Harmonic analysis, on \mathbb{R} , \mathbb{R}/\mathbb{Z} , \mathbb{Q}_p , \mathbb{A} , and \mathbb{A}_k/k , key ingredients in Iwasawa-Tate:

Characters and Fourier transforms on \mathbb{R} , \mathbb{Q}_p , \mathbb{A} , and for completions and adeles of number fields.

Fourier inversion expresses nice functions as superpositions (integrals) of characters.

Schwartz spaces $\mathscr{S}(\mathbb{R})$, $\mathscr{S}(\mathbb{Q}_p)$, $\mathscr{S}(\mathbb{A})$ of very-nice functions on \mathbb{R} , \mathbb{Q}_p , \mathbb{A} , and k_v , \mathbb{A}_k for number fields k.

Adelic Poisson summation

$$\sum_{x \in k} f(x) = \sum_{x \in k} \widehat{f}(x) \qquad (\text{for } f \in \mathscr{S}\mathbb{A}_k)$$

Recap:

Theorem: $\mathbb{Q}_p^{\vee} \approx \mathbb{Q}_p$ and $\mathbb{A}^{\vee} \approx \mathbb{A}$. Similarly, for number fields k, $k_v^{\vee} \approx k_v$ and $\mathbb{A}_k^{\vee} \approx \mathbb{A}_k$.

Corollary: Given *non-trivial* $\psi \in \mathbb{Q}_p^{\vee}$, every other element of \mathbb{Q}_p^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{Q}_p$. Similarly, given *non-trivial* $\psi \in \mathbb{A}^{\vee}$, every other element of \mathbb{A}^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{A}$, ... and analogously for number fields k, ...

Remark: This sort of result is already familiar from the analogue for \mathbb{R} , that $x \to e^{i\xi x}$ for $\xi \in \mathbb{R}$ are all the unitary characters of \mathbb{R} .

The standard character ψ_1 on \mathbb{Q}_p is as follows: given $x \in \mathbb{Q}_p$, there is $x' \in p^{-k}\mathbb{Z}$ for some $k \in \mathbb{Z}$, such that $x - x' \in \mathbb{Z}_p$, and $\psi_1(x) = e^{-2\pi i x'}$ (sign choice for later) For $\xi \in \mathbb{Q}_p$, let

$$\psi_{\xi}(x) = \psi_1(\xi \cdot x) \qquad (\text{for } x, \xi \in \mathbb{Q}_p)$$

For a finite extension k_v of \mathbb{Q}_p , the standard character is

$$\psi_{\xi}(x) = \psi_1\left(\operatorname{tr}_{\mathbb{Q}_p}^{k_v}(\xi \cdot x)\right) \qquad (\text{for } x, \xi \in k_v)$$

Since $\operatorname{tr}(\mathfrak{o}_v) \subset \mathbb{Z}_p$, certainly $\ker \psi_{\xi} \supset \xi^{-1}\mathfrak{o}_v$.

Compact-discrete duality For abelian G, pointwise multiplication makes \widehat{G} an abelian group. The reasonable topology on \widehat{G} is the *compact-open* topology.

Proposition (later): the compact-open topology makes \widehat{G} an abelian (locally-compact, Hausdorf) topological group.

Theorem: The unitary dual of a *compact* abelian group is *discrete*. The unitary dual of a *discrete* abelian group is *compact*.

Theorem: $(\mathbb{A}/k)^{\widehat{}} \approx k$. In particular, given any non-trivial character ψ on \mathbb{A}/k , all characters on \mathbb{A}/k are of the form $x \to \psi(\alpha \cdot x)$ for some $\alpha \in k$.

Proof: (again...) For a (discretely topologized) number field k with adeles \mathbb{A} , \mathbb{A}/k is *compact*, and \mathbb{A} is *self-dual*.

Because \mathbb{A}/k is compact, $(\mathbb{A}/k)^{\widehat{}}$ is *discrete*. Since multiplication by elements of k respects cosets x + k in \mathbb{A}/k , the unitary dual has a k-vectorspace structure given by

$$(\alpha \cdot \psi)(x) = \psi(\alpha \cdot x)$$
 (for $\alpha \in k, x \in \mathbb{A}/k$)

The quotient map $\mathbb{A} \to \mathbb{A}/k$ gives a natural injection $(\mathbb{A}/k)^{\widehat{}} \to \widehat{\mathbb{A}}$.

