Recap:

Fujisaki's lemma: \mathbb{J}^1/k^{\times} is *compact*. (via a measure-theory *pigeon-hole* principle)

Corollary: Ideal class groups are finite.

Let $k \otimes_{\mathbb{Q}} \mathbb{R} \approx \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$. That is, k has r_1 real archimedean completions, and r_2 complex archimedean completions. The global degree is the sum of the local degrees: $[k : \mathbb{Q}] = r_1 + 2r_2$.

Corollary: (Dirichlet's Units Theorem) The unit group \mathfrak{o}^{\times} , modulo roots of unity, is a free \mathbb{Z} -module of rank $r_1 + r_2 - 1$. Generally, S-units \mathfrak{o}_S^{\times} mod roots of unity are rank |S| - 1.

Thm: (Kronecker) $\alpha \in \mathfrak{o}$ with $|\alpha|_v = 1$ at all $v \mid \infty$ is a root of unity.

Now: generalized *ideal* class groups are *idele* class groups, *co-compact* subgroups of \mathbb{R}^n , topologies, Haar measures on A and k_v , ...

Generalized ideal class groups are idele class groups:

The class number above is the *absolute* class number.

The *narrow* class number is ideals modulo principal ideals generated by *totally positive* elements.

For non-zero ideal \mathfrak{a} , the *narrow ray class group* mod \mathfrak{a} is fractional ideals *prime to* \mathfrak{a} modulo principal ideals $\alpha \mathfrak{o}$ generated by *totally positive* $\alpha = 1 \mod \mathfrak{a}$.

Every generalized ideal class group is a quotient of one of these. That is, the narrow ray class groups are *cofinal* in the collection of generalized ideal class groups.

For example, $(\mathbb{Z}/N)^{\times}$ is the ray class group mod N for Z and Q.

Lemma: Generalized ideal class groups are *idele* class groups, quotients of the compact group \mathbb{J}^1/k^{\times} by *open* subgroups.

Corollary: Generalized ideal class groups are *finite*. [*Last time*.] *Proof of Lemma:* Let *i* be the *ideal map* from ideles to non-zero fractional ideals:

$$i(\alpha) = \prod_{v < \infty} \mathfrak{p}_v^{\operatorname{ord}_v \alpha} \quad (\text{for } \alpha \in \mathbb{J})$$

where \mathfrak{p}_v is the prime ideal in \mathfrak{o} attached to the place v. The subgroup that maps to ideals prime to \mathfrak{a} is

$$G_{\mathfrak{a}} = \{ \alpha \in \mathbb{J} : \alpha_v \in \mathfrak{o}_v^{\times}, \text{ for } v | \mathfrak{a} \}$$

With k^{\times} imbedded diagonally in \mathbb{J} , the totally positive $\alpha \in k^{\times}$ congruent to 1 mod \mathfrak{a} are the intersection of k^{\times} with

$$U_{\mathfrak{a}} = \{ \alpha \in \mathbb{J} : \alpha_v > 0 \text{ at } v \approx \mathbb{R}, \ \alpha \in 1 + \mathfrak{ao}_v, \text{ for } v | \mathfrak{a} \}$$

The kernel of the ideal map on $\mathbb J$ is

$$K = \prod_{v \mid \infty} k_v^{\times} \times \prod_{v < \infty} \mathfrak{o}_v^{\times} \subset G_{\mathfrak{a}} \subset \mathbb{J}$$

That is, the corresponding generalized ideal class group is immediately rewrite-able as

$$C = i(G_{\mathfrak{a}})/i(U_{\mathfrak{a}} \cap k^{\times}) \approx G_{\mathfrak{a}}/(K \cdot (U_{\mathfrak{a}} \cap k^{\times}))$$

Note that $G_{\mathfrak{a}} = K \cdot U_{\mathfrak{a}}$. The explicit claim is that

$$G_{\mathfrak{a}}/(K \cdot (U_{\mathfrak{a}} \cap k^{\times})) \approx \mathbb{J}/((K \cap U_{\mathfrak{a}}) \cdot k^{\times})$$

Subordinate to this: claim that, given an idele x there is $\alpha \in k^{\times}$ such that $\alpha^{-1} \cdot x$ is totally positive at $v \approx \mathbb{R}$, and $= 1 \mod \mathfrak{ao}_v$ at $v|\mathfrak{a}$. That is, $k^{\times} \cdot U_{\mathfrak{a}} = \mathbb{J}$.

Toward the subordinate claim, consider the weaker claim that, given $x \in \mathbb{J}$, there is $\alpha \in k^{\times}$ with $\alpha^{-1}x \in \mathfrak{o}_v^{\times}$ for $v|\mathfrak{a}$. To prove this weaker claim, let $\mathfrak{o}_{(\mathfrak{a})}$ be \mathfrak{o} localized at \mathfrak{a} : denominators prime to \mathfrak{a} are allowed. This Dedekind domain has finitely-many primes, in bijection with those dividing \mathfrak{a} , and is a PID.

