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Introduction

We exhibit elementary kernels P which produce sums of integral moments for cuspforms f on GLr by∫
ZAGLr(k)\GLr(A)

P · |f |2 =
∑

F on GLr−1

∫
Re(s)= 1

2

|L(s, f ⊗ F )|2

〈F, F 〉
M(s) ds + (continuous part)

over number fields k, with certain weights M(s). Here F runs over an orthogonal basis for cuspforms
on GLr−1. There are further continuous-spectrum terms analogous to the discrete-spectrum sum over
cuspforms. The kernel (Poincaré series) P admits a spectral decomposition, surprisingly consisting of only
three parts: a leading term, a sum arising from cuspforms on GL2, and a continuous part from GL2. That
is, no cuspforms on GL` with 2 < ` ≤ r contribute. This spectral decomposition makes possible the
meromorphic continuation of P in auxiliary parameters.

Moments of level-one holomorphic elliptic modular forms were treated in [Good 1983] and [Good 1986],
the latter using an idea that is a precursor of part of the present approach. Level-one waveforms over Q
appear in [Diaconu-Goldfeld 2006a], over Q(i) in [Diaconu-Goldfeld 2006b]. Arbitrary level, groundfield, and
∞-type for GL2 are in [Diaconu-Garrett 2009a] and [Diaconu-Garrett 2009b].

We do have in mind application not only to cuspforms, but also to truncated Eisenstein series (with
cuspidal data) or wave packets of Eisenstein series, giving a non-trivial application of harmonic analysis
on larger groups GLr to L-functions attached to smaller groups, for example, on GL1, giving high integral
moments of ζk(s).

For context, we review the [Diaconu-Goldfeld 2006a] treatment of spherical waveforms f for GL2(Q).
In that case, the sum of moments is a single term∫

ZAGL2(Q)\GL2(A)

P(g) |f(g)|2 dg =
1

2πi

∫
Re(s)= 1

2

L(s′ + s, f) · L(s, f) · Γ(s, s′, s′′, f∞) ds

where Γ(s, s′, s′′, f∞) is a ratios of products of gammas, with arguments depending upon the archimedean
data attached to f . Here the Poincaré series P(g) = P(g, s′, s′′) has a spectral expansion

P(s′, s′′) =
π

1−s′′
2 Γ( s

′′−1
2 )

π−
s′′
2 Γ( s′′2 )

· E1+s′ + 1
2

∑
F on GL2

L( 1
2 + s′, F )
〈F, F 〉

· G( 1
2 − itF , s

′, s′′) · F

+
1

4πi

∫
Re(s)= 1

2

ζ(s′ + s) ζ(s′ + 1− s)
ξ(2− 2s)

G(1− s, s′, s′′) · Es ds (for Re(s′)� 1
2 , Re(s′′)� 0)

where ξ(s) = π−s/2Γ(s/2)ζ(s), where G is essentially a product of gamma function values

G(s, s′, s′′) = π−(s′+ s′′
2 ) Γ( s

′+1−s
2 ) Γ( s

′+s
2 ) Γ( s

′−s+s′′
2 ) Γ( s

′+s−1+s′′

2 )
Γ(s′ + s′′

2 )

1
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and F is summed over (an orthogonal basis for) spherical (at finite primes) cuspforms on GL2 with Laplacian
eigenvalues 1

4 + t2F , and Es is the usual spherical Eisenstein series

Es

(
y 0
0 1

)
= |y|s +

ξ(2− 2s)
ξ(2s)

|y|1−s + . . .