Given non-trivial $\psi \in (\mathbb{A}/k)^{\widehat{}}$, the k-vectorspace $k \cdot \psi$ inside $(\mathbb{A}/k)^{\widehat{}}$ injects to a copy of $k \cdot \psi$ inside $\widehat{\mathbb{A}} \approx \mathbb{A}$. Assuming that the image in \mathbb{A} is essentially the same as the diagonal copy of $k, (\mathbb{A}/k)^{\widehat{}}/k$ injects to \mathbb{A}/k . The topology of $(\mathbb{A}/k)^{\widehat{}}$ is discrete, and the quotient $(\mathbb{A}/k)^{\widehat{}}/k$ is still discrete. These maps are continuous group homs, so the image of $(\mathbb{A}/k)^{\widehat{}}/k$ in \mathbb{A}/k is a discrete subgroup of a compact group, so is finite.

Since $(\mathbb{A}/k)^{\widehat{}}$ is a k-vectorspace, $(\mathbb{A}/k)^{\widehat{}}/k$ finite implies it is a singleton. Thus, $(\mathbb{A}/k)^{\widehat{}} \approx k$, assuming the image of $k \cdot \psi$ in $\mathbb{A} \approx \widehat{\mathbb{A}}$ is the usual diagonal copy.

To see how $k \cdot \psi$ is imbedded in $\mathbb{A} \approx \widehat{\mathbb{A}}$, fix non-trivial ψ on \mathbb{A}/k , and let ψ be the corresponding character on \mathbb{A} . Self-duality of \mathbb{A} asserts $x \to (y \to \psi(xy))$ gives an *isomorphism* $k \to (\mathbb{A}/k)^{\vee}$. The subgroup $x \cdot \psi$ with $x \in k$ is indeed the usual diagonal copy. /// *Next:* Fourier transforms, Fourier inversion, Schwartz spaces of functions, adelic Poisson summation.

Remark: *ad hoc* classical manipulations of *congruence conditions* (strangely, continuing to this day) are rendered transparent and sensible when re-packaged as *p*-adic and adelic Fourier transforms.

Unsurprisingly, the Fourier transform on k_v is

$$\mathscr{F}f(\xi) = \widehat{f}(\xi) = \int_{k_v} \overline{\psi}_{\xi}(x) f(x) dx$$

where, given the characters ψ_{ξ} (for example, the standard ones), the Haar measures are normalized so that *Fourier inversion* holds exactly:

$$f(x) = \int_{k_v} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi \qquad \text{(for nice functions } f)$$

It is not obvious that Fourier inversion could hold at all...

Recall how/why Fourier inversion works on \mathbb{R} . First, a natural approach fails, but suggestively:

$$\int_{\mathbb{R}} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi = \int_{\mathbb{R}} \psi_{\xi}(x) \Big(\int_{\mathbb{R}} \overline{\psi}_{\xi}(t) \, f(t) \, dt \Big) \, d\xi$$
$$= \int_{\mathbb{R}} f(t) \Big(\int_{\mathbb{R}} \psi_{\xi}(x-t) \, dt \Big) \, dt$$

If we could *justify* asserting that the inner integral is $\delta_x(t)$, which it *is*, then Fourier inversion follows:

$$\int_{\mathbb{R}} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi = \int_{\mathbb{R}} f(t) \,\delta_x(t) \, dt = f(x)$$

However, this is circular: Fourier inversion, and more, is used to make sense of that inner integral in the first place.

The usual space $\mathscr{S}(\mathbb{R})$ of *Schwartz functions* on \mathbb{R} consists of infinitely-differentiable functions all of whose derivatives are of *rapid decay*, decaying more rapidly at $\pm \infty$ than every $1/|x|^N$. Its topology is given by semi-norms

$$\nu_{k,N}(f) = \sup_{0 \le i \le k} \sup_{x \in \mathbb{R}} \left((1+|x|)^N \cdot |f^{(i)}(x)| \right)$$

for $0 \leq k \in \mathbb{Z}$ and $0 \leq N \in \mathbb{Z}$.

