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Abstract: We establish a spectral identity for moments of Rankin-Selberg L–
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1. Introduction
Let k be an algebraic number field with adele ring A. Fix an integer r ≥ 2 and consider the
general linear groups GLr(k), GLr(A) of r × r invertible matrices with entries in k, A, respectively.
Let Z+ be the positive real scalar matrices in GLr. Let π be an irreducible cuspidal automorphic
representation in L2(Z+GLr(k)\GLr(A)). Let π′ run over irreducible unitary cuspidal representations in
L2(Z+GLr−1(k)\GLr−1(A)), where now Z+ is the positive real scalar matrices in GLr−1. For brevity,
denote a sum over such π′ by

∑
π′ . For complex s, let L(s, π×π′) denote the Rankin-Selberg convolution L–

function. A second integral moment over the spectral family GLr−1 is described roughly as follows. For each
irreducible cuspidal automorphic π′ of GLr−1, assign a constant c(π′) ≥ 0. Letting π∞ be the archimedean
component of π and π′∞ the archimedean factor of each π′, let M(s, π∞, π

′
∞) be a function of complex s,

whose possibilities will be described in more detail later. The corresponding second moment of π is

∑
π′

c(π′)

∫
Res= 1

2

|L(s, π × π′)|2 ·M(s, π∞, π
′
∞) ds

In fact, there are corresponding further correction terms corresponding to non-cuspidal parts of the spectral
decomposition of L2(Z+GLr−1(k)\GLr−1(A)), but the cuspidal part presumably dominates.

The theory of second integral moments on GL2 × GL1 has a long history, although the early pa-
pers treated mainly the case that the groundfield k is Q. For example, see [Hardy-Littlewood 1918], [Ing-
ham 1926], [Heath-Brown 1975], [Sarnak 1985], [Good 1983,1986], [Motohashi 1997], [Jutila 1997], [Petridis-
Sarnak 2001], [Bruggeman-Motohashi 2001,2003], [CFKRS 2005], [Diaconu-Goldfeld-Hoffstein 2005],
[Diaconu-Goldfeld 2006a,2006b], [Diaconu-Garrett 2009]. Second integral moments of level-one holomorphic
elliptic modular forms were first treated in [Good 1983,1986], the latter using an idea that is a precursor of
part of the present approach. The study of second integral moments for GL2 × GL1 with arbitrary level,
groundfield, and infinity-type is completely worked out in [Diaconu-Garrett 2010].

The main aim of this paper is to establish an identity relating the second integral moment, described
above, to the integral of a certain Poincaré series P against the absolute value squared |f |2 of a distinguished
cuspform f ∈ π. Acknowledging that the spectral decomposition of L2(ZAGLr(k)\GLr(A)) also has a non-
cuspidal part generated by Eisenstein series and their residues, the identity we obtain takes the form
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∫
ZAGLr(k)\GLr(A)

P(g, ϕ∞) · |f(g)|2 dg =

∑
π′

|ρ(π′)|2
∫

Res= 1
2

|L(s, π × π′)|2 ·M(s, π∞, π
′
∞, ϕ∞) ds + (non-cuspidal part)

Here M(s, π∞, π
′
∞, ϕ∞) is a weighting function depending on the complex parameter s, on the archimedean

components π∞ and π′∞, and on archimedean data ϕ∞ defining the Poincaré series. The global constants
ρ(π′) are analogues of the leading Fourier coefficients of GL2 cuspforms. The spectral expansion of the
Poincaré series P relates the second integral moment to automorphic spectral data. Remarkably, the cuspidal
data appearing in the spectral expansion of P comes only from GL2.

These new identities have some similarities to the Kuznetsov trace formula [Bruggeman 1978],
[Wallach 1992], [Ye 2000], [Goldfeld 2006], in that they are derived via the spectral resolution of a Poincaré
series, but they are clearly of a different nature. We have in mind application not only to cuspforms, but
also to truncated Eisenstein series or wave packets of Eisenstein series, thus applying harmonic analysis on
GLr to L–functions attached to GL1, touching upon higher integral moments of the zeta function ζk(s) of
the ground field k.

In connection to the present work, we mention the recent mean-value result of [Young 2009],

∫ T 1−ε

−T 1−ε

∑
T<tj≤2T

|L( 1
2 + it, uj × ϕ)|2 dt � T 3+ε (for ε > 0)

where ϕ is on GL3, and where uj on GL2 has spectral data tj , as usual. From this the t-aspect convexity
bound can be recovered. Also, [Li 2009] obtains a t-aspect subconvexity bound for standard L–functions for
GL3(Q) for Gelbart-Jacquet lifts.

For context, we review the [Diaconu-Goldfeld 2005] treatment of spherical waveforms f for GL2(Q). In
that case, the sum of moments is a single term∫

ZAGL2(Q)\GL2(A)

P(g, z, w) |f(g)|2 dg =
1

2πi

∫
Re(s)= 1

2

L(z + s, f) · L(s, f) · Γ(s, z, w, f∞) ds

where Γ(s, z, w, f∞) is a ratios of products of gammas, with arguments depending upon the archimedean
data of f . Here the Poincaré series P(g) = P(g, z, w) is specified completely by complex parameters z, w,
and has a spectral expansion

P(g, z, w) =
π

1−w
2 Γ(w−1

2 )

π−
w
2 Γ(w2 )

· E1+z(g) + 1
2

∑
F on GL2

ρF · L( 1
2 + z, F ) · G( 1

2 − itF , z, w) · F (g)

+
1

4πi

∫
Re(s)= 1

2

ζ(z + s) ζ(z + 1− s)
ξ(2− 2s)

G(1− s, z, w) · Es(g) ds (for Re(z)� 1
2 , Re(w)� 1)

where ξ(s) = π−s/2Γ(s/2)ζ(s), where G is essentially a product of gamma function values

G(s, z, w) = π−(z+w
2 ) Γ( z+1−s

2 ) Γ( z+s2 ) Γ( z−s+w2 ) Γ( z+s−1+w
2 )

Γ(z + w
2 )

and F is summed over (an orthogonal basis for) spherical (at finite primes) cuspforms on GL2 with Laplacian
eigenvalues 1

4 + t2F , and Es is the usual spherical Eisenstein series. The continuous part, the integral of
Eisenstein series Es, cancels the pole at z = 1 of the leading term, and when evaluated at z = 0 is
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P(g, 0, w) = (holomorphic at z=0) + 1
2

∑
F on GL2

ρF · L( 1
2 , F ) · G( 1

2 − itF , 0, w) · F (g)

+
1

4πi

∫
Re(s)= 1

2

ζ(s) ζ(1− s)
ξ(2− 2s)

G(1− s, 0, w) · Es(g) ds

In this spectral expansion, the coefficient in front of a cuspform F includes G evaluated at z = 0 and
s = 1

2 ± itF , namely

G( 1
2 − itF , 0, w) = π−

w
2

Γ(
1
2−itF

2 ) Γ(
1
2 +itF

2 ) Γ(
w− 1

2−itF
2 ) Γ(

w− 1
2 +itF

2 )

Γ(w2 )

The gamma function has poles at 0,−1,−2, . . ., so this coefficient has poles at w = 1
2 ± itF , − 3

2 ± itF , . . ..
Over Q, among spherical cuspforms (or for any fixed level) these values have no accumulation point. The
continuous part of the spectral side at z = 0 is

1

4πi

∫
Re(s)= 1

2

ξ(s) ξ(1− s)
ξ(2− 2s)

Γ(w−s2 ) Γ(w−1+s
2 )

Γ(w2 )
· Es ds

with gamma factors grouped with corresponding zeta functions, to form the completed L–functions ξ. Thus,
the evident pole of the leading term at w = 1 can be exploited, using the continuation to Re(w) > 1/2. A
contour-shifting argument shows that the continuous part of this spectral decomposition has a meromorphic
continuation to C with poles at ρ/2 for zeros ρ of ζ, in addition to the poles from the gamma functions.

