Context: Finiteness of class number and Dirichlet's units theorem are corollaries of Fujisaki's lemma, that \mathbb{J}^1/k^{\times} is compact.

... corollary of existence and uniqueness of Haar measure on \mathbb{A} and \mathbb{A}/k ... and compactness of \mathbb{A}/k , so that it has finite invariant measure. We verified this compactness.

Change-of-measure: for idele α , the change-of-measure on \mathbb{A} is

$$\frac{\operatorname{meas}(\alpha E)}{\operatorname{meas}(E)} = |\alpha| \qquad \text{(for measurable } E \subset \mathbb{A})$$

The latter is the full version of a familiar fact on the real line: for $\alpha \in \mathbb{R}^{\times}$ and measurable $E \subset \mathbb{R}$, written exactly the same way

$$\frac{\operatorname{meas}(\alpha E)}{\operatorname{meas}(E)} = |\alpha| \qquad \text{(for measurable } E \subset \mathbb{R})$$

Local version for p-adic completions, first.

Measure on \mathbb{Q}_p ?

We want the *regularity* promised by Riesz on locally compact, Hausdorff, countably-based topological spaces: the measure of a set is the *inf* of measure of opens containing it, and *sup* of measure of compacts contained in it.

For (locally compact...) totally disconnected abelian groups such as \mathbb{Q}_p , there is a local basis $U_n = p^n \mathbb{Z}_p$ at 0 consisting of open subgroups. Since \mathbb{Z}_p is also compact (and closed), so is each U_n . Since \mathbb{Z}_p is the disjoint union

$$\mathbb{Z}_p = p^n \mathbb{Z}_p \sqcup (1 + p^n \mathbb{Z}_p) \sqcup (2 + p^n \mathbb{Z}_p) \sqcup \ldots \sqcup ((p^n - 1) + p^n \mathbb{Z}_p)$$

of p^n of these cosets, by additivity

$$\operatorname{meas}(p^n \mathbb{Z}_p) = p^{-n} \cdot \operatorname{meas}(\mathbb{Z}_p)$$

Normalizing meas $(\mathbb{Z}_p) = 1$ specifies a regular measure on \mathbb{Q}_p .

Totally disconnected spaces have the advantage that many *simple* functions (meaning assuming only finitely-many values) are continuous, because many nice open sets are also closed:

$$p^n \mathbb{Z}_p = \{ x \in \mathbb{Q}_p : |x|_p < \frac{1}{p^{n+1}} \} = \{ x \in \mathbb{Q}_p : |x|_p \le \frac{1}{p^n} \}$$

Since addition is continuous, $x \to x + y$ is a homeomorphism of \mathbb{Q}_p to itself, so $p^n \mathbb{Z}_p + y$ is both open and closed.

Claim: every $f \in C_c^o(\mathbb{Q}_p)$ can be approximated by finite linear combinations of characteristic functions of sets $p^n\mathbb{Z}_p + y$.

Remark: The appropriate topology on $C_c^o(\mathbb{Q}_p)$, or on $C_c^o(\mathbb{R})$, is not sup-norm. But each subspace $C_c^o(p^{-k}\mathbb{Z}_p)$ is topologized by sup-norm, and is *complete metric*.

The topology on the whole space $C_c^o(\mathbb{Q}_p)$ is the *colimit* of the spaces $C_c^o(p^{-k}\mathbb{Z}_p)$. It is (quasi-) complete, but is not complete metric, since it violates the conclusion of Baire category, namely, it is a countable union of nowhere-dense subsets.

Proof of claim: Since all the sets $p^{-k}\mathbb{Z}_p$ are homeomorphic, without loss of generality take k=0. Let $f \in C_c^o(\mathbb{Z}_p)$. Fix $\varepsilon > 0$. For each $x \in \mathbb{Z}_p$, let $U_{n_x} = p^{n_x}\mathbb{Z}_p$ be a small-enough neighborhood of 0 so that $|f(x) - f(x')| < \varepsilon$ for $x' \in x + U_{n_x}$.

By compactness of \mathbb{Z}_p , there is a finite subcover $x_i + U_i$ of \mathbb{Z}_p . Let $U = \bigcap_i U_i$. The intersection is finite, so is open. We *claim* that for $x, x' \in \mathbb{Z}_p$ with $x - x' \in U$, necessarily $|f(x) - f(x')| < 2\varepsilon$. To see this, let $x \in x_i + U_i$. Then

$$x' \in x + U \subset (x_i + U_i) + U = x_i + (U_i + U) = x_i + U_i$$

As U is a sub group, \mathbb{Z}_p is a finite disjoint union of cosets U + y. Define a simple function

$$\varphi(x) = f(y) \text{ for } x \in U + y$$

This differs from f by at most 2ε .

The continuity of these simple functions allows definition of integrals of $C_c^o(\mathbb{Q}_p)$ functions without going outside $C_c^o(\mathbb{Q}_p)$, by taking continuous simple function φ approximating f within ε , and

$$\int_{\mathbb{Q}_p} f = \lim_{\varepsilon \to 0} \sum_{y} \varphi(y) \cdot \text{meas} (U + y) = \lim_{\varepsilon \to 0} \text{meas} (U) \cdot \sum_{y} \varphi(y)$$

Let $S(\varphi) = \sum_{y} \varphi(y) \cdot \text{meas}(U)$, noting that this does depend on the finite cover by *U*-cosets.

