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Recap:

Fujisaki’s lemma: J1/k× is compact. (via a measure-theory
pigeon-hole principle)

Corollary: Ideal class groups are finite.

Let k ⊗Q R ≈ Rr1 × Cr2 . That is, k has r1 real archimedean
completions, and r2 complex archimedean completions. The global
degree is the sum of the local degrees: [k : Q] = r1 + 2r2.

Corollary: (Dirichlet’s Units Theorem) The unit group o×,
modulo roots of unity, is a free Z-module of rank r1 + r2 − 1.
Generally, S-units o×S mod roots of unity are rank |S| − 1.

Thm: (Kronecker) α ∈ o with |α|v=1 at all v|∞ is a root of unity.

Now: generalized ideal class groups are idele class groups, co-
compact subgroups of Rn, topologies, Haar measures on A and kv,
...
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Generalized ideal class groups are idele class groups:

The class number above is the absolute class number.

The narrow class number is ideals modulo principal ideals
generated by totally positive elements.

For non-zero ideal a, the narrow ray class group mod a is
fractional ideals prime to a modulo principal ideals αo generated
by totally positive α = 1 mod a.

Every generalized ideal class group is a quotient of one of these.
That is, the narrow ray class groups are cofinal in the collection of
generalized ideal class groups.

For example, (Z/N)× is the ray class group mod N for Z and Q.
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Lemma: Generalized ideal class groups are idele class groups,
quotients of the compact group J1/k× by open subgroups.

Corollary: Generalized ideal class groups are finite. [Last time.]

Proof of Lemma: Let i be the ideal map from ideles to non-zero
fractional ideals:

i(α) =
∏
v<∞

pordvα
v (for α ∈ J)

where pv is the prime ideal in o attached to the place v. The
subgroup that maps to ideals prime to a is

Ga = {α ∈ J : αv ∈ o×v , for v|a}

With k× imbedded diagonally in J, the totally positive α ∈ k×

congruent to 1 mod a are the intersection of k× with

Ua = {α ∈ J : αv > 0 at v ≈ R, α ∈ 1 + aov, for v|a}
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The kernel of the ideal map on J is

K =
∏
v|∞

k×v ×
∏
v<∞

o×v ⊂ Ga ⊂ J

That is, the corresponding generalized ideal class group is
immediately rewrite-able as

C = i(Ga)/i
(
Ua ∩ k×

)
≈ Ga/

(
K · (Ua ∩ k×)

)
Note that Ga = K · Ua. The explicit claim is that

Ga/
(
K · (Ua ∩ k×)

)
≈ J/

(
(K ∩ Ua) · k×

)
Subordinate to this: claim that, given an idele x there is α ∈ k×
such that α−1 · x is totally positive at v ≈ R, and = 1 mod aov at
v|a. That is, k× · Ua = J.
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Toward the subordinate claim, consider the weaker claim that,
given x ∈ J, there is α ∈ k× with α−1x ∈ o×v for v|a. To prove this
weaker claim, let o(a) be o localized at a: denominators prime to
a are allowed. This Dedekind domain has finitely-many primes, in
bijection with those dividing a, and is a PID.

Thus, there is α ∈ o(a) such that α · o(a) = i(x) · o(a). Then
α−1x ∈ o×v for all v|a, proving the weaker subordinate claim.

Sharpening this, Sun-Ze’s theorem in o(a) produces β ∈ k× such
that β = α−1xv mod aov. Thus, β−1(α−1x) = 1 mod aov at v|a.

To prove the subordinate claim, it remains to adjust ideles at
v ≈ R without disturbing things at v|a.

We want γ ∈ k× with γ = 1 mod aov at v|a, and of specified sign
at v ≈ R.
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Recall that o and any non-zero a are lattices in k∞, that is, a is
a discrete subgroup such that k∞/a is compact. Thus, there is
γ ∈ 1 + a of specified sign at all v ≈ R. Thus, given β−1α−1x,
there exists γ ∈ 1 + a such that γ · β−1α−1x > 0 at v ≈ R and
= 1 mod aov at v|a. This proves the subordinate claim.

From the subordinate claim, the canonical injection

Ua/(Ua ∩ k×) ≈ (Ua · k×)/k× −→ J/k×

is an isomorphism. Recalling that Ga = K · Ua, we obtain an
isomorphism

Ga/
(
K · (Ua ∩ k×)

)
≈ Ua/

(
(K ∩ Ua) · (Ua ∩ k×)

)
≈ (Ua · k×)/

(
(K ∩ Ua) · k×

)
≈ J/

(
(K ∩ Ua) · k×

)
Thus, generalized ideal class groups are quotients of J/k× by open
subgroups, so are finite. ///
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Closed subgroups of Rn: The closed topological subgroups H of
V ≈ Rn are the following: for a vector subspace W of V , and for a
discrete subgroup Γ of V/W ,

H = q−1(Γ) (with q : V → V/W the quotient map)

The discrete subgroups Γ of V ≈ Rn are free Z-modules Zv1 + . . .+
Zvm on R-linearly-independent vectors vj ∈ V , with m ≤ n.