Already for GL2, over general ground fields k, infinitely many Hecke characters enter both the spectral
decomposition of the Poincaré series and the moment expression. This naturally complicates isolation of
literal moments, and complicates analysis of poles via the spectral expansion. Suppressing constants, the
moment expansion is a sum of twists by Hecke characters χ, of the form∫
ZAGL2(k)\GL2(A)

P(s, z, w, ϕ∞) · |f(g)|2 =
∑
χ

∫
Re(s)= 1

2

L(z + s, f ⊗ χ) ·L(1− s, f ⊗ χ) ·M(s, z, χ∞, ϕ∞) ds

where M(s, z, χ∞, ϕ∞) depends upon complex parameters s, z and archimedean components χ∞, f∞, and
upon auxiliary archimedean data ϕ∞ defining the Poincaré series. Again suppressing constants, the spectral
expansion is

P(g, z, ϕ∞) = (∞− part) · E1+z(g) +
∑

F on GL2

(∞− part) · ρF · L( 1
2 + z, F ) · F (g)

+
∑
χ

∫
Re(s)= 1

2

L(z + s, χ)L(z + 1− s, χ)

L(2− 2s, χ2)
G(s, χ∞) · Es,χ(g) ds

where the factor denoted ∞-part depends only upon the archimedean data, as does G(s, χ∞).
In the simplest case beyond GL2, take f a spherical cuspform for GL3(Q) generating an irreducible

cuspidal automorphic representation π = πf . We can construct a weight function Γ(s, z, w, π∞, π
′
∞) with

explicit asymptotic behavior, depending upon complex parameters s, z, and w, and upon the archimedean
components π∞ for π and for π′ irreducible cuspidal automorphic on GL2, such that the moment expansion
has the form∫

ZAGL3(Q)\GL3(A)

P(g, z, w) · |f(g)|2 dg =
∑

π′ on GL2

|ρ(π′)|2 1

2πi

∫
Re(s)= 1

2

|L(s, π × π′)|2 · Γ(s, 0, w, π∞, π
′
∞) ds

+
1

4πi

1

2πi

∑
k∈Z

∫
Re(s1)= 1

2

∫
Re(s2)= 1

2

|L(s1, π × πE(k)
1−s2

)|2

|ξ(1− 2it2)|2
· Γ(s1, 0, w, π∞, E

(k)
1−s2,∞) ds1 ds2
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where π′ runs over (an orthogonal basis for) all level-one cuspforms on GL2, with no restriction on the right

K∞-types, E
(k)
s is the usual level-one Eisenstein series of K∞-type k, and the notation E

(k)
1−s2,∞ means that

the dependence is only upon the archimedean component. Here and throughout, for Re(s) = 1/2, use 1− s
in place of s, to maintain holomorphy in complex-conjugated parameters.

More generally, for an irreducible cuspidal automorphic representation π on GLr with r ≥ 3, whether
over Q or over a numberfield, the moment expansion includes an infinite sum of terms |L(s, π × π′)|2 for π′

ranging over irreducible cuspidal automorphic representations on GLr−1, as well as integrals of products of
L–functions L(s, π×π′1) . . . L(s, π×π′`) for π′1, . . . , π

′
` ranging over `-tuples of cuspforms on GLr1× . . .×GLr`

for all partitions (r1, . . . , r`) of r.
Generally, the spectral expansion of the Poincaré series for GLr is an induced-up version of that for

GL2. Suppressing constants, using groundfield Q to skirt Hecke characters, the spectral expansion has the
form

P = (∞− part) · Er−1,1
z+1 +

∑
F on GL2

(∞− part) · ρF · L( rz+r−2
2 + 1

2 , F ) · Er−2,2
z+1

2 ,F

+

∫
Re(s)= 1

2

(∞− part) ·
ζ( rz+r−2

2 + 1
2 − s) · ζ( rz+r−2

2 + 1
2 + s)

ζ(2− 2s)
· Er−2,1,1

z+1, s− z+1
2 ,−s− z+1

2

ds

where F is summed over an orthonormal basis for spherical cuspforms on GL2, and where the Eisenstein
series are naively normalized spherical, with Er−1,1

s a degenerate Eisenstein series attached to the parabolic
corresponding to the partition r−1, 1, and Er−2,1,1

s1,s2,s3,χ a degenerate Eisenstein series attached to the parabolic
corresponding to the partition r − 2, 1, 1.

Again over Q, the most-continuous part of the moment expansion for GLr is of the form

∫
Re(s)= 1

2

∫
t∈Λ

|L(s, π × πEmin
1
2 +it

)|2Mt(s) ds dt =

∫ ∫
Λ

∣∣∣∣ Π1≤`≤r−1 L(s+ it`, π)

Π1≤j<`<n ζ(1− itj + it`)

∣∣∣∣2 Mt(s) ds dt

where

Λ = {t ∈ Rr−1 : t1 + . . .+ tr−1 = 0}

and where Mt is a weight function depending upon π. More generally, let r − 1 = m · b. For π′ irreducible
cuspidal automorphic on GLm, let

π′
∆

= π′ ⊗ . . .⊗ π′

on GLm × . . .×GLm. Inside the moment expansion we have (recall Langlands-Shahidi)

∫
Re(s)= 1

2

∫
Λ

|L(s, π × πE
π′∆, 1

2 +it
)|2Mπ′,t(s) ds dt =

∫ ∫ ∣∣∣∣ Π1≤`≤b L(s+ it`, π × π′)
Π1≤j<`≤b L(1− itj + it`, π′ × π′∨)

∣∣∣∣2M dsdt

Replacing the cuspidal representation π on GLr(Q) by a (truncated) minimal-parabolic Eisenstein series Eα
with α ∈ Cn−1, the most-continuous part of the moment expansion contains a term

∫ ∫
Λ

∣∣∣∣Π1≤µ≤n, 1≤`≤r−1 ζ(αµ + s+ it`)

Π1≤j<`<r |ζ(1− itj + it`)

∣∣∣∣2 ds dt
Taking α = 0 ∈ Cr−1 gives ∫ ∫

Λ

∣∣∣∣ Π1≤`≤r−1 ζ(s+ it`)
r

Π1≤j<`<r ζ(1− itj + it`)

∣∣∣∣2 M dsdt

For example, for GL3, where Λ = {(t,−t)} ≈ R,

∫ ∫
R

∣∣∣∣ζ(s+ it)3 · ζ(s− it)3

ζ(1− 2it)

∣∣∣∣2 M dsdt
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and for GL4 ∫
(s)

∫
Λ

∣∣∣∣ ζ(s+ it1)4 · ζ(s+ it2)4 · ζ(s+ it3)4

ζ(1−it1+it2) ζ(1−it1+it3) ζ(1−it2+it3)

∣∣∣∣2M dsdt

2. Background and normalizations
We recall some facts concerning Whittaker models and Rankin-Selberg integral representations of L–

functions, and spectral theory for automorphic forms, on GLr. To compare zeta local integrals formed
from vectors in cuspidal representations to local L–functions attached to the representations, we specify
distinguished vectors in irreducible representations of p-adic and archimedean groups. Locally at both p-
adic and archimedean places, Whittaker models with spherical vectors have a natural choice of distinguished
vector, namely, the spherical vector taking value 1 at the identity element of the group.

Even in general, for the specific purposes here, at finite places the facts are clear. At archimedean places
the facts are more complicated, and, further, the situation dictates choices of data, and we are not free to
make ideal choices. See [Cogdell 2002], [Cogdell 2003], [Cogdell 2004] for detailed surveys, and references
to the literature, mostly papers of Jacquet, Piatetski-Shapiro, and Shalika. The spectral theory is due
to [Langlands 1976], [Moeglin-Waldspurger 1995], and proof of conjectures of [Jacquet 1983] in [Moeglin-
Waldspurger 1989].

Fix an integer r ≥ 2 and consider the general linear group G = GLr over a fixed algebraic number field
k. For a positive integer `, in the following we use the notation ‘`× `’ to denote an `-by-` matrix, and let 1`
denote the `× ` identity matrix. Then G = GLr has the following standard subgroups:

P = P r−1,1 = {
(

(r − 1)× (r − 1) ∗
0 1× 1

)
}

U = {
(

1r−1 ∗
0 1

)
} H = {

(
(r − 1)× (r − 1) 0

0 1

)
}

N = {upper-triangular unipotent elements in H}
= (unipotent radical of standard minimal parabolic in H)

Z = center of GLr

Let A = Ak be the adele ring of k. For a place v of k let kv be the corresponding completion, with ring
of integers ov for finite v. For an algebraic group defined over k, let Gv be the kv-valued points of G. For
G = GLr over k, let Kv be the standard maximal compact subgroup of Gv: for v < ∞, Kv = GLr(ov) for
v ≈ R, Kv = Or(R), and for v ≈ C, Kv = U(r).

