Recap:

Theorem: Two norms $|*|_{1}$ and $|*|_{2}$ on k give the same nondiscrete topology on a field k if and only if $|*|_{1}=|*|_{2}^{t}$ for some $0<t \in \mathbb{R}$. [Last time]

Theorem: Over a complete, non-discrete normed field k,

- A finite-dimensional k-vectorspace V has just one Hausdorff topology so that vector addition and scalar multiplication are continuous (a topological vectorspace topology). All linear endomorphisms are continuous.
- A finite-dimensional k-subspace V of a topological k-vectorspace W is necessarily a closed subspace of W.
- A k-linear map $\phi: X \rightarrow V$ to a finite-dimensional space V is continuous if and only if the kernel is closed.

Corollary: Finite field extensions K of complete, non-discrete k have unique Hausdorff topologies making addition and multiplication continuous.

Constructions/existence: For any Dedekind domain \mathfrak{o}, and for a non-zero prime \mathfrak{p} in \mathfrak{o}, the \mathfrak{p}-adic norm is

$$
|x|_{\mathfrak{p}}=C^{-\operatorname{ord}_{\mathfrak{p}} x} \quad\left(\text { where } x \cdot \mathfrak{o}=\mathfrak{p}^{\operatorname{ord}_{\mathfrak{p}} x} \cdot \text { prime-to- } \mathfrak{p}\right)
$$

and $C>1$ is a constant. Since this norm is ultrametric/nonarchimedean, the choice of C does not immediately matter, but it can matter in interactions of norms for varying \mathfrak{p}, as in the product formula for number fields and function fields. Recall the product formula for \mathbb{Q} :

$$
\prod_{v \leq \infty}|x|_{v}=1 \quad\left(\text { for } x \in \mathbb{Q}^{\times}\right)
$$

That is, with $|*|_{\infty}$ the 'usual' absolute value on \mathbb{R},

$$
|x|_{\infty} \cdot \prod_{p \text { prime }}|x|_{p}=1 \quad\left(\text { for } x \in \mathbb{Q}^{\times}\right)
$$

Recall the Proof: Both sides are multiplicative in x, so it suffices to consider $x= \pm 1$ and $x=q$ prime. For units ± 1, both sides are 1. For $x=q$ prime, $|q|_{\infty}=q$, while $|q|_{q}=1 / q$, and for $p \neq q$, $p<\infty,|q|_{p}=1$. Thus, both sides are 1 .

One normalization to have the product formula hold for number fields k : for \mathfrak{p} lying over p, letting $k_{\mathfrak{p}}$ be the \mathfrak{p}-adic completion of k and Q_{p} the usual p-adic completion of \mathbb{Q},

$$
|x|_{\mathfrak{p}}=\left|N_{\mathbb{Q}_{p}}^{k_{p}} x\right|_{p}
$$

For archimedean completion k_{v} of k, define (or renormalize)

$$
|x|_{v}=\left|N_{\mathbb{R}}^{k_{v}} x\right|_{\infty}
$$

The latter entails a normalization which (harmlessly) fails to satisfy the triangle inequality:

$$
|x|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}} x\right|_{\infty}=x \cdot \bar{x}=\text { square of usual complex abs value }
$$

This normalization is used only in a multiplicative context, so failure of the triangle inequality is harmless. The metric topology is given by the usual norm.

In other words, for primes \mathfrak{p} in \mathfrak{o}, in the formula above take $C=N \mathfrak{p}=|\mathfrak{o} / \mathfrak{p}|$, so

$$
|x|_{\mathfrak{p}}=N \mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}} x}
$$

Theorem: (Product formula for number fields)

$$
\prod_{\text {places } w \text { of } k}|x|_{w}=\prod_{\text {places } v \text { of } \mathbb{Q}} \prod_{w \mid v}\left|N_{\mathbb{Q}_{v}}^{k_{w}}(x)\right|_{v}=1 \quad\left(\text { for } x \in k^{\times}\right)
$$

Indeed, reduce to the product formula for \mathbb{Q} by showing

$$
\prod_{w \mid v} N_{\mathbb{Q}}^{\mathbb{Q}_{v}}(x)=N_{\mathbb{Q}}^{k}(x) \quad(\text { for } x \in k, \text { abs value } v \text { of } \mathbb{Q})
$$

Proof: Recall that one way to define Galois norm is, for an algebraically closed field Ω containing \mathbb{Q},

$$
N_{\mathbb{Q}}^{k}(x)=\prod_{\mathbb{Q} \text {-algebra maps } \sigma: k \rightarrow \Omega} \sigma(x)
$$

Claim: Let Ω be an algebraic closure of \mathbb{Q}_{v}. There is a natural isomorphism of sets

$$
\operatorname{Hom}_{\mathbb{Q}-a l g}(k, \Omega) \approx \operatorname{Hom}_{\mathbb{Q}_{v}-a l g}\left(\mathbb{Q}_{v} \otimes_{\mathbb{Q}} k, \Omega\right)
$$

by

$$
(x \rightarrow \sigma(x)) \quad \longrightarrow(\alpha \otimes x \rightarrow \alpha \cdot \sigma(x))
$$

Proof: Recall that a map from the tensor product is specified by its values on monomials $\alpha \otimes x$, and that these values can indeed be arbitrary, as long as the image of $\alpha a \otimes x$ is the same as that of $\alpha \otimes a x$, for $a \in \mathbb{Q}$.