Thus, there is $\alpha \in \mathfrak{o}_{(\mathfrak{a})}$ such that $\alpha \cdot \mathfrak{o}_{(\mathfrak{a})} = i(x) \cdot \mathfrak{o}_{(\mathfrak{a})}$. Then $\alpha^{-1}x \in \mathfrak{o}_v^{\times}$ for all $v|\mathfrak{a}$, proving the weaker subordinate claim.

Sharpening this, Sun-Ze's theorem in $\mathfrak{o}_{(\mathfrak{a})}$ produces $\beta \in k^{\times}$ such that $\beta = \alpha^{-1}x_v \mod \mathfrak{ao}_v$. Thus, $\beta^{-1}(\alpha^{-1}x) = 1 \mod \mathfrak{ao}_v$ at $v|\mathfrak{a}$.

To prove the subordinate claim, it remains to adjust ideles at $v \approx \mathbb{R}$ without disturbing things at $v|\mathfrak{a}$.

We want $\gamma \in k^{\times}$ with $\gamma = 1 \mod \mathfrak{ao}_v$ at $v|\mathfrak{a}$, and of specified sign at $v \approx \mathbb{R}$.

Recall that \mathfrak{o} and any non-zero \mathfrak{a} are *lattices* in k_{∞} , that is, \mathfrak{a} is a *discrete* subgroup such that k_{∞}/\mathfrak{a} is *compact*. Thus, there is $\gamma \in 1 + \mathfrak{a}$ of specified sign at all $v \approx \mathbb{R}$. Thus, given $\beta^{-1}\alpha^{-1}x$, there exists $\gamma \in 1 + \mathfrak{a}$ such that $\gamma \cdot \beta^{-1}\alpha^{-1}x > 0$ at $v \approx \mathbb{R}$ and $= 1 \mod \mathfrak{ao}_v$ at $v|\mathfrak{a}$. This proves the subordinate claim.

From the subordinate claim, the canonical injection

$$U_{\mathfrak{a}}/(U_{\mathfrak{a}} \cap k^{\times}) \approx (U_{\mathfrak{a}} \cdot k^{\times})/k^{\times} \longrightarrow \mathbb{J}/k^{\times}$$

is an *isomorphism*. Recalling that $G_{\mathfrak{a}} = K \cdot U_{\mathfrak{a}}$, we obtain an isomorphism

$$G_{\mathfrak{a}}/(K \cdot (U_{\mathfrak{a}} \cap k^{\times})) \approx U_{\mathfrak{a}}/((K \cap U_{\mathfrak{a}}) \cdot (U_{\mathfrak{a}} \cap k^{\times}))$$
$$\approx (U_{\mathfrak{a}} \cdot k^{\times})/((K \cap U_{\mathfrak{a}}) \cdot k^{\times}) \approx \mathbb{J}/((K \cap U_{\mathfrak{a}}) \cdot k^{\times})$$

Thus, generalized ideal class groups are quotients of \mathbb{J}/k^{\times} by open subgroups, so are finite. ///

Closed subgroups of \mathbb{R}^n : The closed topological subgroups H of $V \approx \mathbb{R}^n$ are the following: for a *vector subspace* W of V, and for a *discrete* subgroup Γ of V/W,

$$H = q^{-1}(\Gamma)$$
 (with $q: V \to V/W$ the quotient map)

The discrete subgroups Γ of $V \approx \mathbb{R}^n$ are free \mathbb{Z} -modules $\mathbb{Z}v_1 + \ldots + \mathbb{Z}v_m$ on \mathbb{R} -linearly-independent vectors $v_j \in V$, with $m \leq n$.

Proof: Induction on $n = \dim_{\mathbb{R}} V$. We already treated n = 1.

When H contains a line L, reduce to a lower-dimensional question, as follows. Let $q: V \to V/L$ be the quotient map. Then $H = q^{-1}(q(H))$. With H' = q(H), by induction, there is a vector subspace W' of V/L and discrete subgroup Γ' of (V/L)/W' such that

$$H' = q'^{-1}(q'(\Gamma')) \qquad (\text{quotient } q': V/L \to (V/L)/W')$$

Then

$$H = q^{-1}(q(H)) = q^{-1}(q'^{-1}(\Gamma')) = (q' \circ q)^{-1}(\Gamma')$$

The kernel of $q' \circ q$ is the vector subspace $N = q^{-1}(W')$ of V. It is necessary to check that q(H) = H/N is a *closed* subgroup of V/N. It suffices to prove that $q^{-1}(V/N - q(H))$ is *open*. Since Hcontains N, $q^{-1}(q(H)) = H$, and

$$q^{-1}(V/N - qH) = V - q^{-1}(qH) = V - H = V - (\text{closed}) = \text{open}$$

