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Recap:

Theorem: Two norms | ∗ |1 and | ∗ |2 on k give the same non-
discrete topology on a field k if and only if | ∗ |1 = | ∗ |t2 for some
0 < t ∈ R. [Last time]

Theorem: Over a complete, non-discrete normed field k,
• A finite-dimensional k-vectorspace V has just one Hausdorff
topology so that vector addition and scalar multiplication
are continuous (a topological vectorspace topology). All linear
endomorphisms are continuous.
• A finite-dimensional k-subspace V of a topological k-vectorspace
W is necessarily a closed subspace of W .
• A k-linear map φ : X → V to a finite-dimensional space V is
continuous if and only if the kernel is closed.

Corollary: Finite field extensions K of complete, non-discrete
k have unique Hausdorff topologies making addition and
multiplication continuous.
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Constructions/existence: For any Dedekind domain o, and for
a non-zero prime p in o, the p-adic norm is

|x|p = C−ordpx (where x · o = pordpx · prime-to-p)

and C > 1 is a constant. Since this norm is ultrametric/non-
archimedean, the choice of C does not immediately matter, but
it can matter in interactions of norms for varying p, as in the
product formula for number fields and function fields. Recall
the product formula for Q:∏

v≤∞

|x|v = 1 (for x ∈ Q×)

That is, with | ∗ |∞ the ‘usual’ absolute value on R,

|x|∞ ·
∏

p prime

|x|p = 1 (for x ∈ Q×)
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Recall the Proof: Both sides are multiplicative in x, so it suffices
to consider x = ±1 and x = q prime. For units ±1, both sides are
1. For x = q prime, |q|∞ = q, while |q|q = 1/q, and for p 6= q,
p <∞, |q|p = 1. Thus, both sides are 1. ///

One normalization to have the product formula hold for number
fields k: for p lying over p, letting kp be the p-adic completion of k
and Qp the usual p-adic completion of Q,

|x|p = |Nkp
Qp
x|p

For archimedean completion kv of k, define (or renormalize)

|x|v = |Nkv
R x|∞

The latter entails a normalization which (harmlessly) fails to
satisfy the triangle inequality:

|x|C = |NC
Rx|∞ = x · x = square of usual complex abs value

This normalization is used only in a multiplicative context, so
failure of the triangle inequality is harmless. The metric topology
is given by the usual norm.
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In other words, for primes p in o, in the formula above take
C = Np = |o/p|, so

|x|p = Np−ordpx

Theorem: (Product formula for number fields)∏
places w of k

|x|w =
∏

places v of Q

∏
w|v

|Nkw
Qv

(x)|v = 1 (for x ∈ k×)

Indeed, reduce to the product formula for Q by showing∏
w|v

Nkw
Qv

(x) = Nk
Q(x) (for x ∈ k, abs value v of Q)

Proof: Recall that one way to define Galois norm is, for an
algebraically closed field Ω containing Q,

Nk
Q(x) =

∏
Q−algebra maps σ:k→Ω

σ(x)
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Claim: Let Ω be an algebraic closure of Qv. There is a natural
isomorphism of sets

HomQ−alg(k,Ω) ≈ HomQv−alg(Qv ⊗Q k,Ω)
by (

x→ σ(x)
)
−→

(
α⊗ x→ α · σ(x)

)
Proof: Recall that a map from the tensor product is specified by
its values on monomials α ⊗ x, and that these values can indeed
be arbitrary, as long as the image of αa ⊗ x is the same as that of
α⊗ ax, for a ∈ Q.

Then the inverse set-map is(
α⊗ x→ τ(α⊗ x)

)
−→

(
x→ τ(1⊗ x)

)
///

Remark: This is an example of extension of scalars, an example
of a left adjoint to a forgetful functor. Then the isomorphism is an
example of an adjunction.
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Next, for finite separable k/Q, invoke the theorem of the primitive
element to choose α such that k = Q(α), and let P ∈ Q[x] be the
minimal polynomial of α over Q. Since k/Q is separable, P has no
repeated roots in an algebraic closure, etc. Then

Qv ⊗Q k ≈ Qv ⊗Q Q[x]/P ≈ Qv[x]/P

≈
∐
j

Qv[x]/Pj ≈ coproduct of finite field extensions of Qv

by Sun-Ze’s theorem, where the Pj are the irreducible factors of
P in Qv[x], and we use the separability of k/Q to know that no
repeated factors appear. By the defining property of coproducts

HomQv−alg(
∐
j

Qv[x]/Pj , Ω) ≈
∏
j

HomQv−alg(Qv[x]/Pj , Ω)
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Because Ω is a field, the Qv-algebra homs Qv ⊗Q k → Ω biject
with the maximal ideals of the Qv ⊗Q k. The maximal ideals in a

product K1×. . .×Kn of fields Kj are Mj = K1×. . .×K̂j×. . .×Kn.
Thus, the homs to Ω, with kernel Mj , are identified with homs
Kj → Ω. That is, the set of Q-homs k → Ω is partitioned by the
Qv-homs of the direct summands Qv[x]/Pj to Ω.

