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Recap:

Fujisaki’s lemma: J'/k* is compact. (via a measure-theory
pigeon-hole principle)

Corollary: Ideal class groups are finite.

Let k ®p R =~ R™ x C™. That is, k has r1 real archimedean

completions, and ry complex archimedean completions. The global
degree is the sum of the local degrees: [k : Q] =71 + 2rs.

Corollary: (Dirichlet’s Units Theorem) The unit group o*,
modulo roots of unity, is a free Z-module of rank r; 4+ ro — 1.
Generally, S-units 0§ mod roots of unity are rank |S| — 1.

Thm: (Kronecker) a € o with |a|,=1 at all v|co is a root of unity.

Now: generalized ideal class groups are idele class groups, co-
compact subgroups of R", topologies, Haar measures on A and k,,
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Generalized ideal class groups are idele class groups:
The class number above is the absolute class number.

The narrow class number is ideals modulo principal ideals
generated by totally positive elements.

For non-zero ideal a, the narrow ray class group mod a is
fractional ideals prime to a modulo principal ideals a0 generated
by totally positive o = 1 mod a.

Every generalized ideal class group is a quotient of one of these.
That is, the narrow ray class groups are cofinal in the collection of
generalized ideal class groups.

For example, (Z/N)* is the ray class group mod N for Z and Q.
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Lemma: Generalized ideal class groups are ¢dele class groups,
quotients of the compact group J!/k* by open subgroups.

Corollary: Generalized ideal class groups are finite. [Last time.]

Proof of Lemma: Let i be the ideal map from ideles to non-zero
fractional ideals:

i) = J] oo (for v € J)

(VR ge’e)

where p,, is the prime ideal in o attached to the place v. The
subgroup that maps to ideals prime to a is

Gy = {a €l : a, €0}, forvla}

With £* imbedded diagonally in J, the totally positive a € k*
congruent to 1 mod a are the intersection of k* with

Us = {a€l : a,>0atvxR, a €1+ ao,, forv|a}

3
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The kernel of the ideal map on J is
K:l_[/cffxl_[o;< C Gq C J

U|OO V<0

That is, the corresponding generalized ideal class group is
immediately rewrite-able as

C = i(Go)/i(UsNEk*) = Gof (K- (UsNEX))
Note that G, = K - U,. The explicit claim is that
Go/ (K - (UsNEX)) = J/(KNU,)-kX)

Subordinate to this: claim that, given an idele x there is o € k*
such that a=! - z is totally positive at v ~ R, and = 1 mod ao,, at

v|la. That is, k> - U, = J.
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Toward the subordinate claim, consider the weaker claim that,
given x € J, there is a € k* with a™lz € 0 for v|a. To prove this
weaker claim, let o(q) be o localized at a: denominators prime to

a are allowed. This Dedekind domain has finitely-many primes, in
bijection with those dividing a, and is a PID.

Thus, there is o € o4 such that o - 0qy = i(x) - 0(4). Then
a1z € o for all v|a, proving the weaker subordinate claim.

Sharpening this, Sun-Ze’s theorem in o0(4) produces § € k™ such
that 3 = a~!x, mod ao,. Thus, 3~} (a~!z) =1 mod ao, at v]a.

To prove the subordinate claim, it remains to adjust ideles at
v ~ R without disturbing things at v|a.

We want v € k£* with v = 1 mod ao, at v|a, and of specified sign
at v ~ R.
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Recall that o and any non-zero a are lattices in ko, that is, a is

a discrete subgroup such that ko, /a is compact. Thus, there is

v € 1+ a of specified sign at all v ~ R. Thus, given 37 1a"tz,
there exists v € 1 + a such that v - 87 la™lz > 0 at v =~ R and
= 1 mod ao, at v|a. This proves the subordinate claim.