There are countably-many associated (pseudo-) metrics $d_{k,N}(f,g) = \nu_{k,N}(f-g)$, so $\mathscr{S}(\mathbb{R})$ is naturally *metrizable*.

The usual two-or-three-epsilon arguments show that $\mathscr{S}(\mathbb{R})$ is *complete* metrizable.

Remark: There is *no* canonical metric on $\mathscr{S}(\mathbb{R})$, despite the space being unambiguously *metrizable*.

When we know how to justify moving the differentiation under the integral,

$$\frac{d}{d\xi}\widehat{f}(\xi) = \frac{d}{d\xi} \int_{\mathbb{R}} \overline{\psi}_{\xi}(x) f(x) dx = \int_{\mathbb{R}} \frac{\partial}{\partial x} \overline{\psi}_{\xi}(x) f(x) dx$$
$$= \int_{\mathbb{R}} (-2\pi i x) \overline{\psi}_{\xi}(x) f(x) dx = (-2\pi i x) \widehat{f}(\xi)$$

Similarly, with an integration by parts,

$$-2\pi i\xi \cdot \widehat{f}(\xi) = \int_{\mathbb{R}} \frac{\partial}{\partial x} \overline{\psi}_{\xi}(x) \cdot f(x) \, dx = -\mathscr{F} \frac{df}{dx}(\xi)$$

It follows that \mathscr{F} maps $\mathscr{S}(\mathbb{R})$ to itself, and, further, is an isomorphism of topological vector spaces.

Despite the impasse in the natural argument for Fourier inversion, the situation is encouraging. A dummy *convergence factor* will legitimize the idea.

For example, let $g(x) = e^{-\pi x^2}$ be the Gaussian. It is its own Fourier transform: moving the contour of integration after a change of variables,

$$\int_{\mathbb{R}} e^{-2\pi i\xi x} e^{-\pi x^2} dx = \int_{\mathbb{R}} e^{-\pi (x+i\xi)^2} e^{-\pi \xi^2} dx$$
$$= e^{-\pi \xi^2} \int_{i\xi+\mathbb{R}} e^{-\pi x^2} dx = e^{-\pi \xi^2} \int_{\mathbb{R}} e^{-\pi x^2} dx = e^{-\pi \xi^2}$$

For $f \in \mathscr{S}(\mathbb{R})$, with $f_{\varepsilon}(x) = f(\varepsilon \cdot x)$, as $\varepsilon \to 0^+$ the dilated f_{ε} approaches f(0) uniformly on compacts. Thus, as $\varepsilon \to 0^+$, the dilated Gaussian $g_{\varepsilon}(x) = g(\varepsilon \cdot x)$ approaches 1 uniformly on compacts.

Thus,

$$\int_{\mathbb{R}} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi = \int_{\mathbb{R}} \lim_{\varepsilon \to 0^+} g(\varepsilon\xi) \, \psi_{\xi}(x) \, \widehat{f}(\xi) \, d\xi$$
$$= \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} g(\varepsilon\xi) \, \psi_{\xi}(x) \, \widehat{f}(\xi) \, d\xi$$

by *monotone convergence* or more elementary reasons. The iterated integral can be legitimately rearranged:

$$\int_{\mathbb{R}} g(\varepsilon\xi) \ \psi_{\xi}(x) \ \widehat{f}(\xi) \ d\xi = \int_{\mathbb{R}} \int_{\mathbb{R}} g(\varepsilon\xi) \ \psi_{\xi}(x) \ \overline{\psi}_{\xi}(t) \ f(t) \ dt \ d\xi$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} g(\varepsilon\xi) \ \psi_{\xi}(x-t) \ f(t) \ d\xi \ dt$$

Changing variables in the definition of Fourier transform shows $\widehat{g_{\varepsilon}} = \frac{1}{\varepsilon}g_{1/\varepsilon}$. Thus,

$$\int_{\mathbb{R}} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi = \int_{\mathbb{R}} \frac{1}{\varepsilon} \, g\left(\frac{x-t}{\varepsilon}\right) \, f(t) \, dt = \int_{\mathbb{R}} \frac{1}{\varepsilon} \, g\left(\frac{t}{\varepsilon}\right) \cdot f(x+t) \, dt$$

The functions $g_{1/\varepsilon}/\varepsilon$ are not an *approximate identity* in the strictest sense, since the supports do not shrink to $\{0\}$. Nevertheless, the integral of each is 1, and as $\varepsilon \to 0^+$, the mass is concentrates on smaller and smaller neighborhoods of $0 \in \mathbb{R}$.