This shows that q(H) is closed, and completes the induction step when $\mathbb{R} \cdot h \subset H$. Next show that H containing no lines is *discrete*. If not, then there are distinct h_i in H with an accumulation point h_o . Since H is closed, $h_o \in H$, and replace h_i by $h_i - h_o$ so that, without loss of generality, the accumulation point is 0. Without loss of generality, remove any 0s from the sequence. The sequence $h_i/|h_i|$ has an accumulation point e on the *unit sphere*, since the sphere is *compact*. Replace the sequence by a subsequence so that the $h_i/|h_i|$ converge to e. Given real $t \neq 0$, let $n \neq 0$ be an integer so that $|n - \frac{t}{|h_i|}| \leq 1$. Then

$$|n \cdot h_i - te| \leq |(n - \frac{t}{|h_i|})h_i| + |\frac{th_i}{|h_i|} - te| \leq 1 \cdot |h_i| + |t| \cdot |\frac{h_i}{|h_i|} - e|$$

Since $|h_i| \to 0$ and $h_i/|h_i| \to e$, this goes to 0. Thus, te is in the closure of $\bigcup_i \mathbb{Z} \cdot h_i$. Thus, H contains the line $\mathbb{R} \cdot e$, contradiction. That is, H is discrete.

We claim that discrete H is generated as a \mathbb{Z} -module by at most n elements, and that these are \mathbb{R} -linearly independent. For h_1, \ldots, h_m in H linearly dependent over \mathbb{R} , there are real numbers r_i so that

$$r_1h_1 + \ldots + r_mh_m = 0$$

Re-ordering if necessary, suppose that $r_1 \neq 0$. Given a large integer N, let $a_i^{(N)}$ be integers so that $|r_i - a_i^{(N)}/N| < 1/N$. Then

$$\sum_{i} a_i^{(N)} h_i = N \sum_{i} \left(\frac{a_i^{(N)}}{N} - r_i \right) h_i + N \sum_{i} r_i h_i$$
$$= N \sum_{i} \left(\frac{a_i^{(N)}}{N} - r_i \right) h_i + 0$$

Then

$$\left|\sum_{i} a_i^{(N)} h_i\right| \leq N \sum_{i} \frac{1}{N} |h_i| \leq \sum_{i} |h_i|$$

That is, for every N, the Z-linear combination $\sum_i a_i^{(N)} h_i \in H$ is inside the ball of radius $\sum_i |h_i|$ centered at 0. Since H is discrete, there are only finitely-many *different* points of this form. Since $r_1 \neq 0$ and $|Nr_1 - a_1^{(N)}| < 1$, for large varying N the corresponding integers $a_1^{(N)}$ are *distinct*. Thus, for some large N < N',

$$\sum_{i} a_i^{(N)} h_i = \sum_{i} a_i^{(N')} h_i$$

Subtracting,

$$\sum_{i} \left(a_i^{(N)} - a_i^{(N')} \right) h_i = 0 \qquad (\text{with } a_1^{(N)} - a_1^{(N')} \neq 0)$$

This is a non-trivial \mathbb{Z} -linear dependence relation among the h_i . Thus, \mathbb{R} -linear dependence implies \mathbb{Z} -linear dependence of the h_i in a *discrete* subgroup H. ///

Topology on $\mathbb J$ versus subspace topology from $\mathbb A {:}$

Claim that the topology on \mathbb{J} is strictly finer than the subspace topology from $\mathbb{J} \subset \mathbb{A}$. In particular, it is obtained from the inclusion

 $\mathbb{J} \subset \mathbb{A} \times \mathbb{A} \qquad \text{by} \qquad \alpha \longrightarrow (\alpha, \alpha^{-1})$

Proof: The crucial idea is that

$$\prod_{v < \infty} \mathfrak{o}_v \cap \big(\prod_{v < \infty} \mathfrak{o}_v\big)^{-1} = \prod_{v < \infty} \mathfrak{o}_v^{\times}$$

That is, a typical open in $\mathbb{J}_{\mathrm{fin}}$ is the intersection of a typical open from A and its image under inversion.

The archimedean and finite-prime components truly are factors in $\mathbb{A} = k_{\infty} \times \mathbb{A}_{\text{fin}}$ and $\mathbb{J} = k_{\infty}^{\times} \times \mathbb{J}_{\text{fin}}$. The topology on k_{∞}^{\times} is both the subspace topology from $k_{\infty}^{\times} \subset k_{\infty}$, and from $k_{\infty}^{\times} \to k_{\infty} \times k_{\infty}$ by $\alpha \to (\alpha, \alpha^{-1})$. Thus, it suffices to prove the claim for the finite-prime parts. [cont'd]