- Interlude: Calculus on spheres: invariant integrals, invariant $\Delta=\Delta^{S}$, integration-by-parts, etc. Decomposition of $L^{2}\left(S^{n-1}\right)$ into Δ^{S}-eigenfunctions:

$$
L^{2}\left(S^{n-1}\right)=\text { completion of }\left.\bigoplus_{d} H_{d}\right|_{S^{n-1}}
$$

and $\left.H_{d}\right|_{S^{n-1}}$ is Δ^{S}-eigenspace with eigenvalue $\lambda_{d}=-d(d+n-2)$
Hecke's identity: For a homogeneous, degree d harmonic polynomial P on $\mathbb{R}^{n}, P(x) e^{-\pi|x|^{2}}$ is a Fourier transform eigenfunction with eigenvalue i^{-d} :

$$
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=i^{-d} \cdot P(\xi) e^{-\pi|\xi|^{2}}
$$

The idea of the proof is that the $S O(n, \mathbb{R})$-map

$$
\#: H_{d} \longrightarrow \mathbb{C}[x]^{\leq d} \approx H_{d} \oplus(\text { other irreducibles })
$$

must map H_{d} to the other copy of H_{d}, and, by Schur's lemma, be a scalar.

Theorem: (Schur's Lemma) For a finite-dimensional irreducible representation V of a group G, any G-intertwining $\varphi: V \rightarrow V$ of V to itself is scalar.

Theorem: The space H_{d} of harmonic homogeneous total-degree d polynomials is an irreducible $S O(n, \mathbb{R})$-representation.

The proof uses a multiplicity-one result, namely,
Lemma: On \mathbb{R}^{n}, for each fixed d, in H_{d} there is a unique (up to constant multiples) $S O(n-1, \mathbb{R})$-fixed vector $f \in H_{d}$. ///

Similar to Schur's Lemma:
Proposition: For non-isomorphic irreducible G-representations V, W, the only G-hom $\varphi: V \rightarrow W$ is the zero map.

Proposition: (Complete Reducibility) A finite-dimensional unitary G-representation V is a finite orthogonal direct sum of irreducible G-subrepresentations.

A direct sum of a number of copies of an irreducible π is denoted

$$
m \cdot \pi=\underbrace{\pi \oplus \ldots \oplus \pi}_{m}
$$

Corollary: For non-isomorphic irreducibles $\sigma_{1}, \ldots, \sigma_{n}$ and nonnegative integers $m_{1}, \ldots, m_{n}, m_{1}^{\prime}, \ldots, m_{n}^{\prime}$,

$$
\begin{gathered}
\operatorname{Hom}_{G}\left(\bigoplus_{i} m_{i} \sigma_{i}, \bigoplus_{j} m_{j}^{\prime} \sigma_{j}\right) \approx \bigoplus_{i} \operatorname{Hom}_{G}\left(m_{i} \sigma_{i}, m_{i}^{\prime} \sigma_{i}\right) \\
\quad \approx \bigoplus_{i}\left(m_{i}^{\prime} \text {-by- } m_{i} \text { complex matrices }\right)
\end{gathered}
$$

Remark: This continues the theme that non-isomorphic irreducibles do not interact.

Proof: The characterization of direct sums is that maps from a direct sum are direct sums of maps from the individuals. Finite direct sums (coproducts) of vector spaces (or representations) are also products. Thus, for general categorical reasons,

$$
\operatorname{Hom}_{G}\left(\bigoplus_{i} m_{i} \sigma_{i}, \bigoplus_{j} m_{j}^{\prime} \sigma_{j}\right) \approx \bigoplus_{i j} \bigoplus_{k=1}^{m_{i}} \bigoplus_{\ell=1}^{m_{j}^{\prime}} \operatorname{Hom}_{G}\left(\sigma_{i}, \sigma_{j}\right)
$$

By Schur's lemma and related ideas, $\operatorname{Hom}_{G}\left(\sigma_{i}, \sigma_{j}\right)=0$ unless $i=j$, in which case it is \mathbb{C}. Thus, going backward slightly,

$$
\operatorname{Hom}_{G}\left(\bigoplus_{i} m_{i} \sigma_{i}, \bigoplus_{j} m_{j}^{\prime} \sigma_{j}\right) \approx \bigoplus_{i} \operatorname{Hom}_{G}\left(m_{i} \sigma_{i}, m_{i}^{\prime} \sigma_{i}\right)
$$