Thus, for $f \in \mathscr{S}(\mathbb{R})$, we have Fourier inversion

$$\int_{\mathbb{R}} \psi_{\xi}(x) \, \widehat{f}(\xi) \, d\xi = \dots = \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} \frac{1}{\varepsilon} \, g\left(\frac{t}{\varepsilon}\right) \cdot f(x+t) \, dt = f(x)$$

An analogous argument succeeds for \mathbb{Q}_p , but is actually much simpler... (!)

Before describing the Schwartz space $\mathscr{S}(\mathbb{Q}_p)$ and proving Fourier inversion, sample computations of Fourier transforms are useful.

In particular, we need a simply-described function on \mathbb{Q}_p which is its own Fourier transform, to play a role analogous to that of the Gaussian in the archimedean case.

Claim: With Fourier transform on \mathbb{Q}_p defined via the standard character $\psi_1(x) = e^{-2\pi i x'}$ (where $x' \in p^{-\infty} \mathbb{Z}_p$ and $x - x' \in \mathbb{Z}_p$), the characteristic function of \mathbb{Z}_p is its own Fourier transform.

Proof: Let f be the characteristic function of \mathbb{Z}_p . Then

$$\widehat{f}(\xi) = \int_{\mathbb{Q}_p} \overline{\psi}_{\xi}(x) f(x) \, dx = \int_{\mathbb{Z}_p} \overline{\psi}_1(\xi \cdot x) \, dx = \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x) \, dx$$

Recall a form of the *cancellation lemma*: (a tiny case of *Schur orthogonality*...)

///

Lemma: Let $\psi: K \to \mathbb{C}^{\times}$ be a continuous group homomorphism on a compact group K. Then

$$\int_{K} \psi(x) \, dx = \begin{cases} \max(K) & (\text{for } \psi = 1) \\ 0 & (\text{for } \psi \neq 1) \end{cases}$$

Proof of Lemma: Yes, of course, he measure is a Haar measure on K. Since K is *compact*, it is *unimodular*.

For ψ trivial, of course the integral is the total measure of K.

For ψ non-trivial, there is $y \in K$ such that $\psi(y) \neq 1$. Using the invariance of the measure, change variables by replacing x by xy:

$$\int_{K} \psi(x) \, dx = \int_{K} \psi(xy) \, d(xy) = \int_{K} \psi(x) \, \psi(y) \, dx = \psi(y) \int_{K} \psi(x) \, dx$$

Since $\psi(y) \neq 1$, the integral is 0.

Apply the lemma to the integrals computing the Fourier transform of the characteristic function f of \mathbb{Z}_p . Giving the compact group \mathbb{Z}_p measure 1,

$$\widehat{f}(\xi) = \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x) \, dx = \begin{cases} 1 & (\psi_1(-\xi x) = 1 \text{ for } x \in \mathbb{Z}_p) \\ 0 & (\text{otherwise}) \end{cases}$$

On one hand, for $\xi \in \mathbb{Z}_p$, certainly $\psi_1(\xi x) = 1$ for $x \in \mathbb{Z}_p$. On the other hand, for $\xi \notin \mathbb{Z}_p$, there is $x \in \mathbb{Z}_p$ such that, for example, $\xi \cdot x = 1/p$. Then

$$\psi_1(-\xi \cdot x) = \psi_1(\frac{-1}{p}) = e^{+2\pi i \cdot \frac{1}{p}} \neq 1$$

Thus, ψ_{ξ} is not trivial on \mathbb{Z}_p , so the integral is 0. Thus, the characteristic function of \mathbb{Z}_p is its own Fourier transform.

///