A standard choice of non-degenerate character on NkUk\NAUA is

ψ(n · u) = ψ0(n12 + n23 + . . .+ nr−2,r−1) · ψ0(ur−1,r)

where ψ0 is a fixed non-trivial character on A/k. A cuspform f has a Fourier-Whittaker expansion along
NU

f(g) =
∑

ξ∈Nk\Hk

Wf (ξg) where Wf (g) =

∫
NkUk\NAUA

ψ(nu) f(nug) dn du

The Whittaker function Wf (g) factors over primes, and a careful normalization of this factorization is set
up below. Cuspforms F on H have corresponding Fourier-Whittaker expansions

F (h) =
∑

ξ∈N ′k\H
′
k

WF (ξh) where WF (g) =

∫
N ′k\N

′
A
ψ(n)F (nh) dn

where H ′ ≈ GLr−2 sits inside H as H sits inside G, N ′ = N ∩H ′, and ψ is restricted from NU to N . This
Whittaker function also factors WF =

⊗
vWF,v.
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At finite places v, given an irreducible admissible representation πv of Gv admitting a Whittaker model,
[Jacquet-PS-Shalika 1981] shows that there is an essentially unique effective vector W eff

πv , generalizing the
characterization of newform in [Casselman 1973], as follows. For πv spherical, W eff

πv is the usual unique
spherical Whittaker vector taking value 1 at the identity element of the group, as in [Shintani 1976],
[Casselman-Shalika 1980]. For non-spherical local representations, define effective vector as follows. Let

Uopp
v (`) = {

(
1r−1 0
x 1

)
: x = 0 mod p`}

Let KH
v ≈ GLr−1(ov) be the standard maximal compact of Hv. Define a congruence subgroup of Kv by

Kv(`) = KH
v · (Uv ∩Kv) · Uopp

v (`)

For a non-spherical Whittaker model πv there is a unique positive integer `v, the conductor of πv, such that
πv has no non-zero vectors fixed by Kv(`

′) for `′ < `v, and has a one-dimensional space of vectors fixed by
Kv(`v). The remaining ambiguous constant is completely specified by requiring that local Rankin-Selberg
integrals

Zv(s,W
eff
πv ×W

o
π′v

) =

∫
Nv\Hv

|detY |sW eff
πv

(
Y

1

)
W o
π′v

(Y ) dY

produce the correct local factors Lv(s, πv×π′v) of GLr×GLr−1 Rankin-Selberg L–functions for every spherical
representation π′v of the local GLr−1, with normalized spherical Whittaker vector W o

π′v
in π′v. That is,

Zv(s,W
eff
πv ×W

o
π′v

) = Lv(s, πv × π′v)

with no additional factor on the right-hand side. See Section 4 of [Jacquet-PS-Shalika 1983], and comments
below. Cuspidal automorphic representations π ≈

⊗′
v πv of GA admit local Whittaker models at all finite

places, so locally at all finite places have a unique effective vector.
Facts concerning archimedean local Rankin-Selberg integrals for GLm ×GLn for general m,n are more

complicated than the non-archimedean cases. See [Stade 2001], [Stade 2002], [Cogdell-PS 2003], as well as
the surveys [Cogdell 2002], [Cogdell 2003], [Cogdell 2004]. The spherical case for GLr×GLr−1 admits fairly
explicit treatment, but this is insufficient for our purposes. Fortunately, for us there is no compulsion to
attempt to specify the archimedean local data for Rankin-Selberg integrals. Indeed, the local archimedean
Rankin-Selberg integrals will be deformed into shapes essentially unrelated to the corresponding L-factor,
in any case. Thus, in the moment expansion in the theorem below we can use any systematic specification
of distinguished vectors eπv in irreducible representations πv of Gv, and eπ′v in π′v of Hv, for v archimedean.
For v|∞ and πv a Whittaker model representation of Gv with a spherical vector, let the distinguished vector
eπv be the spherical vector normalized to take value 1 at the identity element of the group. Similarly,
for π′v a Whittaker model representation of Hv with a spherical vector, let the distinguished vector eπ′v
be the normalized spherical vector. Anticipating that cuspforms generating spherical representations at
archimedean places make up the bulk of the space of automorphic forms, we do not give an explicit choice of
distinguished vector in other archimedean representations. Rather, we formulate the normalizations below,
and the moment expansion, in a fashion applicable to any choice of distinguished vectors in archimedean
representations.

Let π be an automorphic representation of GA, factoring over primes as π ≈
⊗′

v πv admitting a global
Whittaker model. Each local representation πv has a Whittaker model, since π has a global Whittaker
model. At each finite place v, let W eff

πv be the normalized effective vector, and eπv the distinguished vector
at v|∞. Let f ∈ π be a moderate-growth automorphic form on GA corresponding to a monomial tensor
in π, consisting of the effective vector at all finite primes, and the distinguished vector eπv at v|∞. Then
the global Whittaker function of f is a globally-determined constant multiple of the product of the local
functions:

Wf = ρf ·
⊗
v|∞

eπv ⊗
⊗
v<∞

W eff
πv

where ρf is a general analogue of the leading Fourier coefficient ρf (1) in the GL2(Q) theory.
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Let π′ be an automorphic representation of HA spherical at all finite primes, admitting a global
Whittaker model. Let π′ factor as j :

⊗′
v π
′
v → π′. Certainly each π′v admits a Whittaker model. At

each finite v, let W o
π′v

be the normalized spherical vector in π′v, and at archimedean v let eπ′v be the

distinguished vector. For a moderate-growth automorphic form F ∈ π′ corresponding to a monomial vector
in the factorization of π′, at all finite places corresponding to the spherical Whittaker function W o

π′v
, and to

the distinguished vector eπ′v at archimedean places, again specify a constant ρF by

WF = ρF ·
⊗
v|∞

eπ′v ⊗
⊗
v<∞

W o
π′v

When π′ occurs discretely in the space of L2 automorphic forms on H, each of the local factors of π′ is
unitarizable, and uniquely so up to a constant, by irreducibility. For an arbitrary vector ε = ε∞ in π′∞, let
F ε be the automorphic form corresponding to

⊗
v<∞W o

πv ⊗ ε by the isomorphism j. Define ρF ε by

WF ε = ρF ε ·
⊗
v<∞

W o
πv ⊗ ε

By Schur’s Lemma, the comparison of ρF and ρF ε depends only upon the comparison of archimedean data,
namely,

ρF ε

ρF
=

|ε|π′∞
| ⊗v|∞ eπ′v |π′∞

with Hilbert space norms on the representation π′∞ at archimedean places. The ambiguity of these norms
by a constant disappears in taking ratios.

Indeed, the global constants ρF and ρF ε can be compared by a similar device (and induction) for F and
Fε in any irreducible π′ occurring in the L2 automorphic spectral expansion for H. We do not do carry this
out explicitly, since this would require setting up normalizations for the full spectral decomposition, while
our main interest is in the cuspidal (hence, discrete) part.

With f cuspidal and F moderate growth, corresponding to distinguished vectors, as above, the Rankin-
Selberg zeta integral is the finite-prime Rankin-Selberg L–function, with global constants ρf and ρF , and with
archimedean local Rankin-Selberg zeta integrals depending upon the distinguished vectors at archimedean
places: ∫

Hk\HA
|detY |s− 1

2 F (Y ) f

(
Y

1

)
dY = ρf · ρF · L(s, π × π′) ·

∏
v|∞

Zv(s, eπv × eπ′v )

The finite-prime part of the Rankin-Selberg L–function appears regardless of the archimedean local data.
The global constants ρf and ρF do depend partly upon the local archimedean choices, but are global objects.