Further, $\operatorname{Hom}_{G}\left(\sigma_{i}, m_{i}^{\prime} \sigma_{i}\right)$ is exactly maps $\varphi(v)=c_{1} v \oplus \ldots \oplus c_{m_{i}^{\prime}} v$ with scalars c_{k}, by Schur. Sticking these together gives m_{i}^{\prime}-by- m_{i} matrices.

Remark: The previous proof, not the assertion, is objectionable in two ways. First, expressions of representations as sums of irreducibles have not been described intrinsically. Second, there is something to do to certify that finite coproducts and products of representation spaces really are coproducts and products of the underlying vector spaces.

Isotypes and co-isotypes For irreducible π of G, specify a G sub V^{π} of a G-rep'n V by requiring that any map $m \cdot \pi \rightarrow V$ factors (uniquely) through V^{π}, that is, $m \cdot \pi \rightarrow V^{\pi} \subset V$, the π isotype of V. Dually, the π-co-isotype V_{π} of V is the quotient of V such that any map $V \rightarrow m \cdot \pi$ factors through $V_{\pi}: V \rightarrow V_{\pi} \rightarrow m \cdot \pi$. A priori, existence is unclear, but on categorical grounds these are unique up to unique isomorphism if they exist.

For unitary representations, the kernel of the map to the coisotype has an orthogonal complement, so the co-isotype is naturally isomorphic to a sub-object.

Happily, for finite-dimensional irreducibles π of (compact) G, there is a natural projector to the π-isotype.
It is not obvious, but history does reasonably lead to the following. For a finite-dimensional irreducible π of a topological group G, the character χ_{π} of G is a function on G defined by

$$
\chi_{\pi}(g)=\operatorname{trace} \pi(g)
$$

The dual or contragredient $\pi^{\vee}=\operatorname{Hom}_{\mathbb{C}}(\pi, \mathbb{C})$ has G-action

$$
(g \cdot \lambda)(v)=\lambda\left(g^{-1} v\right) \quad\left(\text { for } v \in \pi \text { and } \lambda \in \pi^{\vee}\right)
$$

Proposition: For any G-representation V, the map

$$
v \longrightarrow \chi_{\pi} \cdot v=\int_{G} \chi_{\pi}(g) g v d g \in V
$$

is a G-hom projecting $V \rightarrow V^{\left(\pi^{\vee}\right)}$, its π^{\vee}-isotype.

Proof: First, observe the conjugation-invariance of χ_{π} :

$$
\begin{gathered}
\chi_{\pi}\left(g x g^{-1}\right)=\operatorname{tr}\left(\pi\left(g x g^{-1}\right)\right)=\operatorname{tr}\left(\pi(g) \pi(x) \pi(g)^{-1}\right) \\
=\operatorname{tr} \pi(x)=\chi_{\pi}(x)
\end{gathered}
$$

by conjugation-invariance of trace. From this, χ_{π} commutes with the action of G on any representation space V :

$$
\begin{gathered}
\chi_{\pi} \cdot(g \cdot v)=\int_{G} \chi_{\pi}(x) x(g v) d x=\int_{G} \chi_{\pi}(x)(x g) v d x \\
=\int_{G} \chi_{\pi}\left(g x g^{-1}\right)(g x) v d x=\int_{G} \chi_{\pi}(x) g(x v) d x \\
=g \int_{G} \chi_{\pi}(x) x v d x=g \cdot\left(\chi_{\pi} \cdot v\right)
\end{gathered}
$$

Thus, χ_{π} gives a G-map of any G-representation V to itself. By Schur's Lemma, χ_{π} is a scalar on irreducibles.