It is not obvious, but the continuous part (the integral of Eisenstein series) cancels the pole at s′ = 1 of the
leading term, and when evaluated at s′ = 0 is

P(g, 0, s′′) = (holomorphic at s′=0) +
1
2

∑
F on GL2

L( 1
2 , F )
〈F, F 〉

· G( 1
2 − itF , 0, s

′′) · F

+
1

4πi

∫
Re(s)= 1

2

ζ(s) ζ(1− s)
ξ(2− 2s)

G(1− s, 0, s′′) · Es ds

In this spectral expansion, the coefficient in front of a cuspform F includes G evaluated at s′ = 0 and
s = 1

2 ± itF , namely

G( 1
2 − itF , 0, s

′′) = π−
s′′
2

Γ(
1
2−itF

2 ) Γ(
1
2 +itF

2 ) Γ(
s′′− 1

2−itF
2 ) Γ(

s′′− 1
2 +itF

2 )
Γ( s′′2 )

The gamma function has poles at 0,−1,−2, . . ., so this coefficient has poles at s′′ = 1
2 ± itF , − 3

2 ± itF , . . ..
Over Q, among spherical cuspforms (or for any fixed level) these values have no accumulation point. The
continuous part of the spectral side at s′ = 0 is

1
4πi

∫
Re(s)= 1

2

ξ(s) ξ(1− s)
ξ(2− 2s)

Γ( s
′′−s
2 ) Γ( s

′′−1+s
2 )

Γ( s′′2 )
· Es ds

with gamma factors grouped with corresponding zeta functions, to form the completed L-functions ξ. Thus,
the evident pole of the leading term at s′′ = 1 can be exploited, using the continuation to Re(s′′) > 1/2.

Further, a subtle contour-shifting argument shows that the continuous part of this spectral
decomposition has a meromorphic continuation to C with poles at ρ/2 for zeros ρ of ζ, in addition to
the poles from the gamma functions.

Already for GL2, over general groundfields k, infinitely many Hecke characters enter both the spectral
decomposition of the Poincaré series and the moment expression. This naturally complicates isolation of
literal moments, and complicates analysis of poles via the spectral expansion. Suppressing constants, the
moment expansion is a sum of twists by χ’s∫

ZAGL2(k)\GL2(A)

P · |f |2 =
∑
χ

∫
Re(s)= 1

2

L(s′ + s, f ⊗ χ) · L(1− s, f ⊗ χ) ·Mχ(s) ds

And, suppressing constants, the spectral expansion is

P = (∞− part) · E1+s′ +
∑

F on GL2

(∞− part) ·
L( 1

2 + s′, F )
〈F, F 〉

· F

+
∑
χ

∫
Re(s)= 1

2

L(s′ + s, χ)L(s′ + 1− s, χ)
L(2− 2s, χ2)

Gχ(s) · Es,χ ds

In the simplest case beyond GL2, take f a spherical cuspform on GL3 over Q. We construct a weight
function Γ(s, s′, s′′, f∞, F∞) depending upon complex parameters s, s′, and s′′, and upon the archimedean
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data for both f and cuspforms F on GL2, such that Γ(s, s′, s′′, f∞, F∞) has explicit asymptotic behavior,
and such that the moment expansion is∫

ZAGL3(Q)\GL3(A)

P(s′, s′′) · |f |2 dg =
∑

F on GL2

1
2πi

∫
Re(s)= 1

2

|L(s, f ⊗ F )|2

〈F, F 〉
· Γ(s, 0, s′′, f∞, F∞) ds

+
1

4πi
1

2πi

∑
k∈Z

∫
Re(s1)= 1

2

∫
Re(s2)= 1

2

|L(s1, f ⊗ E(k)
1−s2)|2

|ξ(1− 2it2)|2
· Γ(s1, 0, s′′, f∞, E

(k)
1−s2,∞) ds1 ds2

where F runs over (an orthogonal basis for) all level-one cuspforms on GL2, with no restriction on the
right K∞-type, and E

(k)
s is the usual level-one Eisenstein series of K∞-type k. Here and throughout, for

Re(s) = 1/2, write 1 − s in place of s, to maintain holomorphy in complex-conjugated parameters. In this
vein, over Q, it is reasonable to put

L(s1, f ⊗ E
(k)

s2 ) = L(s1, f ⊗ E(k)
1−s2) =

L(s1 + 1
2 − s2, f) · L(s1 − 1

2 + s2, f)
ζ(2− 2s2)

(finite-prime parts only)

since the natural normalization of the Eisenstein series E(k)
s2 on GL2 contributes the denominator ζ(2−2s2).

