1

Recap:

Theorem: Two norms $|*|_1$ and $|*|_2$ on k give the same nondiscrete topology on a field k if and only if $|*|_1 = |*|_2^t$ for some $0 < t \in \mathbb{R}$. [Last time]

Theorem: Over a complete, non-discrete normed field k,

- A finite-dimensional k-vectorspace V has just one Hausdorff topology so that vector addition and scalar multiplication are continuous (a topological vectorspace topology). All linear endomorphisms are continuous.
- A finite-dimensional k-subspace V of a topological k-vectorspace W is necessarily a *closed* subspace of W.
- A k-linear map $\phi : X \to V$ to a finite-dimensional space V is continuous if and only if the kernel is closed.

Corollary: Finite field extensions K of complete, non-discrete k have unique Hausdorff topologies making addition and multiplication continuous.

Constructions/existence: For any Dedekind domain \mathfrak{o} , and for a non-zero prime \mathfrak{p} in \mathfrak{o} , the \mathfrak{p} -adic norm is

$$|x|_{\mathfrak{p}} = C^{-\operatorname{ord}_{\mathfrak{p}}x}$$
 (where $x \cdot \mathfrak{o} = \mathfrak{p}^{\operatorname{ord}_{\mathfrak{p}}x} \cdot \operatorname{prime-to-}\mathfrak{p}$)

and C > 1 is a constant. Since this norm is ultrametric/nonarchimedean, the choice of C does not immediately matter, but it *can* matter in interactions of norms for varying \mathfrak{p} , as in the **product formula** for number fields and function fields. Recall the product formula for \mathbb{Q} :

$$\prod_{v \le \infty} |x|_v = 1 \qquad (\text{for } x \in \mathbb{Q}^\times)$$

That is, with $|*|_{\infty}$ the 'usual' absolute value on \mathbb{R} ,

$$|x|_{\infty} \cdot \prod_{p \text{ prime}} |x|_p = 1 \quad (\text{for } x \in \mathbb{Q}^{\times})$$

Recall the *Proof:* Both sides are *multiplicative* in x, so it suffices to consider $x = \pm 1$ and x = q prime. For units ± 1 , both sides are 1. For x = q prime, $|q|_{\infty} = q$, while $|q|_q = 1/q$, and for $p \neq q$, $p < \infty$, $|q|_p = 1$. Thus, both sides are 1. ///

One normalization to have the product formula hold for number fields k: for \mathfrak{p} lying over p, letting $k_{\mathfrak{p}}$ be the \mathfrak{p} -adic completion of k and Q_p the usual p-adic completion of \mathbb{Q} ,

$$|x|_{\mathfrak{p}} = |N_{\mathbb{Q}_p}^{k_{\mathfrak{p}}} x|_p$$

For archimedean completion k_v of k, define (or renormalize)

$$|x|_v = |N_{\mathbb{R}}^{k_v} x|_{\infty}$$

The latter entails a normalization which (harmlessly) fails to satisfy the triangle inequality:

 $|x|_{\mathbb{C}} = |N_{\mathbb{R}}^{\mathbb{C}}x|_{\infty} = x \cdot \overline{x} = square$ of usual complex abs value This normalization is used only in a multiplicative context, so failure of the triangle inequality is harmless. The metric topology is given by the *usual* norm. In other words, for primes \mathfrak{p} in \mathfrak{o} , in the formula above take $C = N\mathfrak{p} = |\mathfrak{o}/\mathfrak{p}|$, so

$$|x|_{\mathfrak{p}} = N\mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}}x}$$

Theorem: (Product formula for number fields)

$$\prod_{\text{places } w \text{ of } k} |x|_w = \prod_{\text{places } v \text{ of } \mathbb{Q}} \prod_{w|v} |N_{\mathbb{Q}_v}^{k_w}(x)|_v = 1 \qquad (\text{for } x \in k^{\times})$$

Indeed, reduce to the product formula for \mathbb{Q} by showing

$$\prod_{w|v} N_{\mathbb{Q}_v}^{k_w}(x) = N_{\mathbb{Q}}^k(x) \quad (\text{for } x \in k, \text{ abs value } v \text{ of } \mathbb{Q})$$

Proof: Recall that one way to define Galois norm is, for an algebraically closed field Ω containing \mathbb{Q} ,

$$N_{\mathbb{Q}}^{k}(x) = \prod_{\mathbb{Q}-algebra \ maps \ \sigma:k \to \Omega} \sigma(x)$$

Claim: Let Ω be an algebraic closure of \mathbb{Q}_v . There is a natural isomorphism of sets

$$\operatorname{Hom}_{\mathbb{Q}-alg}(k,\Omega) \approx \operatorname{Hom}_{\mathbb{Q}_v-alg}(\mathbb{Q}_v \otimes_{\mathbb{Q}} k,\Omega)$$
$$\left(x \to \sigma(x)\right) \longrightarrow \left(\alpha \otimes x \to \alpha \cdot \sigma(x)\right)$$

Proof: Recall that a map from the tensor product is specified by its values on monomials $\alpha \otimes x$, and that these values can indeed be arbitrary, as long as the image of $\alpha a \otimes x$ is the same as that of $\alpha \otimes ax$, for $a \in \mathbb{Q}$.