Similarly, for any G-map $\varphi: V \rightarrow W$ of G-spaces, and for any continuous function f on G, with $f \cdot v=\int_{G} f(g) g v d g$,

$$
\begin{aligned}
\varphi(f \cdot v) & =\varphi\left(\int_{G} f(g) g v d g\right)=\int_{G} f(g) \varphi(g v) d g \\
& =\int_{G} f(g) g \varphi(v) d g=f \cdot \varphi(v)
\end{aligned}
$$

In particular, this applies to $f=\chi_{\pi}$, and shows that the action on representations depends only on the isomorphism class of the representation, not on the model or representative.

For irreducibles $\tau \not \approx \sigma^{\vee}$, claim that χ_{σ} acts by 0 on τ. Indeed, letting $\left\{e_{i}\right\}$ be an orthonormal basis for σ, for $v, w \in \tau$, with inner product in τ,

$$
\left\langle\chi_{\sigma} \cdot v, w\right\rangle=\int_{G} \chi_{\sigma}(g)\langle g v, w\rangle d g=\sum_{i} \int_{G}\left\langle g e_{i}, e_{i}\right\rangle\langle g v, w\rangle d g
$$

Up to a complex conjugation, this is an inner product in $L^{2}(G)$ of (matrix) coefficient functions

$$
c_{x, y}^{\sigma}(g)=\langle g x, y\rangle_{\sigma}
$$

This brings us to the Schur inner product formulas: claim

$$
\left\langle c_{v, w}^{\sigma}, c_{x, y}^{\tau}\right\rangle_{L^{2}(G)}=\left\{\begin{array}{cl}
0 & (\text { for } \sigma \not \approx \tau) \\
\frac{|G|}{\operatorname{dim} \sigma} \cdot\langle v, x\rangle \cdot \overline{\langle w, y\rangle} & (\text { for } \sigma \approx \tau)
\end{array}\right.
$$

Proof: Let $S: \sigma \rightarrow L^{2}(G)$ by $S v=c_{v, w}$, and $T: \tau \rightarrow L^{2}(G)$ by $T x=c_{x, y}$. Then

$$
\left\langle c_{v, w}^{\sigma}, c_{x, y}^{\tau}\right\rangle=\langle S v, T x\rangle=\left\langle v, S^{*} T x\right\rangle
$$

By Schur's Lemma $S^{*} T: \tau \rightarrow \sigma$ is a scalar $C=C_{w, y}$ for $\sigma \approx \tau$, and 0 for $\sigma \not \approx \tau$. Take $\tau \approx \sigma$. Then

$$
\left\langle c_{v, w}, c_{x, y}^{\tau}\right\rangle_{L^{2}(G)}=C_{w, y} \cdot\langle v, x\rangle
$$

Similarly, conjugating and changing variables $h \rightarrow h^{-1}$,

$$
\left\langle c_{v, w}, c_{x, y}\right\rangle_{L^{2}(G)}=C_{v, x} \cdot \overline{\langle w, y\rangle}
$$

Thus, with $\tau \approx \sigma,\left\langle c_{v, w}, c_{x, y}\right\rangle_{L^{2}(G)}=C \cdot\langle v, x\rangle \cdot \overline{\langle w, y\rangle}$ with C depending only on $\sigma \approx \tau$. To determine C, using Plancherel,

$$
\begin{aligned}
& C \cdot \operatorname{dim} \sigma=\sum_{i} C \cdot\left\langle e_{1}, e_{1}\right\rangle\left\langle e_{i}, e_{i}\right\rangle=\sum_{i} \int_{G} c_{e_{1}, e_{i}}(g) \overline{c_{e_{1}, e_{i}}(g)} d g \\
& =\int_{G} \sum_{i}\left\langle g e_{1}, e_{i}\right\rangle \overline{\left\langle g e_{1}, e_{i}\right\rangle} d g=\int_{G}\left|g e_{1}\right|^{2} d g=\int_{G}\left|e_{1}\right|^{2} d g=|G|
\end{aligned}
$$