Meromorphic continuation in s′ and evaluation at s′ = 0 gives the desired specialization of the moment
expansion. There is also a meromorphic continuation in the parameter s′′ in the archimedean data.

More generally, for a cuspform f on GLr with r ≥ 3, whether over Q or over a numberfield, the
moment expansion includes an infinite sum of |L(s, f ⊗ F )|2/〈F, F 〉 over an orthogonal basis for cuspforms
F on GLr−1, as well as integrals of products of L-functions L(s, f ⊗ F ) for F ranging over cuspforms on
GLr1 × . . . × GLr` for all partitions (r1, . . . , r`) of r. Correspondingly, the natural normalization of the
cuspidal-data Eisenstein series gives products of convolution L-functions L(∗, Fi ⊗ Fj) in the denominators
of these terms, as well as factors 〈Fi, Fi〉1/2 · 〈Fj , Fj〉1/2.

Generally, the spectral expansion for GLr is an induced-up version of that for GL2. Suppressing
constants, using groundfield Q to skirt Hecke characters,

P = (∞− part) · Er−1,1
s′+1 +

∑
F on GL2

(∞− part) ·
L( rs

′+r−2
2 + 1

2 , F )
〈F, F 〉

· Er−2,2
s′+1

2 ,F

+
∫

Re(s)= 1
2

(∞− part) ·
ζ( rs

′+r−2
2 + 1

2 − s) · ζ( rs
′+r−2

2 + 1
2 + s)

ζ(2− 2s)
· Er−2,1,1

s′+1, s− s′+1
2 ,−s− s′+1

2

ds

where the Eisenstein series are normalized naively. The continuous part has a pole that cancels the pole of
the leading term at s′ = 0.

Again over Q, the most-continuous part of the moment expansion for GLr is of the form∫
Re(s)= 1

2

∫
t∈Λ

|L(s, f ⊗ Emin
1
2 +it

)|2Mt(s) ds dt =
∫ ∫

Λ

∣∣∣∣ Π1≤`≤r−1 L(s+ it`, f)
Π1≤j<`<n ζ(1− itj + it`)

∣∣∣∣2 Mt(s) ds dt

where
Λ = {t ∈ Rr−1 : t1 + . . .+ tr−1 = 0}

and where M is a weight function depending upon f and F . More generally, let r − 1 = m · b. For F on
GLm, let

F∆ = F ⊗ . . .⊗ F

on GLm × . . .×GLm. Inside the moment expansion we have (recall Langlands-Shahidi)∫
Re(s)= 1

2

∫
Λ

|L(s, f ⊗ EF∆, 1
2 +it)|2MF,t(s) ds dt =

∫ ∫ ∣∣∣∣ Π1≤`≤b L(s+ it`, f ⊗ F )
Π1≤j<`≤b L(1− itj + it`, F ⊗ F∨)

∣∣∣∣2M dsdt
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If we replace the cuspform f on GLr(Q) by a (truncated) minimal-parabolic Eisenstein series Eα with
α ∈ Cn−1, the most-continuous part of the moment expansion contains a term

∫ ∫
Λ

∣∣∣∣Π1≤µ≤n, 1≤`≤r−1 ζ(αµ + s+ it`)
Π1≤j<`<r |ζ(1− itj + it`)

∣∣∣∣2 ds dt
Taking α = 0 ∈ Cr−1 gives

∫ ∫
Λ

∣∣∣∣ Π1≤`≤r−1 ζ(s+ it`)r

Π1≤j<`<r ζ(1− itj + it`)

∣∣∣∣2 M dsdt

For example, for GL3, where Λ = {(t,−t)} ≈ R,

∫ ∫
R

∣∣∣∣ζ(s+ it)3 · ζ(s− it)3

ζ(1− 2it)

∣∣∣∣2 M dsdt

and for GL4 ∫
(s)

∫
Λ

∣∣∣∣ ζ(s+ it1)4 · ζ(s+ it2)4 · ζ(s+ it3)4

ζ(1−it1+it2) ζ(1−it1+it3) ζ(1−it2+it3)