Proof: Induction on n = dimR V . We already treated n = 1.

When H contains a line L, reduce to a lower-dimensional
question, as follows. Let q : V → V/L be the quotient map. Then
H = q−1(q(H)). With H ′ = q(H), by induction, there is a vector
subspace W ′ of V/L and discrete subgroup Γ′ of (V/L)/W ′ such
that

H ′ = q′−1(q′(Γ′)) (quotient q′ : V/L→ (V/L)/W ′)
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Then
H = q−1

(
q(H)

)
= q−1

(
q′−1(Γ′)

)
= (q′ ◦ q)−1(Γ′)

The kernel of q′ ◦ q is the vector subspace N = q−1(W ′) of V . It
is necessary to check that q(H) = H/N is a closed subgroup of
V/N . It suffices to prove that q−1(V/N − q(H)) is open. Since H
contains N , q−1

(
q(H)

)
= H, and

q−1(V/N−qH) = V −q−1(qH) = V −H = V −(closed) = open

This shows that q(H) is closed, and completes the induction step
when R · h ⊂ H.
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Next show that H containing no lines is discrete. If not, then
there are distinct hi in H with an accumulation point ho. Since
H is closed, ho ∈ H, and replace hi by hi − ho so that, without
loss of generality, the accumulation point is 0. Without loss of
generality, remove any 0s from the sequence. The sequence hi/|hi|
has an accumulation point e on the unit sphere, since the sphere
is compact. Replace the sequence by a subsequence so that the
hi/|hi| converge to e. Given real t 6= 0, let n 6= 0 be an integer so
that |n− t

|hi| | ≤ 1. Then

|n · hi − te| ≤
∣∣(n− t

|hi|
)hi
∣∣+ ∣∣ thi
|hi|
− te

∣∣ ≤ 1 · |hi|+ |t| ·
∣∣ hi
|hi|
− e
∣∣

Since |hi| → 0 and hi/|hi| → e, this goes to 0. Thus, te is in the
closure of

⋃
i Z · hi. Thus, H contains the line R · e, contradiction.

That is, H is discrete.
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We claim that discrete H is generated as a Z-module by at
most n elements, and that these are R-linearly independent. For
h1, . . . , hm in H linearly dependent over R, there are real numbers
ri so that

r1h1 + . . .+ rmhm = 0

Re-ordering if necessary, suppose that r1 6= 0. Given a large

integer N , let a
(N)
i be integers so that |ri − a(N)

i /N | < 1/N . Then∑
i

a
(N)
i hi = N

∑
i

(a(N)
i

N
− ri

)
hi +N

∑
i

rihi

= N
∑
i

(a(N)
i

N
− ri

)
hi + 0

Then ∣∣∣∑
i

a
(N)
i hi

∣∣∣ ≤ N
∑
i

1

N
|hi| ≤

∑
i

|hi|
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That is, for every N , the Z-linear combination
∑
i a

(N)
i hi ∈ H is

inside the ball of radius
∑
i |hi| centered at 0. Since H is discrete,

there are only finitely-many different points of this form. Since

r1 6= 0 and |Nr1−a(N)
1 | < 1, for large varying N the corresponding

integers a
(N)
1 are distinct. Thus, for some large N < N ′,∑

i

a
(N)
i hi =

∑
i

a
(N ′)
i hi

Subtracting,∑
i

(
a

(N)
i − a(N ′)

i

)
hi = 0 (with a

(N)
1 − a(N ′)

1 6= 0)

This is a non-trivial Z-linear dependence relation among the hi.
Thus, R-linear dependence implies Z-linear dependence of the hi
in a discrete subgroup H. ///
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Topology on J versus subspace topology from A:

Claim that the topology on J is strictly finer than the subspace
topology from J ⊂ A. In particular, it is obtained from the
inclusion

J ⊂ A× A by α −→ (α, α−1)

Proof: The crucial idea is that∏
v<∞

ov ∩
( ∏
v<∞

ov
)−1

=
∏
v<∞

o×v

That is, a typical open in Jfin is the intersection of a typical open
from A and its image under inversion.

The archimedean and finite-prime components truly are factors in
A = k∞ × Afin and J = k×∞ × Jfin. The topology on k×∞ is both
the subspace topology from k×∞ ⊂ k∞, and from k×∞ → k∞ × k∞
by α→ (α, α−1). Thus, it suffices to prove the claim for the finite-
prime parts. [cont’d]