Then the inverse set-map is

$$
(\alpha \otimes x \rightarrow \tau(\alpha \otimes x)) \quad \longrightarrow \quad(x \rightarrow \tau(1 \otimes x))
$$

///

Remark: This is an example of extension of scalars, an example of a left adjoint to a forgetful functor. Then the isomorphism is an example of an adjunction.

Next, for finite separable k / \mathbb{Q}, invoke the theorem of the primitive element to choose α such that $k=\mathbb{Q}(\alpha)$, and let $P \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q}. Since k / \mathbb{Q} is separable, P has no repeated roots in an algebraic closure, etc. Then

$$
\begin{gathered}
\mathbb{Q}_{v} \otimes_{\mathbb{Q}} k \approx \mathbb{Q}_{v} \otimes_{\mathbb{Q}} \mathbb{Q}[x] / P \approx \mathbb{Q}_{v}[x] / P \\
\approx \coprod_{j} \mathbb{Q}_{v}[x] / P_{j} \approx \text { coproduct of finite field extensions of } \mathbb{Q}_{v}
\end{gathered}
$$

by Sun-Ze's theorem, where the P_{j} are the irreducible factors of P in $\mathbb{Q}_{v}[x]$, and we use the separability of k / \mathbb{Q} to know that no repeated factors appear. By the defining property of coproducts

$$
\operatorname{Hom}_{\mathbb{Q}_{v}-a l g}\left(\coprod_{j} \mathbb{Q}_{v}[x] / P_{j}, \Omega\right) \approx \prod_{j} \operatorname{Hom}_{\mathbb{Q}_{v}-a l g}\left(\mathbb{Q}_{v}[x] / P_{j}, \Omega\right)
$$

Because Ω is a field, the \mathbb{Q}_{v}-algebra homs $\mathbb{Q}_{v} \otimes_{\mathbb{Q}} k \rightarrow \Omega$ biject with the maximal ideals of the $\mathbb{Q}_{v} \otimes_{\mathbb{Q}} k$. The maximal ideals in a product $K_{1} \times \ldots \times K_{n}$ of fields K_{j} are $M_{j}=K_{1} \times \ldots \times \widehat{K_{j}} \times \ldots \times K_{n}$. Thus, the homs to Ω, with kernel M_{j}, are identified with homs $K_{j} \rightarrow \Omega$. That is, the set of \mathbb{Q}-homs $k \rightarrow \Omega$ is partitioned by the \mathbb{Q}_{v}-homs of the direct summands $\mathbb{Q}_{v}[x] / P_{j}$ to Ω.
It remains to show that the direct summands $\mathbb{Q}_{v}[x] / P_{j}$ are exactly the completions k_{w} of k extending the completion \mathbb{Q}_{v} of \mathbb{Q}, distinct in the sense that there is no topological isomorphism φ fitting into a diagram

$\left(\right.$ for $\left.w \neq w^{\prime}\right)$

First, Ω has a unique topological \mathbb{Q}_{v}-vectorspace topology, because it is an ascending union ((filtered) colimit!) of finite-dimensional \mathbb{Q}_{v}-vectorspaces, which have unique topological vector space topologies. Colimits are unique, up to unique isomorphism.

On one hand, $\sigma: k \rightarrow \Omega$ (over \mathbb{Q}) gives k a Hausdorff topology with continuous addition, multiplication, and non-zero inversion. The compositum $\mathbb{Q}_{v} \cdot \sigma(k)$ is finite-dimensional over \mathbb{Q}_{v}, so the closure of $\sigma(k)$ in Ω is a complete \mathbb{Q}_{v} topological vector space. Thus, $\sigma: k \rightarrow \Omega$ gives a completion of k extending \mathbb{Q}_{v}.
On the other hand, a completion k_{w} is really an inclusion $k \rightarrow k_{w}$ with k_{w} complete. Again, there is the adjunction

$$
\operatorname{Hom}_{\mathbb{Q}-a l g}\left(k, k_{w}\right) \approx \operatorname{Hom}_{\mathbb{Q}_{v}-a l g}\left(\mathbb{Q}_{v} \otimes_{\mathbb{Q}} k, k_{w}\right)
$$

Thus, in fact, $\mathbb{Q}_{v}[x] / P_{j} \approx k_{w}$ for some P_{j}.