∣∣∣∣2M dsdt

1. The moment expansion
Let G = GLr over a number field k. Let P be the standard maximal proper parabolic

P = P r−1,1 = {
(

(r − 1)-by-(r − 1) ∗
0 1-by-1

)
}

Let

U = {
(

1r−1 ∗
0 1

)
} H = {

(
(r − 1)-by-(r − 1) 0

0 1

)
}

and
N = {upper triangular unipotent elements in H}

= (unipotent radical of standard minimal parabolic in H)

Let Z be the center of G. Let Kv be the standard maximal compact in the kv-valued points Gv of G. Thus,
for v <∞, Kv = GLr(ov). For v ≈ R, take Kv = Or(R). For v ≈ C take Kv = U(r).

The standard choice of non-degenerate character on NkUk\NAUA is

ψ(n · u) = ψ0(n12 + n23 + . . .+ nr−2,r−1) · ψ0(ur−1,r)

where ψ0 is a fixed non-trivial character on A/k. A cuspform f has a Fourier expansion along NU

f(g) =
∑

ξ∈Nk\Hk

Wf (ξg) where Wf (g) =
∫
NkUk\NAUA

ψ(nu) f(nug) dn du

The (Whittaker) function Wf (g) factors over primes.

Poincaré series: For s′ ∈ C, let
ϕ =

⊗
v

ϕv

4
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where for v finite

ϕv(g) =


∣∣(detA)/dr−1

∣∣s′
v

(for g = mk with m =
(
A 0
0 d

)
in ZvHv and k ∈ Kv)

0 (otherwise)

and for v archimedean require right Kv-invariance and left equivariance

ϕv(mg) =
∣∣∣∣detA
dr−1

∣∣∣∣s′
v

· ϕv(g) (for g ∈ Gv, for m =
(
A 0
0 d

)
∈ ZvHv)

Thus, for v|∞, the further data determining ϕv consists of its values on Uv. The simplest useful choice is

ϕv

(
1r−1 x

0 1

)
= (1 + |x1|2 + . . .+ |xr−1|2)−s

′′/2 (where x =

 x1
...

xr−1

, and s′′ ∈ C)

and where the norm |x1|2 + . . . + |xr−1|2 is normalized to be invariant under Kv. Thus, ϕ is left ZAHk-
invariant. We attach to ϕ a Poincaré series

P(g) =
∑

γ∈ZkHk\Gk

ϕ(γg)

Two unwindings: Integrate the norm-squared |f |2 of a cuspform f against P. The typical first
unwinding is ∫

ZAGk\GA
P(g) |f(g)|2 dg =

∫
ZAHk\GA

ϕ(g) |f(g)|2 dg

Next, express f in its Fourier-Whittaker expansion, and unwind further:∫
ZAHk\GA

ϕ(g)
∑

ξ∈Nk\Hk

Wf (ξg) f(g) dg =
∫
ZANk\GA

ϕ(g)Wf (g) f(g) dg

Iwasawa decomposition, simplification of integral: Suppose for simplicity that f is right KA-invariant,
so we can use an Iwasawa decomposition G = (HZ)UK (everywhere locally) to rewrite the whole integral
as ∫

Nk\HA×UA
ϕ(hu)Wf (hu) f(hu) dh du

Spectral decomposition on GLr−1: Use a spectral decomposition for F ∈ L2(Hk\HA), inexplicitly

F =
∫

(η)

〈F, η〉 · η dη

where each η generates an irreducible representation of HA.

Expand f(hu): Since f is left Hk-invariant, it decomposes along Hk\HA as

f(hu) =
∫

(η)

η(h)
∫
Hk\HA

η(m) f(mu) dmdη

Unwind the Fourier-Whittaker expansion of f

f(hu) =
∫

(η)

η(h)
∫
Hk\HA

η(m)
∑

ξ∈Nk\Hk

W f (ξmu) dmdη

5
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=
∫

(η)

η(h)
∫
Nk\HA

η(m)W f (mu) dmdη

Then the whole integral is ∫
ZAGk\GA

P(g) |f(g)|2 dg

=
∫

(η)

∫
Nk\HA×UA

ϕ(hu) η(h)Wf (hu)
∫
Nk\HA

W f (mu) η(m) dmdhdu dη

Decoupling at finite primes: The part of the integrand that depends upon u ∈ U is∫
UA

ϕ(hu)Wf (hu)W f (mu) du = ϕ(h)Wf (h)W f (m) ·
∫
UA

ϕ(u)ψ(huh−1)ψ(mum−1) du

The latter integrand visibly factors over primes.