We need a spectral decomposition of part of L2(Hk\HA), as follows. Let KH
fin be the standard maximal

compact GLr−1(ô) of Hfin, where as usual ô is
∏
v<∞ ov, with ov the local integers at the finite place v of

k. First, there is the Hilbert direct-integral decomposition by characters ω on the central archimedean split
component Z+ of H: let

i : y −→ (y
1
d , . . . , y

1
d , 1, 1, . . .) (for y > 0, with d = [k : Q])

be the diagonal imbedding of the positive real numbers in the archimedean factors of the ideles of k. The
central archimedean split component is

Z+ = {j(y) =

 i(y)1/(r−1)

. . .

i(y)1/(r−1)

 ∈ HA : y > 0}

The point of our parametrization is that (with idele norms)

|det j(y)| = |i(y)| = y (with y > 0)

7
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The corresponding spectral decomposition is

L2(Hk\HA) ≈
∫ ⊕
R
L2(Z+Hk\HA, ωit) dt

where L2(Z+Hk\HA, ωit) is the isotypic component of functions Φ with |Φ| in L2(Z+Hk\HA) transforming
by

Φ(j(y) · h) = yit · Φ(h) (for y > 0 and h ∈ HA)

under Z+. The projections and spectral synthesis along Z+ can be written as

F (h) =

∫
R

(∫ ∞
0

F (j(y) · h) y−it
dy

y

)
dt

Each isotypic component L2(Z+Hk\HA, ωit) has a direct integral decomposition as a representation of
HA, of the form

L2(Z+Hk\HA, ωit) ≈
∫ ⊕

Ξ

π′ ⊗ | det |it dπ′

where Ξ is the set of irreducibles π′ occuring in L2(Z+Hk\HA, ω0). That is, the irreducibles for general
archimedean split-component character ωit differ merely by a determinant twist from the trivial split-
component character case. The measure is not described explicitly here, apart from the observation that the
discrete part of the decomposition, including the cuspidal part, has counting measure.

For our applications, we are concerned with the subspaces L2(Z+Hk\HA/K
H
fin, ω) of right KH

fin-invariant
functions. Since each π′ factors over primes as a restricted tensor product π′ ≈

⊗′
v π
′
v of irreducibles π′v of

the local points Hv, the decomposition of L2(Z+Hk\HA/K
H
fin, ω) only involves the subset Ξo consisting of

irreducibles π′ ∈ Ξ such that for every finite place v the local representation π′v is spherical. Let π′∞ be the
archimedean factor of π′, and π′fin the finite-place factor, so π′ ≈ π′∞ ⊗ π′fin. Let π

′o
fin be the one-dimensional

space of KH
fin-fixed vectors in π′fin. As a representation of the archimedean part H∞ of HA,

L2(Z+Hk\HA/K
H
fin, ωit) ≈

∫ ⊕
Ξo

(
π′∞ ⊗ π

′o
fin

)
⊗ | det |it dπ′

An automorphic spectral decomposition for F in L2(Z+Hk\HA/K
H
fin, ωit) can be written in the form

F =

∫
Ξo

∑
j

〈F,Φπ′j ⊗ | det |it〉 · Φπ′j ⊗ | det |it dπ′

where Ξo indexes spherical automorphic representations π′ with trivial archimedean split-component
character entering the spectral expansion, for each of these j indexes an orthonormal basis in the archimedean
component π′∞, and Φπ′j is the corresponding moderate-growth spherical automorphic form in the global
π′. The pairing is the natural one, namely,

〈F,Φπ′j ⊗ | det |it〉 =

∫
Hk\HA

F (h) Φπ′j(h) |deth|−it dh

3. Moment expansion
We define a Poincaré series P = Pz,ϕ∞ depending on archimedean data ϕ∞ and a complex equivariance

parameter z. With various simplifying choices of archimedean data ϕ∞ depending only on a complex
parameter w, the Poincaré series P = Pz,w is a function of the two complex parameters z, w. By design,

8
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for a cuspform f of conductor ` on G = GLr over a number field k, for any choice of data for the Poincaré
series sufficient for convergence, the integral ∫

ZAGk\GA
|f |2 ·P

is an integral moment of L–functions attached to f , in the sense that it is a sum and integral over a spectral
family, namely, a weighted average over spectral components with respect to L2(GLr−1(k)\GLr−1(A)).
Subsequently, we will obtain a spectral expansion of the more-simply parametrized Poincaré series P = Pz,w,
giving the meromorphic continuation of this integral in the complex parameters z, w.

For z ∈ C, let

ϕ =
⊗
v

ϕv

where z ∈ C specifies an equivariance property of ϕ, as follows. For v finite,

ϕv(g) =


∣∣(detA)/dr−1

∣∣z
v

(for g = mk with m =

(
A 0
0 d

)
in ZvHv and k ∈ Kv)

0 (otherwise)

For v archimedean require right Kv-invariance and left equivariance

ϕv(mg) =

∣∣∣∣detA

dr−1

∣∣∣∣z
v

· ϕv(g) (for g ∈ Gv, for m =

(
A 0
0 d

)
∈ ZvHv)

Thus, for v|∞, the further data determining ϕv consists of its values on Uv. A simple useful choice of
archimedean data parametrized by a single complex parameter w is

ϕv

(
1r−1 x

0 1

)
= (1 + |x1|2 + . . .+ |xr−1|2)−[kv:R]w/2 (where x =

 x1
...

xr−1

, and w ∈ C)

The norm |x1|2 + . . .+ |xr−1|2 is normalized to be invariant under Kv. Thus, ϕ is left ZAHk-invariant. We
attach to any such ϕ a Poincaré series

P(g) = Pϕ(g) =
∑

γ∈ZkHk\Gk

ϕ(γg)

3.1 Remark: There is an essentially unique choice of (parametrized) archimedean data ϕ∞ = ϕz,w,∞ such
that the associated Poincaré series at z = 0 has a functional equation (as in [Diaconu-Garrett-Goldfeld 2008]).
For instance, when G = GL3 over Q this choice is

ϕ∞

(
I2 u

1

)
= ϕ0,w,∞

(
I2 u

1

)
= 2−w

√
π

Γ(w2 )
(
1 + ||u||2

)−w2 F (w2 , w2 ;w; 1
1+||u||2

)
Γ(w+1

2 )
(for z = 0)

with F the usual hypergeometric function

F (α, β; γ;x) =
Γ(γ)

Γ(α)Γ(β)
·
∞∑
m=0

1

m!

Γ(α+m)Γ(β +m)

Γ(γ +m)
xm (for |x| < 1)

The functional equation of the Poincaré series P0,w(g) attached to this choice of ϕ = ϕw when z = 0 is: the
function

sin
(πw

2

)
P0,w(g) +

π ζ(w) ζ(2− w)

2 (1− w)π
1
2−w Γ(w − 1

2 ) ζ(2w − 1)
· E1,1,1

(
g,
w

3
, 1− 2w

3

)
9
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is invariant as w → 2 − w, where E1,1,1(g, s1, s2) = E1,1,1
s1,s2(g) is the minimal parabolic Eisenstein series.

After our discussion of the spectral expansion of the Poincaré series, we give a general prescription for
archimedean data producing Poincaré series admitting a functional equation: with suitable archimedean
data, the functional equation is visible from the spectral expansion.

With subscripts ∞ denoting the archimedean parts of various objects, for h,m ∈ H∞, define

K(h,m) = Kϕ∞(h,m) =

∫
U∞

ϕ∞(u)ψ∞(huh−1)ψ∞(mum−1) du

Let π ≈ ⊗′πv be a cuspidal automorphic representation of G, with finite set S of finite primes such that
πv is spherical for finite v 6∈ S, and πv has conductor `v for v ∈ S. We say a cuspform f in π is a newform
if it is spherical at finite v 6∈ S and is right Kv(`v)-fixed for v ∈ S. As above, the global Whittaker function
Wf of f factors as

Wf = ρf ·
⊗
v<∞

W eff
πv ⊗

⊗
v|∞

eπv

Let eπ∞ = ⊗v|∞eπv . Let π′ be an automorphic representation of H admitting a global Whittaker
model, with unitarizable archimedean factor π′∞, with orthonormal basis επ′j for π′∞. Recalling that
K(h,m) = Kz,ϕ∞(h,m) depends on the parameter z and the data ϕ∞, the gamma factors appearing in
the moment expansion below are

Γ(eπ∞ , π
′
∞, s) = Γz,ϕ∞(eπ∞ , π

′
∞, s)

=
∑
j

∫
N∞\H∞

∫
N∞\H∞

∫
K∞

eπ∞(hk)επ′j(h)|deth|z+s− 1
2 eπ∞(mk)επ′j(m)|detm| 12−sK(h,m) dmdhdk

The sum over the orthonormal basis for π′∞ is simply an expression for a projection operator, so is necessarily
independent of the orthonormal basis indexed by j. Thus, the sum indeed depends only on the archimedean
Whittaker model π′∞.