Then the inverse set-map is

by

$$\left(\alpha \otimes x \to \tau(\alpha \otimes x)\right) \longrightarrow \left(x \to \tau(1 \otimes x)\right) ///$$

Remark: This is an example of *extension of scalars*, an example of a *left adjoint* to a forgetful functor. Then the isomorphism is an example of an *adjunction*.

Next, for finite separable k/\mathbb{Q} , invoke the theorem of the primitive element to choose α such that $k = \mathbb{Q}(\alpha)$, and let $P \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} . Since k/\mathbb{Q} is separable, P has no repeated roots in an algebraic closure, etc. Then

$$\mathbb{Q}_{v} \otimes_{\mathbb{Q}} k \approx \mathbb{Q}_{v} \otimes_{\mathbb{Q}} \mathbb{Q}[x]/P \approx \mathbb{Q}_{v}[x]/P$$
$$\approx \prod_{j} \mathbb{Q}_{v}[x]/P_{j} \approx \text{ coproduct of finite field extensions of } \mathbb{Q}_{v}$$

by Sun-Ze's theorem, where the P_j are the irreducible factors of P in $\mathbb{Q}_v[x]$, and we use the separability of k/\mathbb{Q} to know that no repeated factors appear. By the defining property of coproducts

$$\operatorname{Hom}_{\mathbb{Q}_v-alg}(\coprod_{j} \mathbb{Q}_v[x]/P_j, \Omega) \approx \prod_{j} \operatorname{Hom}_{\mathbb{Q}_v-alg}(\mathbb{Q}_v[x]/P_j, \Omega)$$

Because Ω is a field, the \mathbb{Q}_v -algebra homs $\mathbb{Q}_v \otimes_{\mathbb{Q}} k \to \Omega$ biject with the maximal ideals of the $\mathbb{Q}_v \otimes_{\mathbb{Q}} k$. The maximal ideals in a product $K_1 \times \ldots \times K_n$ of fields K_j are $M_j = K_1 \times \ldots \times \widehat{K_j} \times \ldots \times K_n$. Thus, the homs to Ω , with kernel M_j , are identified with homs $K_j \to \Omega$. That is, the set of \mathbb{Q} -homs $k \to \Omega$ is partitioned by the \mathbb{Q}_v -homs of the direct summands $\mathbb{Q}_v[x]/P_j$ to Ω .

It remains to show that the direct summands $\mathbb{Q}_v[x]/P_j$ are exactly the completions k_w of k extending the completion \mathbb{Q}_v of \mathbb{Q} , *distinct* in the sense that there is *no* topological isomorphism φ fitting into a diagram

First, Ω has a unique topological \mathbb{Q}_v -vectorspace topology, because it is an ascending union ((filtered) *colimit*!) of finite-dimensional \mathbb{Q}_v -vectorspaces, which have unique topological vector space topologies. Colimits are unique, up to unique isomorphism.

On one hand, $\sigma : k \to \Omega$ (over \mathbb{Q}) gives k a Hausdorff topology with continuous addition, multiplication, and non-zero inversion. The compositum $\mathbb{Q}_v \cdot \sigma(k)$ is finite-dimensional over \mathbb{Q}_v , so the closure of $\sigma(k)$ in Ω is a *complete* \mathbb{Q}_v topological vector space. Thus, $\sigma : k \to \Omega$ gives a completion of k extending \mathbb{Q}_v .

On the other hand, a completion k_w is really an inclusion $k \to k_w$ with k_w complete. Again, there is the adjunction

 $\operatorname{Hom}_{\mathbb{Q}-alg}(k,k_w) \approx \operatorname{Hom}_{\mathbb{Q}_v-alg}(\mathbb{Q}_v \otimes_{\mathbb{Q}} k,k_w)$

Thus, in fact, $\mathbb{Q}_v[x]/P_j \approx k_w$ for some P_j .