1.1 Lemma: Let v be a finite prime. For h,m ∈ Hv such that Wf,v(h) 6= 0 and W f,v(m) 6= 0,∫
Uv

ϕv(h)ψv(huh−1)ψv(mum
−1) du =

∫
Uv∩Kv

1 du

Proof: At a finite place v, ϕv(u) 6= 0 if and only if u ∈ Uv ∩Kv, and for such u

ψv(huh−1) ·Wf,v(h) = Wf,v(huh−1 · h) = Wf,v(hu) = Wf,v(h) · 1

by the right Kv-invariance. Thus, for Wf,v(h) 6= 0, ψv(huh−1) = 1, and similarly for ψv(mum−1). Thus,
the finite-prime part of the integral over Uv is just the integral of 1 over Uv ∩Kv, as indicated. ///

Archimedean kernel: The archimedean part of the integral does not necessarily decouple. Thus, with
subscripts ∞ denoting the infinite-adele part of various objects, for h,m ∈ H∞, define

K(h,m) =
∫
U∞

ϕ∞(u)ψ∞(huh−1)ψ∞(mum−1) du

The whole integral is∫
ZAGk\GA

P(g) |f(g)|2 dg =
∫

(η)

∫
Nk\HA

∫
Nk\HA

K(h,m)ϕ(h)
(
Wf (h) η(h)

)(
W f (m) η(m)

)
dmdhdη

Fourier expansion of η: Normalize the volume of Nk\NA to 1. Thus, for a left Nk-invariant function
F on HA ∫

Nk\HA
F (h) dh =

∫
NA\HA

∫
Nk\NA

F (nh) dn dh

Using the left NA-equivariance of W by ψ, and the left NA-invariance of ϕ,∫
Nk\NA

ϕ(nh) η(nh)Wf (nh) dn = ϕ(h)Wf (h)
∫
Nk\NA

ψ(n) η(nh) dn = ϕ(h)Wf (h)Wη(h)

where
Wη(h) =

∫
Nk\NA

ψ(n) η(nh) dn

6
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(The integral is not against ψ(n), but ψ(n).) That is, the integral over Nk\HA is equal to an integral against
(up to an alteration of the character) the Whittaker function Wη of η, which factors over primes. The whole
integral is∫

ZAGk\GA
P(g) |f(g)|2 dg =

∫
(η)

∫
NA\HA

∫
NA\HA
K(h,m)ϕ(h)

(
Wf (h)Wη(h)

)(
W f (m)W η(m)

)
dmdhdη

And the ηth part is a product of two Euler products. It is evident that for f right Kfin-invariant only
right (Kfin ∩Hfin)-invariant η’s will appear, due to the decoupling. However, at archimedean places v right
Kv-invariance of f does not allows us to restrict our attention to right (Kv ∩Hv)-invariant η.

Appearance of the parameter s: In fact, as usual,

Hk\HA ≈ GLr−1(k)\GLr−1(A) ≈ R+ ×Hk\H1

where R+ is positive real numbers, and

H1 = {
(
a 0
0 1

)
: a ∈ GLr−1(A), |det a| = 1}

The quotient Hk\H1 has finite volume. Thus, the spectral decomposition uses functions

η

(
a 0
0 1

)
= |det a|s · F (a) with F ∈ L2(Hk\H1), s ∈ iR

The real part of the parameter s will necessarily be shifted in the subsequent discussion. Thus, the functions
η above are of the form |det |s ⊗ F , and the Whittaker function Wη of η = |det |s ⊗ F is

Wη

(
a

1

)
= |det a|s ·WF (a)

where WF is the Whittaker function of F , normalized here by

WF (g) =
∫
Nk\NA

ψ(n)F (ng) dn

where N is the unipotent radical of the standard minimal parabolic in GLr−1.