For each automorphic representation π′ of H occurring (continuously or discretely) in the automorphic
spectral expansion for H, and admitting a global Whittaker model, and spherical at all finite primes, let Fπ′

be an automorphic form in π′ corresponding to the spherical vector at all finite places and to the distinguished
vector eπ′∞ in the archimedean part.

3.2 Theorem: Let f be a cuspform, as just above. For Re(z)� 1 and Re(w)� 1, we have the moment
expansion∫

ZAGk\GA
|f |2 ·P = |ρf |2

∫
Ξo
|ρFπ′ |

2

∫
R
L( 1

2 + it+ z, π ⊗ π′)L( 1
2 − it, π ⊗ π

′) Γ(eπ∞ , π
′
∞,

1
2 + it) dt dπ′

Proof: The typical first unwinding is∫
ZAGk\GA

P(g) |f(g)|2 dg =

∫
ZAHk\GA

ϕ(g) |f(g)|2 dg

Express f in its Fourier-Whittaker expansion, and unwind further:∫
ZAHk\GA

ϕ(g)
∑

η∈Nk\Hk

Wf (ηg) f(g) dg =

∫
ZANk\GA

ϕ(g)Wf (g) f(g) dg

Use an Iwasawa decomposition G = (HZ)UK everywhere locally to rewrite the whole integral as∫
Nk\HA×UA×KA

ϕ(huk)Wf (huk) f(huk) dh du dk

10
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At finite primes v 6∈ S, the right integral over Kv can be dropped, since all the functions in the integrand are
right Kv-invariant. At finite primes v ∈ S, using the newform assumption on f , the one-dimensionality of
the Kv(`v)-fixed vectors in πv implies that the Kv-type in which the effective vector lies is irreducible. Thus,
by Schur orthogonality and inner product formulas, a diagonal integral of f(xkv) · f(ykv) over kv ∈ Kv is
a positive constant multiple of f(x)f(y), for all x, y ∈ GA. Thus, the integrals over Kv for v finite can be
dropped entirely, and, up to a positive constant depending only upon the right Kv-type of f at v ∈ S, the
whole integral is ∫

Nk\HA×UA×K∞
ϕ(huk)Wf (huk) f(huk) dh du dk

Since f is left Hk-invariant, it decomposes along Hk\HA. The function h → f(huk) with u ∈ UA and
k ∈ K∞ is right KH

fin-invariant. Thus, f decomposes as

f(huk) =

∫
R

∫
Ξo

∑
j

Φπ′j(h) |deth|it
∫
Hk\HA

Φπ′j(m)|detm|−itf(muk) dm dπ′ dt

Unwind the Fourier-Whittaker expansion of f

f(huk) =

∫
Ξo

∑
j

Φπ′j(h)|deth|it
∫
Hk\HA

Φπ′j(m) |detm|−it
∑

η∈Nk\Hk

W f (ηmuk) dmdk dπ′

=

∫
Ξo

Φπ′j(h) |deth|it
∫
Nk\HA

Φπ′j(m) |detm|−itW f (muk) dmdk dπ′

Then the whole integral is ∫
ZAGk\GA

P(g) |f(g)|2 dg

=

∫
R

∫
Ξo

∑
j

∫
Nk\HA

∫
UA

∫
K∞

ϕ(huk)Φπ′j(h)|deth|itWf (huk)

∫
Nk\HA

W f (muk)Φπ′j(m)|detm|−itdmdhdu dk dπ′ dt

The part of the integrand that depends upon u ∈ U is∫
UA

ϕ(huk)Wf (huk)W f (muk) du = ϕ(h)Wf (hk)W f (mk) ·
∫
UA

ϕ(u)ψ(huh−1)ψ(mum−1) du

The latter integrand and integral visibly factor over primes. We need the following:

3.3 Lemma: Let v be a finite prime. For h,m ∈ Hv such that W eff
πv (h) 6= 0 and W eff

πv (m) 6= 0,∫
Uv

ϕv(h)ψv(huh
−1)ψv(mum

−1) du =

∫
Uv∩Kv

1 du

Proof: At a finite place v, ϕv(u) 6= 0 if and only if u ∈ Uv ∩Kv, and for such u

ψv(huh
−1) ·Wπv (h) = W eff

πv (huh−1 · h) = W eff
πv (hu) = W eff

πv (h) · 1

by the right Uv ∩ Kv-invariance, since f is a newform, in our present sense. Thus, for W eff
πv (h) 6= 0,

ψv(huh
−1) = 1, and similarly for ψv(mum

−1). Thus, the finite-prime part of the integral over Uv is just the
integral of 1 over Uv ∩Kv, as indicated. ///

Returning to the proof of the theorem, the archimedean part of the integral does not behave as the
previous lemma indicates the finite-prime components do, because of its non-trivial deformation by ϕ∞.
Thus, with subscripts ∞ denoting the infinite-adele part of various objects, for h,m ∈ H∞, as above, let

K(h,m) =

∫
U∞

ϕ∞(u)ψ∞(huh−1)ψ∞(mum−1) du

11
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The whole integral is ∫
ZAGk\GA

P(g) |f(g)|2 dg

=

∫
R

∫
Ξo

∑
j

∫
K∞

∫
Nk\HA

∫
Nk\HA

K(h,m)ϕ(h)Wf (hk)Φπ′j(h)|deth|itW f (mk)Φπ′j(m)|detm|−itdmdhdπ′ dk dt

Normalize the volume of Nk\NA to 1. For a left Nk-invariant function Φ on HA, using the left NA-
equivariance of W by ψ, and the left NA-invariance of ϕ,∫

Nk\NA
ϕ(nh) Φ(nh)Wf (nhk) dn = ϕ(h)Wf (h)

∫
Nk\NA

ψ(n) Φ(nh) dn = ϕ(h)Wf (hk)WΦ(h)

where

WΦ(h) =

∫
Nk\NA

ψ(n) Φ(nh) dn

(The integral is not against ψ(n), but ψ(n).) That is, the integral over Nk\HA is equal to an integral against
(up to an alteration of the character) the Whittaker function WΦ of Φ, which factors over primes for suitable
Φ. Thus, the whole integral is ∫

ZAGk\GA
P(g) |f(g)|2 dg

=

∫
R

∫
Ξo

∑
j

∫
NA\HA

∫
NA\HA

∫
K∞

K(h,m)Wf (hk)WΦπ′j(h)|deth|itW f (mk)WΦπ′j(m)|detm|−itdmdhdπ′ dk dt

For fixed π′, j, t, the integral over m,h, k is a product of two Euler products, since the Whittaker functions
factor over primes, normalized by global constants ρf and ρΦπ′j . The functions {Φπ′,j : j} correspond to
an orthonormal basis {επ′j} in the local archimedean part π′∞ of π′, so, as noted earlier, by Schur’s lemma
the global constant ρΦπ′j is independent of j. For each π′, let Fπ′ be the finite-prime spherical automorphic
form corresponding to distinguished vectors at archimedean places. The Φπ′j ’s are normalized spherical at
all finite places. Thus, for each π′ and j,∫

NA\HA

∫
NA\HA

∫
K∞

ϕ(h)Wf (hk)WΦπ′j(h)|deth|itW f (mk)WΦπ′j(m)|detm|−itdmdhdk

= |ρf |2 · |ρFπ′ |
2 · L( 1

2 + it+ z, π × π′)L( 1
2 − it, π × π

′)

×
∫

N∞\H∞

∫
N∞\H∞

∫
K∞

∫
K∞

eπ∞(huk)επ′j(h)|deth|itεπ′j(m)eπ∞(muk)|detm|−itdmdhdk

This gives the assertion of the theorem. ///

3.4 Remark: Automorphic forms not admitting Whittaker models do not enter this expansion.

4. Spectral expansion of Poincaré series
The Poincaré series admits a spectral expansion facilitating its meromorphic continuation. The only

cuspidal data appearing in this expansion is from GL2, right Kv-invariant everywhere locally.
In the Poincaré series P, let ϕ∞ be the archimedean data, and z, w the two complex parameters. For a

spherical GL2 cuspform F , let

Φs,F
((A ∗

0 D

)
· θ
)

