygon consists of a single segment connecting (0,1) and (n,0), with slope -1/n. Thus, by the previous corollary, f is irreducible in k[x].

Corollary: In the situation of the theorem, the polynomial f factors over k into polynomials f_i of degrees d_i , where all roots of f_i have ord $-m_i$. Let $m_i = a_i/d_i$, if a_i is relatively prime to d_i then f_i is *irreducible* over k and any root of f_i generates a totally ramified extension of k.

Proof: If α, β are Galois conjugates, then their ords are the same. Thus, the set of roots with a given ord is stable under Galois. That is, the monic factor f_i of f with these as roots has coefficients in the ground field k. If the ord of α is of the form a/M with numerator prime to M then α generates an extension of degree divisible by M, by the lemma above. Thus, f_i is irreducible if in lowest terms $-m_i$ has denominator d_i .

Remark: In this last corollary there is not conclusion about the irreducibility of the factor f_i if the denominator of $-m_i$ (in lowest terms) is not the maximum possible, d_i . That is, we reach a sharp conclusion only for totally ramified extensions.

Corollary: If the Newton polygon has a line segment of slope -1 and length 1, then there is a factor $x - \alpha$ of f(x) with $\alpha \in k$.

Proof: The previous results show that there is a factor $x - \alpha$ with $\operatorname{ord} \alpha = 1$. If α were not in k, then it would have a Galois conjugate $\beta \neq \alpha$ with the same ord, which is excluded by the hypothesis.

Example: Consider

$$f(x) = x^5 + 2x^2 + 4$$

over \mathbf{Q}_2 . The Newton polygon has two pieces, one with slope -1/3 and length 3, the other with slope -1/2 and length 2. Thus, over \mathbf{Q}_2 this quintic factors into an irreducible cubic and an irreducible quadratic.

Example: Consider a slight alteration of the previous, to

$$f(x) = x^5 + 2x + 4$$

over \mathbf{Q}_2 . Not the Newton polygon has two pieces, one with slope -1/4 and length 4, the other with slope -1 and length 1. Thus, over \mathbf{Q}_2 this quintic factors into an irreducible quartic and has a linear factor in k.

Example: Consider the formal power series ring $\mathbf{o} = \mathbf{C}[[z]]$ and its field of fractions k. Use the ord function

$$\operatorname{ord}(c_n z^n + c_{n+1} z^{n+1} + \ldots) = 2^{-n}$$

(with $c_n \neq 0$). The non-zero prime ideal in **o** is generated by z. Let

$$f(w) = w^3 - zw + z$$

By Eisenstein's criterion this is irreducible. The extension generated by a root is totally ramified over k, that is, the Riemann surface is $triply\ branched$ at 0.

Example: By contrast, consider

$$f(w) = w^3 - zw + z^2$$

The Newton polygon has two pieces, revealing two roots with ord 1/2 and one with ord 1. Thus, there is a root w in k. Thus, at 0 the Riemann surface of this polynomial has a doubly-branched part and a separate sheet.