From the subordinate claim, the canonical injection
Ud/(Us NE*) = (Uy- k™) /k* — J/k™

is an isomorphism. Recalling that G, = K - U,, we obtain an
isomorphism

Go/ (K- (UaNkX)) = Us/((KNUy) - (Us NEX))
~ (Us- kX)) (KNUg) - k) = J/((KNUyg) - kX)

Thus, generalized ideal class groups are quotients of J/k* by open
subgroups, so are finite. ///
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Closed subgroups of R": The closed topological subgroups H of
V =~ R" are the following: for a vector subspace W of V', and for a
discrete subgroup I' of V/W |

H = ¢} (with ¢ : V. — V/W the quotient map)

The discrete subgroups I' of V ~ R" are free Z-modules Zv,+. ..+
Zvy, on R-linearly-independent vectors v; € V', with m < n.

Proof: Induction on n = dimy V. We already treated n = 1.

When H contains a line L, reduce to a lower-dimensional
question, as follows. Let ¢ : V' — V/L be the quotient map. Then
H = ¢ '(q(H)). With H' = q(H), by induction, there is a vector
subspace W’ of V/L and discrete subgroup I'V of (V/L)/W' such
that

H = ¢ YT (quotient ¢’ : V/L — (V/L)/W')
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Then H o g (q(H)) _ ! (q/—l(rl)> = (¢ oq)" (1)

The kernel of ¢’ o q is the vector subspace N = ¢~ }(W') of V. It
is necessary to check that q(H) = H/N is a closed subgroup of
V/N. Tt suffices to prove that ¢~ 1(V/N — q(H)) is open. Since H
contains N, ¢~ '(¢(H)) = H, and

¢ '(V/IN—qH)=V —q '(qgH) = V—H = V —(closed) = open

This shows that ¢(H) is closed, and completes the induction step
when R-h C H.
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Next show that H containing no lines is discrete. If not, then
there are distinct h; in H with an accumulation point h,. Since
H is closed, h, € H, and replace h; by h; — h, so that, without
loss of generality, the accumulation point is 0. Without loss of
generality, remove any Os from the sequence. The sequence h;/|h;]
has an accumulation point e on the unit sphere, since the sphere
is compact. Replace the sequence by a subsequence so that the
h;/|h;| converge to e. Given real t # 0, let n # 0 be an integer so
that [n — | < 1. Then

v
|hs

i
—e}

In-h; —te] < |(n
| |hil

hil +|

th;

—te|l < 1-|hg] 4+t
| | |
Since |h;| — 0 and h;/|h;| — e, this goes to 0. Thus, te is in the

closure of | J, Z - h;. Thus, H contains the line R - e, contradiction.
That is, H is discrete.
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We claim that discrete H is generated as a Z-module by at
most n elements, and that these are R-linearly independent. For
hi,...,hy, in H linearly dependent over R, there are real numbers

r; so that
T1h1—|-...+Tmhm =0

Re-ordering if necessary, suppose that vy # 0. Given a large
integer IV, let a,EN) be integers so that |r; — aEN)/N\ < 1/N. Then
(N)
a;

Zagmhi = NZ( N —ri)hi—l—Nthi

(V)

a;
- NZ( L= = i) b+ 0
S ah] < NIl < Y Ind

7

Then
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That is, for every N, the Z-linear combination ), az(-N)hi € His
inside the ball of radius ), |h;| centered at 0. Since H is discrete,
there are only finitely-many different points of this form. Since

r1 # 0 and | N7y —agN)\ < 1, for large varying N the corresponding

integers agN) are distinct. Thus, for some large N < N’,
ZGEN)hi _ Za,EN')’%’
Subtracting, ¢ ¢
Z (agN) — al(.Nl))hi =0 (with agN) — agN/) # 0)

i
This is a non-trivial Z-linear dependence relation among the h;.

Thus, R-linear dependence implies Z-linear dependence of the h;
in a discrete subgroup H. ///
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Topology on J versus subspace topology from A:

Claim that the topology on J is strictly finer than the subspace
topology from J C A. In particular, it is obtained from the
inclusion

JCAXA by o — (o, h)

Proof: The crucial idea is that

HOUQ(H%)_l = Hoff

V<00 V<00 V<00

That is, a typical open in Jg, is the intersection of a typical open
from A and its image under inversion.

The archimedean and finite-prime components truly are factors in
A = ko X Agy and J = £ X Jan. The topology on k2 is both
the subspace topology from kX C ko, and from k2 — koo X koo
by a — (a,a™1). Thus, it suffices to prove the claim for the finite-
prime parts. [cont’d]