= |detA|2s · | detD|−(r−2)s · F (D) (where θ ∈ KA)

12
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and define an Eisenstein series
Er−2,2
s,F (g) =

∑
γ∈P r−2,2

k \Gk

Φs,F (γ · g)

Also, for a Hecke character χ, with

Φs1,s2,s3,χ(

A ∗ ∗
0 m2 ∗
0 0 m3

 · θ) = |detA|s1 · |m2|s2χ(m2) · |m3|s3χ(m3) (for θ ∈ KA, A ∈ GLr−2)

define an Eisenstein series
Er−2,1,1
s1,s2,s3,χ(g) =

∑
γ∈P r−2,1,1

k \Gk

Φs1,s2,s3,χ(γg)

4.1 Theorem: With Eisenstein series as just above, the Poincaré series P has a spectral expansion

P =
(∫

N∞

ϕ∞

)
Er−1,1
z+1 +

∑
F

(∫
PGL2(k∞

ϕ̃∞WF,∞

)
· ρF · L( rz+r−2

2 + 1
2 , πF ) · Er−2,2

z+1
2 ,F

+
∑
χ

χ(d)

4πiκ

∫
Re(s)= 1

2

( ( ∫
PGL2(k∞)

ϕ̃∞ ·WE1−s,χ,∞

)

×
L( rz+r−2

2 + 1− s, χ) · L( rz+r−2
2 + s, χ)

Λ(2− 2s, χ2)
· |d|−(

rz+r−2
2 + s− 1

2 ) · Er−2,1,1

z+1,s− (r−2)(z+1)
2 ,−s− (r−2)(z+1)

2 ,χ

)
ds

where F runs over an orthonormal basis for everywhere-spherical cuspforms for GL2, ρF is the GL2 leading
Fourier coefficient of F , χ runs over unramified grossencharacters, d is the differental ideal of k, κ is the
residue of ζk(s) at s = 1, WF,∞ and WEs,χ are the normalized archimedean Whittaker functions for GL2,

πF is the representation generated by F , L(s, χ) is the usual grossencharacter L–function, and Λ(s, χ) is the
grossencharacter L–function with its gamma factor.

4.2 Remark: Notably, the spectral expansion of P contains nothing beyond the main term, the cuspidal
GL2 part induced up to GLr, and the continuous GL2 part induced up to GLr.

Proof: Rewrite the Poincaré series as summed in two stages, and apply Poisson summation, namely

P(g) =
∑

ZkHk\Gk

ϕ(γg) =
∑

ZkHkUk\Gk

∑
β∈Uk

ϕ(βγg) =
∑

ZkHkUk\Gk

∑
ψ∈(Uk\UA )̂

ϕ̂γg(ψ)

where

ϕ̂g(ψ) =

∫
UA

ψ(u)ϕ(ug) du (for g ∈ GA)

The inner summand for ψ trivial gives the leading term in the spectral expansion of the Poincaré
series. Specifically, it gives a vector from which a degenerate Eisenstein series for the (r − 1, 1) parabolic
P r−1,1 = ZHU is formed by the outer sum. That is,

g →
∫
UA

ϕ(ug) du

is left equivariant by a character on P r−1,1
A , and is left invariant by P r−1,1

k , namely,∫
UA

ϕ(upg) du =

∫
UA

ϕ(p · p−1up · g) du = δP r−1,1(m) ·
∫
UA

ϕ(m · u · g) du

=

∣∣∣∣detA

dr−1

∣∣∣∣z+1 ∫
UA

ϕ(ug) du (where p =

(
A ∗
0 d

)
, m =

(
A 0
0 d

)
, A ∈ GLr−1)
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The normalization is explicated by setting g = 1:∫
UA

ϕ(u) du =

∫
U∞

ϕ∞ ·
∫
Ufin

ϕfin =

∫
U∞

ϕ∞ ·meas (Ufin ∩Kfin) =

∫
U∞

ϕ∞

A natural normalization is that this be 1, so the Eisenstein series includes the archimedean integral and
finite-prime measure constant as factors:∫

U∞

ϕ∞ · Er−1,1
z+1 (g) =

∑
γ∈P r−1,1

k \Gk

(∫
UA

ϕ(uγg) du

)

The group Hk is transitive on non-trivial characters of Uk\UA. For fixed non-trivial character ψ0 on
k\A, let

ψξ(u) = ψ0(ξ · ur−1,r) (for ξ ∈ k×)

The spectral expansion of P with its leading term removed is

∑
γ∈P r−1,1

k \Gk

∑
α∈P r−2,1

k \Hk

∑
ξ∈k×

ϕ̂αγg(ψ
ξ)


where P r−2,1 is the corresponding parabolic subgroup of H ≈ GLr−1. Let

U ′ = {

 1r−2 ∗
1

1

} U ′′ = {

 1r−2

1 ∗
1

}
Let

Θ = {

 1r−2

∗ ∗
∗ ∗

} ≈ GL2

Regrouping the sums, the expansion of the Poincaré series with its leading term removed is

∑
γ∈P r−2,1,1

k \Gk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′)

∫
U ′A

ϕ(u′u′′γg) du′ du′′



=
∑

γ∈P r−2,2
k \Gk

∑
α∈P 1,1\Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′)

∫
U ′A

ϕ(u′u′′αγg) du′ du′′


Letting

ϕ̃(g) =

∫
U ′A

ϕ(u′g) du′

the expansion becomes ∑
γ∈P r−2,2

k \Gk

∑
α∈P 1,1\Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′αγg) du′′

We claim the equivariance

ϕ̃(pg) = |detA|z+1 · |a|z · |d|−(r−1)z−(r−2) · ϕ̃(g) (for p =

A ∗ ∗
a

d

 ∈ GA, with A ∈ GLr−2)
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This is verified by changing variables in the defining integral: let x ∈ Ar−2 and compute 1r−2 x
1

1

A b c
a

d

 =

A b c+ xd
a

d

 =

A b c
a

d

 1r−2 A−1xd
1

1


Thus, |detA|z · |a|z · |d|−(r−1)z comes out of the definition of ϕ, and another |detA| · |d|2−r from the change-
of-measure in the change of variables replacing x by Ax/d in the integral defining ϕ̃ from ϕ. Note that

|a|z · |d|−(r−1)z−(r−2) = |det

(
a

d

)
|−

(r−2)
2 ·(z+1) · |a/d|

rz+(r−2)
2

Thus, letting

Φ(g) =
∑

α∈P 1,1
k \Θk

( ∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′αg) du′′

)
we can write

P(g) −
∑

γ∈P r−1,1
k \Gk

∫
UA

ϕ(uγg) du =
∑

γ∈P r−2,2
k \Gk

Φ(γg)

The right-hand side of the latter equality is not an Eisenstein series for P r−2,2 in the strictest sense.
Define a GL2 kernel ϕ(2) for a Poincaré series as follows. As in the general case, we require right

invariance by the maximal compact subgroups locally everywhere, and left equivariance

ϕ(2)(

(
a ∗

d

)
·D) = |a/d|β · ϕ(2)(D)

The remaining ambiguity is the archimedean data ϕ
(2)
∞ , completely specified by giving its values on the

archimedean part of the standard unipotent radical, namely,

ϕ(2)
∞

(
1 x

1

)
= ϕ̃

 1r−2

1 x
1

 (ϕ̃ as above)

Let U1,1 be the unipotent radical of the standard parabolic P 1,1 in GL2. Express ϕ(2) in its Fourier expansion
along U1,1, and remove the constant term: let

ϕ∗(β,D) = ϕ(2)(β,D)−
∫
U1,1

A
ϕ(2)(β, uD) du =

∑
ξ∈k×

∫
U1,1

A
ψ
ξ
(u)ϕ(2)(β, uD) du

The corresponding GL2 Poincaré series with leading term removed is

Q(β,D) =
∑

α∈P 1,1
k \GL2(k)

ϕ∗(β, αD)

Thus, for

g =

(
A ∗

D

)
(with A ∈ GLr−2(A) and D ∈ GL2(A))

the inner integral

g →
∫
U ′′A

ψ(u′′) ϕ̃(u′′g) du′′

15
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is expressible in terms of the kernel ϕ∗ for Q, namely,∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′g) du′′ = |detA|z+1 · | detD|−

(r−2)
2 ·(z+1) · ϕ∗

(
rz+r−2

2 , D
)

Thus, ∑
α∈P 1,1

k \Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′αg) du′′ = |detA|z+1 · | detD|−

(r−2)
2 ·(z+1) ·Q

(
rz+r−2

2 , D
)

Thus, letting

Φ

(
A ∗

D

)
= |detA|z+1 · | detD|− (r−2)· z+1

2 ·Q( rz+r−2
2 , D) (with A ∈ GLr−2 and D ∈ GL2)

we have

P(g) =
(∫

U∞

ϕ∞

)
· Er1,1z+1(g) +

∑
γ∈P r−2,2

k \Gk

Φ(γg)

To obtain a spectral decomposition of the Poincaré series P for GLr, we first recall from [Diaconu-
Garrett 2009] the spectral decomposition of Q for r = 2, and then form P r−2,2 Eisenstein series from
the spectral fragments.