By the separability of k/\mathbb{Q} , the P_j 's have no common factors, so the inclusions $k \to \mathbb{Q}_v[x]/P_j$ by $\alpha \to x \mod P_j$ are incompatible with every non-zero \mathbb{Q}_v -hom $\mathbb{Q}_v[x]/P_i \to \mathbb{Q}_v[x]/P_j$ for $i \neq j$. Indeed, the requirement $\alpha \to x \mod P_j$ limits the candidates to situations

which forces ker $\Phi = \langle P_j \rangle$. This cannot factor through the quotient. Thus, there are no isomorphisms among the $\mathbb{Q}_v[x]/P_j$ compatible with the inclusions of k.

In summary, we have proven that the global (Galois) norm $N_{\mathbb{Q}}^k$ is the product of the *local* norms, reducing the product formula for number fields to that for \mathbb{Q} . /// **Remark:** The argument did not depend on the specifics, so applies to extensions K/k and completions k_v of the base field. In the course of the proof, some useful auxiliary points were demonstrated, stated now in general:

Corollary: Let k be a field with completion k_v . Let K be a finite separable extension of k. Let w index the topological isomorphism classes of completions of K extending k_v . The sum of the *local* degrees is the *global* degree:

$$\sum_{w|v} [K_w : k_v] = [K : k]$$

Corollary: For K/k finite separable, the topological isomorphism classes of completions K_w of K extending k_v arise from inclusions of K to the algebraic closure of k_v . (This does not address automorphisms.)

Corollary: The global trace $K \to k$ is the sum of the local traces $K_w \to k_v$.

The following generalizes to number fields and functions fields over finite fields. Traditionally, this result (and its generalizations) are called *Ostrowski's theorem*, but there are some issues surrounding this attribution.

Classification of completions: The topologically (via the associated metrics) inequivalent (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the *p*-adic \mathbb{Q}_p 's.

Proof: Let |*| be a norm on \mathbb{Q} . It turns out (intelligibly, if we guess the answer) that the watershed is whether |*| is *bounded* or *unbounded* on \mathbb{Z} . That is, the statement of the theorem could be sharpened to say: norms on \mathbb{Q} bounded on \mathbb{Z} are topologically equivalent to *p*-adic norms, and norms unbounded on \mathbb{Z} are topologically equivalent to the norm from \mathbb{R} .

To say that |*| is *bounded* on \mathbb{Z} , but *not discrete*, implies that |p| < 1 for some prime number p, by unique factorization. Suppose that there were a second prime q with |q| < 1. Then...

... with $a, b \in \mathbb{Z}$ such that $ap^m + bq^n = 1$ for positive integers m, n,

$$1 = |1| = |ap^{m} + bq^{n}| \le |a| \cdot |p|^{m} + |b| \cdot |q|^{n} \le |p|^{m} + |q|^{n}$$

This is impossible if both |p| < 1 and |q| < 1, by taking m, n large. Thus, for |*| bounded on \mathbb{Z} , there is a unique prime p such that |p| < 1. Up to normalization, such a norm is the p-adic norm.

Next, claim that if $|a| \leq 1$ for some $1 < a \in \mathbb{Z}$, then |*| is bounded on \mathbb{Z} . Given $1 < b \in \mathbb{Z}$, write b^n in an *a*-ary expansion

$$b^n = c_o + c_1 a + c_2 a^2 + \ldots + c_\ell a^\ell$$
 (with $0 \le c_i < a$)

and apply the triangle inequality,

$$|b|^n \leq (\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \leq (n \log_a b + 1) \cdot a$$

Taking n^{th} roots and letting $n \to +\infty$ gives $|b| \leq 1$, and |*| is bounded on \mathbb{Z} .

The remaining scenario is $|a| \ge 1$ for $a \in \mathbb{Z}$. For a > 1, b > 1, the *a*-ary expansion

$$b^n = c_o + c_1 a + c_2 a^2 + \ldots + c_\ell a^\ell$$
 (with $0 \le c_i < a$)

with $|a| \ge 1$ gives

$$|b|^n \leq (\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \cdot |a|^{\ell} \leq (n \log_a b + 1) \cdot a \cdot |a|^{n \log_a b + 1}$$

Taking n^{th} roots and letting $n \to +\infty$ gives $|b| \leq |a|^{\log_a b}$. Similarly, $|a| \leq |b|^{\log_b a}$. Since |*| is not bounded on \mathbb{Z} , there is C > 1 such that $|a| = C^{\log |a|}$ for all $0 \neq a \in \mathbb{Z}$. Up to normalization, this is the usual absolute value for \mathbb{R} . ///