It remains to show that the direct summands Qv[x]/Pj are exactly
the completions kw of k extending the completion Qv of Q,
distinct in the sense that there is no topological isomorphism ϕ
fitting into a diagram

kw
(non−existent) ϕ// kw′

k

inc

__@@@@@@@@ inc

>>}}}}}}}}

(for w 6= w′)
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First, Ω has a unique topological Qv-vectorspace topology, because
it is an ascending union ((filtered) colimit!) of finite-dimensional
Qv-vectorspaces, which have unique topological vector space
topologies. Colimits are unique, up to unique isomorphism.

On one hand, σ : k → Ω (over Q) gives k a Hausdorff topology
with continuous addition, multiplication, and non-zero inversion.
The compositum Qv · σ(k) is finite-dimensional over Qv, so the
closure of σ(k) in Ω is a complete Qv topological vector space.
Thus, σ : k → Ω gives a completion of k extending Qv.

On the other hand, a completion kw is really an inclusion k → kw
with kw complete. Again, there is the adjunction

HomQ−alg(k, kw) ≈ HomQv−alg(Qv ⊗Q k, kw)

Thus, in fact, Qv[x]/Pj ≈ kw for some Pj .
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By the separability of k/Q, the Pj ’s have no common factors, so
the inclusions k → Qv[x]/Pj by α → x mod Pj are incompatible
with every non-zero Qv-hom Qv[x]/Pi → Qv[x]/Pj for i 6= j.
Indeed, the requirement α → x mod Pj limits the candidates to
situations

Qv[x]
quot //

Φ

%%
Qv[x]/Pi

??? // Qv[x]/Pj

k

α→x

eeKKKKKKKKKKK
α→x

OO

α→x

88qqqqqqqqqqqq

which forces ker Φ = 〈Pj〉. This cannot factor through the
quotient. Thus, there are no isomorphisms among the Qv[x]/Pj
compatible with the inclusions of k.

In summary, we have proven that the global (Galois) norm Nk
Q is

the product of the local norms, reducing the product formula for
number fields to that for Q. ///
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Remark: The argument did not depend on the specifics, so
applies to extensions K/k and completions kv of the base field.
In the course of the proof, some useful auxiliary points were
demonstrated, stated now in general:

Corollary: Let k be a field with completion kv. Let K be a finite
separable extension of k. Let w index the topological isomorphism
classes of completions of K extending kv. The sum of the local
degrees is the global degree:∑

w|v

[Kw : kv] = [K : k]

Corollary: For K/k finite separable, the topological isomorphism
classes of completions Kw of K extending kv arise from inclusions
of K to the algebraic closure of kv. (This does not address
automorphisms.)

Corollary: The global trace K → k is the sum of the local traces
Kw → kv.
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The following generalizes to number fields and functions fields over
finite fields. Traditionally, this result (and its generalizations) are
called Ostrowski’s theorem, but there are some issues surrounding
this attribution.

Classification of completions: The topologically (via the
associated metrics) inequivalent (non-discrete) norms on Q are
the usual R norm and the p-adic Qp’s.

Proof: Let | ∗ | be a norm on Q. It turns out (intelligibly, if we
guess the answer) that the watershed is whether | ∗ | is bounded or
unbounded on Z. That is, the statement of the theorem could be
sharpened to say: norms on Q bounded on Z are topologically
equivalent to p-adic norms, and norms unbounded on Z are
topologically equivalent to the norm from R.

To say that | ∗ | is bounded on Z, but not discrete, implies that
|p| < 1 for some prime number p, by unique factorization. Suppose
that there were a second prime q with |q| < 1. Then...
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... with a, b ∈ Z such that apm + bqn = 1 for positive integers m,n,

1 = |1| = |apm + bqn| ≤ |a| · |p|m + |b| · |q|n ≤ |p|m + |q|n

This is impossible if both |p| < 1 and |q| < 1, by taking m,n large.
Thus, for | ∗ | bounded on Z, there is a unique prime p such that
|p| < 1. Up to normalization, such a norm is the p-adic norm.

Next, claim that if |a| ≤ 1 for some 1 < a ∈ Z, then | ∗ | is bounded
on Z. Given 1 < b ∈ Z, write bn in an a-ary expansion

bn = co + c1a+ c2a
2 + . . .+ c`a

` (with 0 ≤ ci < a)

and apply the triangle inequality,

|b|n ≤ (`+ 1) · (1 + . . .+ 1)︸ ︷︷ ︸
a

≤ (n loga b+ 1) · a

Taking nth roots and letting n → +∞ gives |b| ≤ 1, and | ∗ | is
bounded on Z.
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The remaining scenario is |a| ≥ 1 for a ∈ Z. For a > 1, b > 1, the
a-ary expansion

bn = co + c1a+ c2a
2 + . . .+ c`a

` (with 0 ≤ ci < a)

with |a| ≥ 1 gives

|b|n ≤ (`+ 1) · (1 + . . .+ 1)︸ ︷︷ ︸
a

·|a|` ≤ (n loga b+ 1) · a · |a|n loga b+1

Taking nth roots and letting n → +∞ gives |b| ≤ |a|loga b.
Similarly, |a| ≤ |b|logb a. Since | ∗ | is not bounded on Z, there
is C > 1 such that |a| = C log |a| for all 0 6= a ∈ Z. Up to
normalization, this is the usual absolute value for R. ///