As in [Diaconu-Garrett 2009], a direct computation shows that the spectral expansion of the GL2

Poincaré series with constant term removed is

Q(β,D) =
∑
F

(∫
PGL2(k∞ )̃

ϕ∞ ·WF,∞

)
· ρF · L(β + 1

2 , πF ) · F

+
∑
χ

χ(d)

4πiκ

∫
Re(s)= 1

2

(∫
PGL2(k∞)

ϕ̃∞ ·WE1−s,χ,∞

)
L(β + 1− s, χ) · L(β + s, χ)

L(2− 2s, χ2)
· |d|−(β+s−1/2) · Es,χ(D) ds

where F runs over an orthonormal basis of everywhere-spherical cuspforms, ρF is the general GL2 analogue
of the leading Fourier coefficient, πF is the cuspidal automorphic representation generated by F , WF,∞ and
WEs,χ,∞ are the normalized spherical vectors in the corresponding archimedean Whittaker models, Λ(s, χ) is
the standard L–function completed by adding the archimedean factors, and d is the differental idele. Thus,
the individual spectral components of Φ are of the form

Φ z+1
2 ,Ψ

((A ∗
0 D

)
· θ
)

= (constant) · | detA|z+1 · | detD|−(r−2) z+1
2 ·Ψ(D) (where θ ∈ KA)

where Ψ is either a spherical GL2 cuspform or a spherical GL2 Eisenstein series, in either case with trivial
central character.

For Ψ a spherical GL2 cuspform F averaging over P r−2,2
k \Gk produces a half-degenerate Eisenstein

series
Er−2,2
z+1

2 ,F
(g) =

∑
γ∈P r−2,2

k \Gk

Φ z+1
2 ,F (γ · g)

As in the appendix, the half-degenerate Eisenstein series Er−2,2
s,F has no poles in Re(s) ≥ 1/2. With

s = (z + 1)/2 this assures absence of poles in Re(z) ≥ 0.
The continuous spectrum part of Q produces degenerate Eisenstein series on G, as follows. With

Ψ = Es,χ the usual spherical, trivial central character, Eisenstein series for GL2, define an Eisenstein series

Er−2,2
z+1

2 ,Es,χ
(g) =

∑
γ∈P r−2,2

k \Gk

Φ z+1
2 ,Es,χ

(γg)

16
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As usual, for Re(s)� 0 and Re(z)� 0, this iterated formation of Eisenstein series is equal to a single-step
Eisenstein series. That is, let

Φs1,s2,s3,χ(

A ∗ ∗
0 m2 ∗
0 0 m3

 · θ) = |detA|s1 · |m2|s2χ(m2) · |m3|s3χ(m3) (for θ ∈ KA, A ∈ GLr−2)

and
Er−2,1,1
s1,s2,s3,χ(g) =

∑
γ∈P r−2,1,1

k \Gk

Φs1,s2,s3,χ(γg)

Taking s1 = 2 · z+1
2 , s2 = s− (r−2)(z+1)

2 , and s3 = −s− (r−2)(z+1)
2 ,

Er−2,2
z+1

2 ,Es,χ
= Er−2,1,1

z+1,s− (r−2)(z+1)
2 ,−s− (r−2)(z+1)

2 ,χ

Adding up these spectral components yields the spectral expansion of the Poincaré series. ///

4.3 Remark: Suitable archimedean data to give the Poincaré series a functional equation is best described
in the context of the spectral expansion, and, due to the form of the spectral expansion, essentially reduces
to GL2. It is useful to describe the data via a differential equation, since this explains the outcome of the
computation more transparently. Since each archimedean place affords its own opportunity for data choices,
we simplify this aspect of the situation by taking groundfield k = Q.

First, for G = GL2(Q), let ∆ be the usual invariant Laplacian on the upper half-plane H, and consider
the partial differential equations

(∆− s(s− 1))ν uβs,ν = the distribution f →
∫ ∞

0

yβ · f
(
y 0
0 1

)
dy

y
(1 ≤ ν ∈ Z and s, β ∈ C)

on H. Further, require that uβs,ν have the same equivariance as the target distribution, namely,

uβs,ν(t · z) = tβ · uβs,ν(z) (for t > 0 and z ∈ H)

Then uβs,ν(x+ iy) = yβ ·ϕβs,ν(x/y) for a function ϕβs,ν on R satisfying the corresponding differential equation

(
(1 + x2)

∂2

∂x2
+ 2x(1− β)

∂

∂x
+
(
β(β − 1)− s(s− 1)

))ν
f = δ (with Dirac δ at 0)

The generalized function δ is in the L2 Sobolev space on R with index − 1
2 − ε for every ε > 0. By elliptic

regularity, solutions f to this differential equation are in the local Sobolev space with index 2ν − 1
2 − ε, and

by Sobolev’s lemma are locally at least C2ν−1−2ε ⊂ C2ν−2. That is, by increasing ν solutions are made as
differentiable as desired, and their Fourier transforms will have corresponding decay, giving convergence of
the Poincaré series (for suitable s, β), as in [Diaconu-Garrett 2009].

The spectral expansion of the GL2 Poincaré series Pβ
s,ν formed with this archimedean data ϕβs,ν is

special case of the computation in [Diaconu-Garrett 2009], recalled above, but in fact gives a much simpler
outcome. For example, the cuspidal components are directly computed by unwinding, integrating by parts,
and applying the characterization of ϕβs,ν by the differential equation:

〈Pβ
s,ν , F 〉 =

ρF (1) · Λ(β + 1
2 , F )(

sF (sF − 1)− s(s− 1)
)ν (where ∆F = sF (sF − 1))

where Λ(·, F ) is the L-function completed with its gamma factors. Thus,

Pβ
s,ν =

∑
F

ρF (1) · Λ(β + 1
2 , F ) · F(

sF (sF − 1)− s(s− 1)
)ν + (non-cuspidal)

17
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summing over an orthonormal basis of cuspforms F . Granting convergence for ν sufficiently large and
Re(s),Re(β) large, the cuspidal part has a meromorphic continuation in s with poles at the values sF , as
expected. Visibly, the cuspidal part of Pβ

s,ν is invariant under s↔ 1− s, and in these coordinates the map

β → −β maps F to F (whether or not F is self-contragredient).
The leading term of the spectral expansion of Pβ

s,ν , via Poisson summation, is a constant multiple

Cβs,ν · Eβ+1 of the spherical Eisenstein series Eβ+1. This happens regardless of the precise choice of
archimedean data, simply due to the homogeneity we have required of the archimedean data throughout.

Similarly, the continuous part of this Poincaré series on GL2 is

1

4πi

∫
Re(se)=

1
2

ξ(β + se) ξ(β + 1− se) · Ese
ξ(2se) ·

(
(se(se − 1)− s(s− 1)

)ν dse
where ξ is the ζ-function completed with its gamma factor. In analogy with the cuspidal discussion, the
product ξ(β + se) · ξ(β + 1− se) is invariant under β → −β, since ξ(1− z) = ξ(z). The visual symmetry in
s↔ 1−s is slightly deceiving, since the meromorphic continuation (in s) through the critical line Re(se) = 1

2
(over which the Eisenstein series is integrated) introduces extra terms from residues at se = s and se = 1−s.
Indeed, parts of these extra terms cancel a pole in the leading term Cβs,ν ·Eβ+1 at β = 0. Despite this subtlety
in the continuous spectrum, the special choice of archimedean data makes meromorphic continuation in s, β
visible.