By the separability of k / \mathbb{Q}, the P_{j} 's have no common factors, so the inclusions $k \rightarrow \mathbb{Q}_{v}[x] / P_{j}$ by $\alpha \rightarrow x \bmod P_{j}$ are incompatible with every non-zero \mathbb{Q}_{v}-hom $\mathbb{Q}_{v}[x] / P_{i} \rightarrow \mathbb{Q}_{v}[x] / P_{j}$ for $i \neq j$. Indeed, the requirement $\alpha \rightarrow x \bmod P_{j}$ limits the candidates to situations

which forces $\operatorname{ker} \Phi=\left\langle P_{j}\right\rangle$. This cannot factor through the quotient. Thus, there are no isomorphisms among the $\mathbb{Q}_{v}[x] / P_{j}$ compatible with the inclusions of k.
In summary, we have proven that the global (Galois) norm $N_{\mathbb{Q}}^{k}$ is the product of the local norms, reducing the product formula for number fields to that for \mathbb{Q}.

Remark: The argument did not depend on the specifics, so applies to extensions K / k and completions k_{v} of the base field. In the course of the proof, some useful auxiliary points were demonstrated, stated now in general:

Corollary: Let k be a field with completion k_{v}. Let K be a finite separable extension of k. Let w index the topological isomorphism classes of completions of K extending k_{v}. The sum of the local degrees is the global degree:

$$
\sum_{w \mid v}\left[K_{w}: k_{v}\right]=[K: k]
$$

Corollary: For K / k finite separable, the topological isomorphism classes of completions K_{w} of K extending k_{v} arise from inclusions of K to the algebraic closure of k_{v}. (This does not address automorphisms.)
Corollary: The global trace $K \rightarrow k$ is the sum of the local traces $K_{w} \rightarrow k_{v}$.

The following generalizes to number fields and functions fields over finite fields. Traditionally, this result (and its generalizations) are called Ostrowski's theorem, but there are some issues surrounding this attribution.

Classification of completions: The topologically (via the associated metrics) inequivalent (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the p-adic \mathbb{Q}_{p} 's.
Proof: Let $|*|$ be a norm on \mathbb{Q}. It turns out (intelligibly, if we guess the answer) that the watershed is whether $|*|$ is bounded or unbounded on \mathbb{Z}. That is, the statement of the theorem could be sharpened to say: norms on \mathbb{Q} bounded on \mathbb{Z} are topologically equivalent to p-adic norms, and norms unbounded on \mathbb{Z} are topologically equivalent to the norm from \mathbb{R}.

To say that $|*|$ is bounded on \mathbb{Z}, but not discrete, implies that $|p|<1$ for some prime number p, by unique factorization. Suppose that there were a second prime q with $|q|<1$. Then...
\ldots with $a, b \in \mathbb{Z}$ such that $a p^{m}+b q^{n}=1$ for positive integers m, n,

$$
1=|1|=\left|a p^{m}+b q^{n}\right| \leq|a| \cdot|p|^{m}+|b| \cdot|q|^{n} \leq|p|^{m}+|q|^{n}
$$

This is impossible if both $|p|<1$ and $|q|<1$, by taking m, n large. Thus, for $|*|$ bounded on \mathbb{Z}, there is a unique prime p such that $|p|<1$. Up to normalization, such a norm is the p-adic norm.
Next, claim that if $|a| \leq 1$ for some $1<a \in \mathbb{Z}$, then $|*|$ is bounded on \mathbb{Z}. Given $1<b \in \mathbb{Z}$, write b^{n} in an a-ary expansion

$$
b^{n}=c_{o}+c_{1} a+c_{2} a^{2}+\ldots+c_{\ell} a^{\ell} \quad\left(\text { with } 0 \leq c_{i}<a\right)
$$

and apply the triangle inequality,

$$
|b|^{n} \leq(\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \leq\left(n \log _{a} b+1\right) \cdot a
$$

Taking $n^{t h}$ roots and letting $n \rightarrow+\infty$ gives $|b| \leq 1$, and $|*|$ is bounded on \mathbb{Z}.

The remaining scenario is $|a| \geq 1$ for $a \in \mathbb{Z}$. For $a>1, b>1$, the a-ary expansion

$$
b^{n}=c_{o}+c_{1} a+c_{2} a^{2}+\ldots+c_{\ell} a^{\ell} \quad\left(\text { with } 0 \leq c_{i}<a\right)
$$

with $|a| \geq 1$ gives

$$
|b|^{n} \leq(\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \cdot|a|^{\ell} \leq\left(n \log _{a} b+1\right) \cdot a \cdot|a|^{n \log _{a} b+1}
$$

Taking $n^{t h}$ roots and letting $n \rightarrow+\infty$ gives $|b| \leq|a|^{\log _{a} b}$. Similarly, $|a| \leq|b|^{\log _{b} a}$. Since $|*|$ is not bounded on \mathbb{Z}, there is $C>1$ such that $|a|=C^{\log |a|}$ for all $0 \neq a \in \mathbb{Z}$. Up to normalization, this is the usual absolute value for \mathbb{R}.