It is not surprising that the limit is well-defined, much as Riemann sums approximating integrals of continuous functions on \mathbb{R} give a well-defined limit: given simple φ, ψ approximating f within ε ,

$$|S(\varphi) - S(\psi)| < 2 \cdot \varepsilon \cdot \text{meas}(\text{spt}f)$$

Thus, the sums $S(\varphi)$ are a Cauchy net of complex numbers, proving the well-definedness.

Translation-invariance: Again, take advantage of the total-disconnectedness.

Given $f \in C_c^o(\mathbb{Q}_p)$ and $g \in \mathbb{Q}_p$, let $k \in \mathbb{Z}$ be large enough so that $p^{-k}\mathbb{Z}_p$ contains both sptf and g. Then $x \to f(x+g)$ also has support inside $p^{-k}\mathbb{Z}_p$.

For a simple function φ approximating f, with φ a linear combination of characteristic functions of cosets $U+y, x \to x+g$ simply permutes these cosets. Thus,

$$\sum_y \varphi(y)\cdot \max{(U)} = \sum_y \varphi(y+g)\cdot \max{(U+g)}$$
 Thus,
$$\int_{\mathbb{Q}_p} f(x+g)\,dx = \int_{\mathbb{Q}_p} f(x)\,dx.$$
 ///

Uniqueness!?! Does taking meas $(\mathbb{Z}_p) = 1$ and the above construction of an integral give the only possible invariant integral/measure on \mathbb{Q}_p ?

Temporarily ignoring any general assertion of uniqueness of Haar measure, let's take advantage of the special features here:

 \mathbb{Z}_p is *open*, so is measurable. It is compact, so its measure is *finite*. Thus, we can renormalize a given Haar measure μ so that $\mu(\mathbb{Z}_p) = 1$.

Since \mathbb{Z}_p is a disjoint union of p^n translates of $p^n\mathbb{Z}_p$, all with the same measure, by translation-invariance. Thus, $\mu(p^n\mathbb{Z}_p) = p^{-n}$. Thus, integrals of simple functions are completely determined.

We saw that each $C_c^o(p^{-k}\mathbb{Z}_p)$ can be approximated by simple functions. By the required positivity/continuity of the invariant integral, this determines integrals of $C_c^o(\mathbb{Q}_p)$ completely. ///

Change-of-measure: We probably believe the assertion

$$\frac{\operatorname{meas}(\alpha E)}{\operatorname{meas}(E)} = |\alpha| \qquad (\alpha \in \mathbb{R}^{\times}, \text{ measurable } E \subset \mathbb{R})$$

Before considering the p-adic case, the complex claim is

$$\frac{\operatorname{meas}\left(\alpha E\right)}{\operatorname{meas}\left(E\right)} \ = |\alpha|_{\mathbb{C}} \ = \ |\alpha|^2 \qquad (\alpha \in \mathbb{C}^{\times}, \, \operatorname{measurable} \, E \subset \mathbb{C})$$

Recall that the product-formula normalization of the norm on \mathbb{C} is $|\alpha|_{\mathbb{C}} = |N_{\mathbb{R}}^{\mathbb{C}}\alpha|_{\mathbb{R}}$, giving the square of the *extension* normalization. We can use the usual parallelogram argument: take \mathbb{R} basis 1, i of \mathbb{C} , and $\alpha = a + bi$. Then $\alpha \cdot 1 = a + bi$ and $\alpha \cdot i = -b + a$, and

$$\left| \det \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \right| = a^2 + b^2 = |\alpha|^2 = |\alpha|_{\mathbb{C}}$$

p-adic change-of-measure: Take advantage of the special nature of things here: for $\alpha \in \mathbb{Q}^p$ with $\alpha = p^{-k} \cdot \eta$ with $\eta \in \mathbb{Z}_p$ and $k \geq 0$, the set $\alpha \cdot \mathbb{Z}_p = p^{-k}\mathbb{Z}_p$ is a disjoint union of p^k copies of \mathbb{Z}_p , so has measure p^k . Oppositely, for $\alpha = p^k \cdot \eta$ with $k \geq 0$, \mathbb{Z}_p is a disjoint union of p^k copies of $\alpha \cdot \mathbb{Z}_p$, so the measure of $\alpha \cdot \mathbb{Z}_p$ is p^{-k} .

In both cases, we have

$$\frac{\operatorname{meas}\left(\alpha \cdot \mathbb{Z}_p\right)}{\operatorname{meas}\left(\mathbb{Z}_p\right)} = |\alpha|_p$$

Since $\nu(E) = \text{meas}(\alpha \cdot E)$ is another translation-invariant measure, by uniqueness it is a constant multiple of our constructed measure. We need only determine the constant, and computing the measure of $\alpha \cdot \mathbb{Z}_p$ does this.

Change-of-measure: adeles

The rational adele group is not a product, but it is an ascending union (colimit) of products

$$\mathbb{A}_S = \mathbb{R} \times \prod_{v \in S} \mathbb{Q}_v \times \prod_{v \notin S} \mathbb{Z}_v$$

 $\mathbb{A}_S \ = \ \mathbb{R} \times \prod_{v \in S} \mathbb{Q}_v \times \prod_{v \not\in S} \mathbb{Z}_v$ over finite sets S of places outside of which elements are locally integral.

Countable products of *countably-based* locally-compact spaces with regular Borel measures have well-behaved product measures specified (up to completion, which is irrelevant for us) by the measures on the factors: the product topology has a countable basis, and any open is a countable union of basis opens, so measures of opens are completely determined.

Group invariance is inherited by the product measure.