In summary, for GL2(Q), the special choice of archimedean data makes the cuspidal part of the Poincaré
series have a visible meromorphic continuation, and satisfy obvious functional equations. The continuous
part of the Poincaré series satisfies functional equations modulo explicit leftover terms.

The ideal choice of archimedean data ϕ∞ for the Poincaré series for GLr(Q) is such that the averaged
version of it, denoted ϕ̃∞ in the proof above, restricts to the function ϕβs,ν for GL2 just discussed: we want

∫
Rr−2

ϕ∞

 1r−2 0 u
0 1 x
0 0 1

 du = ϕ̃∞

 1r−2 0 0
0 1 x
0 0 1

 = ϕβs,ν(x) (for x ∈ R)

It is not obvious that, given a reasonable (even) function f on R, there is a rotationally symmetric function
u on Rr−2 such that∫

Rr−2

u(y + xer−1) dy = f(x) (ei the standard basis for Rr−1)

with Rr−2 sitting in the first r−2 coordinates in Rr−1. Fourier inversion clarifies this, as follows. Supposing
the integral identity just above holds, integrate further in the (r−1)th coordinate x, against e2πiξx, to obtain

û(ξer−1) = f̂(ξ) (for ξ ∈ R)

where the Fourier transform on the left-hand side is on Rr−1, on the right-hand side is on R. For u rotationally
invariant, û is also rotationally invariant, and the latter equality can be rewritten as

û(ξ) = f̂(|ξ|) (for ξ ∈ Rr−1)

By Fourier inversion,

u(x) =

∫
Rr−1

e2πi〈ξ,x〉 f̂(|ξ|) dξ (for x ∈ Rr−1)

That is, given an even function f on R, the latter formula yields a rotationally invariant function on Rr−1,
whose averages along Rr−2 are the given f . This proves existence of an essentially unique ϕ∞ yielding the
prescribed ϕβs,ν .

Then the functional equation of the most-cuspidal part of the special-data Poincaré series on GLr is
inherited from the functional equation of the cuspidal part of the special-data Poincaré series on GL2.
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5. Appendix: half-degenerate Eisenstein series
Take q > 1, and let f be a cuspform on GLq(A), in the strong sense that f is in L2(GLq(k)\GLq(A)1),

and f meets the Gelfand-Fomin-Graev conditions∫
Nk\NA

f(ng) dn = 0 (for almost all g)

and f generates an irreducible representation of GLq(kv) locally at all places v of k. For a Schwartz function
Φ on Aq×r and Hecke character χ, let

ϕ(g) = ϕχ,f,Φ(g) = χ(det g)q
∫
GLq(A)

f(h−1)χ(deth)r Φ(h · [0q×(r−q) 1q] · g) dh

This function ϕ has the same central character as f . It is left invariant by the adele points of the unipotent
radical

N = {
(

1r−q ∗
1r

)
} (unipotent radical of P = P r−q,q)

The function ϕ is left invariant under the k-rational points Mk of the standard Levi component of P ,

M = {
(
a

d

)
: a ∈ GLr−q, d ∈ GLr}

To understand the normalization, observe that

ξ(χr, f,Φ(0, ∗)) = ϕ(1) =

∫
GLq(A)

f(h−1)χ(deth)r Φ(h · [0q×(r−q) 1q]) dh

is a zeta integral as in [Godement-Jacquet 1972] for the standard L–function attached to the cuspform f .
Thus, the Eisenstein series formed from ϕ includes this zeta integral as a factor, so write

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g) =
∑

γ∈Pk\GLr(k)

ϕ(γ g) (convergent for Re(χ)� 1)

The meromorphic continuation follows by Poisson summation:

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g)

= χ(det g)q
∑

γ∈Pk\GLr(k)

∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

α∈GLq(k)

Φ(h−1 · [0 α] · g) dh

= χ(det g)q
∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

y∈kq×r, full rank

Φ(h−1 · y · g) dh

The Gelfand-Fomin-Graev condition on f fits the full-rank constraint. Anticipating that we can drop the
rank condition suggests that we define

ΘΦ(h, g) =
∑

y∈kq×r
Φ(h−1 · y · g)

As in [Godement-Jacquet 1972], the non-full-rank terms integrate to 0:

5.1 Proposition: For f a cuspform, less-than-full-rank terms integrate to 0, that is,∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

y∈kq×r, rank <q

Φ(h−1 · y · g) dh = 0
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Proof: Since this is asserted for arbitrary Schwartz functions Φ, we can take g = 1. By linear algebra, given
y0 ∈ kq×r of rank `, there is α ∈ GLq(k) such that

α · y0 =

(
y`×r

0(q−`)×r

)
(with `-by-r block y`×r of rank `)

Thus, without loss of generality fix y0 of the latter shape. Let Y be the orbit of y0 under left multiplication
by the rational points of the parabolic

P `,q−` = {
(
`-by-` ∗

0 (q − `)-by-(q − `)

)
} ⊂ GLq

This is some set of matrices of the same shape as y0. Then the subsum over GLq(k) · y0 is∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

y∈GLq(k)·y0

Φ(h−1 · y) dh =

∫
P `,q−`k \GLq(A)

f(h)χ(deth)−r
∑
y∈Y

Φ(h−1 · y) dh

Let N and M be the unipotent radical and standard Levi component of P `,q−`,

N =

(
1` ∗
0 1q−`

)
M =

(
`-by-` 0

0 (q − `)-by-(q − `)

)
Then the integral can be rewritten as an iterated integral∫

NkMk\GLq(A)

f(h)χ(deth)−r
∑
y∈Y

Φ(h−1 · y) dh

=

∫
NAMk\GLq(A)

∑
y∈Y

∫
Nk\NA

f(nh)χ(detnh)−r Φ((nh)−1 · y) dn dh

=

∫
NAMk\GLq(A)

∑
y∈Y

χ(deth)−r Φ(h−1 · y)

(∫
Nk\NA

f(nh) dn

)
dh

since all fragments but f(nh) in the integrand are left invariant by NA. The inner integral of f(nh) is 0, by
the Gelfand-Fomin-Graev condition, so the whole is 0. ///

Let ι denote the transpose-inverse involution. Poisson summation gives

ΘΦ(h, g) =
∑

y∈kq×r
Φ(h−1 · y · g)

= |det(h−1)ι|r |det gι|q
∑

y∈kq×r
Φ̂((hι)−1 · y · gι) = |det(h−1)ι|r |det gι|q ΘΦ̂(hι, gι)

As with ΘΦ, the lower-rank summands in ΘΦ̂ integrate to 0 against cuspforms. Thus, letting

GL+
q = {h ∈ GLq(A) : |deth| ≥ 1} GL−q = {h ∈ GLq(A) : |deth| ≤ 1}

we have

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g) = χ(det g)q
∫
GLq(k)\GLq(A)

f(h)χ(deth)−r ΘΦ(h, g) dh

= χ(det g)q
∫
GLq(k)\GL+

q

f(h)χ(deth)−r ΘΦ(h, g) dh+ χ(det g)q
∫
GLq(k)\GL−q

f(h)χ(deth)−r ΘΦ(h, g) dh

= χ(det g)q
∫
GLq(k)\GL+

q

f(h)χ(deth)−r ΘΦ(h, g) dh
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+ χ(det g)q
∫
GLq(k)\GL−q

|det(h−1)ι|r |det gι|q f(h)χ(deth)−r ΘΦ̂(hι, gι) dh

By replacing h by hι in the second integral, convert it to an integral over GLq(k)\GL+
q , and the whole is

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g) = χ(det g)q
∫
GLq(k)\GL+

q

f(h)χ(deth)−r ΘΦ(h, g) dh

+ χ−1(det gι)q
∫
GLq(k)\GL+

q

f(hι) νχ−1(dethι)−r ΘΦ̂(h, gι) dh

Since f ◦ ι is a cuspform, the second integral is entire in χ. Thus, we have proven

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ is entire
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