This gives C and gives the Schur inner product formula.
Returning to χ_{σ},

$$
\begin{gathered}
\left\langle\chi_{\sigma} \cdot v, w\right\rangle_{\sigma^{\vee}}=\int_{G} \chi_{\sigma}(g)\langle g v, w\rangle_{\sigma^{\vee}} d g \\
=\sum_{i} \int_{G}\left\langle g e_{i}, e_{i}\right\rangle_{\sigma} \overline{\left\langle g^{-1} w, v\right\rangle_{\sigma}} d g=\sum_{i}\left\langle c_{e_{i}, e_{i}}, c_{w, v}\right\rangle \\
=\frac{|G|}{\operatorname{dim} \sigma} \sum_{i}\left\langle e_{i}, w\right\rangle \overline{\left\langle e_{i}, v\right\rangle}=\frac{|G|}{\operatorname{dim} \sigma}\langle v, w\rangle
\end{gathered}
$$

That is, χ_{σ} is 0 on τ for $\tau \not \approx \sigma^{\vee}$, and is $|G| / \operatorname{dim} \sigma$ on σ^{\vee}.
That is, adjusted by a constant, given complete reducibility, $\chi_{\sigma \vee}$ is a projector to the σ-isotype of a representation of G.

Corollary: (Reprise) For irreducibles $\sigma \not \approx \tau$, $\operatorname{Hom}_{G}(\sigma, m \cdot \tau)=\{0\}$.
Proof: For $\varphi \in \operatorname{Hom}_{G}(\sigma, m \cdot \tau)$, letting $f=\frac{\operatorname{dim} \sigma}{|G|} \cdot \chi_{\tau^{\vee}}$,

$$
\varphi(v)=f \cdot \varphi(v)=\varphi(f \cdot v)=\varphi(0)=0 \quad(\text { for } v \in \sigma)
$$

since $\operatorname{Hom}_{G}(\tau, \sigma)=\{0\}$.
Corollary: In a decomposition of finite-dimensional unitary G-representation V as a finite orthogonal direct sum of G irreducibles, the number of occurrences of each irreducible π is uniquely determined, namely $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}(\pi, V)$.

Remark: The decomposition into isotypes is canonical, given by application of (normalized) χ_{π} for π irreducible. The decomposition into irreducibles is not quite canonical, because $\operatorname{dim} \operatorname{Hom}_{G}(m \sigma, m \sigma)=m^{2}$.

Now Hecke's identity can be proven.
The space $V=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{\leq d}$ of all polynomials of total degree at most d is stable under $S O(n, \mathbb{R})$, and $P \rightarrow P^{\#}$ is an $S O(n, \mathbb{R})$ map of it to itself.

We have shown that

$$
\begin{gathered}
V=H_{d} \oplus H_{d-1} \oplus r^{2} H_{d-2} \oplus H_{d-2} \oplus r^{2} H_{d-3} \oplus H_{d-3} \\
\oplus r^{4} H_{d-4} \oplus r^{2} H_{d-4} \oplus H_{d-4} \oplus \ldots
\end{gathered}
$$

Since $S O(n, \mathbb{R})$ acts trivially on r, as $S O(n, \mathbb{R})$-spaces $r^{m} H_{d-j} \approx H_{d-j}$. Thus,
$V \approx\left(1 \cdot H_{d}\right) \oplus\left(1 \cdot H_{d-1}\right) \oplus\left(2 \cdot H_{d-2}\right) \oplus\left(2 \cdot H_{d-3}\right) \oplus\left(3 \cdot H_{d-4}\right) \oplus \ldots$
Δ^{S} commutes with $S O(n, \mathbb{R})$, and is $\lambda_{d}=-d(d+n-2)$ on H_{d}. Thus, $H_{d} \not \not \approx H_{d-j}$ for $j>0 \ldots$ if Δ^{S} has an intrinsic sense! And, yes, it does, but not via the $S^{n-1} \subset \mathbb{R}^{n}$ description!

Granting this for a moment, there is a single copy of H_{d} in V, which \# maps to itself, by a scalar.

The scalar can be determined by evaluating \# on a single $P(x) e^{-\pi|x|^{2}}$. Conveniently, we can systematically write explicit harmonic polynomials of all degrees: $(x+i y)^{d} e^{-\pi|x|^{2}}=z^{d} e^{-\pi z \bar{z}}$. Direct computation shows that the eigenvalue is i^{-d}. The proves Hecke's identity.

It remains to show that Δ^{S} is intrinsic...