Non-archimedean local factors: In terms of s and F , the non-archimedean local factors are∫
Nv\Hv

|det a|s+s
′
Wf,v

(
a

1

)
WF,v(a) da =

Lv(s+ s′ + 1
2 , f ⊗ F )

〈F, F 〉1/2
(for Re(s+ s′)� 0)

The second Euler product is the complex conjugate of this, but lacking the shift by s′, namely, the complex
conjugate of∫
Nv\Hv

|det a′|sWf,v

(
a′

1

)
WF,v(a′) da′ =

Lv(s+ 1
2 , f ⊗ F )

〈F, F 〉1/2
(for Re(s+ s′)� 0 and Re(s)� 0)

When η = |det |s ⊗ F is not cuspidal, but, instead, is an Eisenstein series with cuspidal data, it still does
generate an irreducible representation of GA. At a place v where η generates a spherical representation, the
Euler product expansion of degree r · (r − 1) falls apart into smaller factors, and has a denominator arising
from the (natural) normalization of the cuspidal-data Eisenstein series entering. Discussion of these terms
and their normalizations is postponed.
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Replace s by 1− s on Re(s) = 1/2: The global integrals for the L-functions L(s′ + s+ 1
2 , f ⊗ F ) and

L(s+ 1
2 , f⊗F ) only converge for Re(s′+s)� 0 and Re(s)� 0, so we will need to meromorphically continue.

To this end, it is most convenient for the whole integral to be holomorphic in s, rather than having both s
and s appear.

To these ends, first absorb the 1/2 into s by replacing s by s+ 1
2 , so we have

L(s′ + s, f ⊗ F ) · L(s, f ⊗ F )

and want to eventually move to the line Re(s) = 1/2. To avoid the anti-holomorphy in the second factor,
since s = 1− s on the line Re(s) = 1/2, we can rewrite this as

L(s′ + s, f ⊗ F ) · L(1− s, f ⊗ F ) (for Re(1− s)� 0 and Re(s′ + s)� 0)

The vertical integral(s): Keep in mind that we have absorbed a 1/2 into s, and have replaced s by
1− s. The archimedean part of the whole integral is the function Γϕ∞(s, s′, f, F ) defined by

Γϕ∞(s, s′, f, F ) =∫
N∞\H∞

∫
N∞\H∞

K(h,m) |det a|s
′+s− 1

2 |det a′| 12−s
(
Wf,∞

(
a

1

)
WF,∞(a)

)
×

(
W f,∞

(
a′

1

)
WF,∞(a′)

)
da da′ (with h =

(
a

1

)
and m =

(
a′

1

)
)

since ϕ∞(h) = |det a|s′ . Note that this depends only upon the archimedean data attached to f and F .
Thus, so far, the whole is ∫

ZAGk\GA
P(g) |f(g)|2 dg

=
∑

F on GL(r−1)

∫
Re(s)= 1

2

Γϕ∞(s, s′, f, F )
L(s′ + s, f ⊗ F )L(1− s, f ⊗ F )

〈F, F 〉
dt

+ (continuous part) (with Re(s′)� 0)

Again, we want to meromorphically continue to s′ = 0.

1.2 Remark: With or without detailed knowledge of the residual part of L2 (meaning that consisting
of square-integrable iterated residues of cuspidal-data Eisenstein series), automorphic forms in the residual
spectrum not admitting Whittaker models do not enter in this expansion.

2. Spectral expansion: reduction to GL2

The Poincaré series admits a spectral expansion in terms of Eisenstein series, cuspforms, and L-functions,
preparing for its meromorphic continuation. This section reduces the general spectral expansion to the case
r = 2.

Poisson summation: Form the Poincaré series in two stages to allow application of Poisson summation,
namely

P(g) =
∑

ZkHk\Gk

ϕ(γg) =
∑

ZkHkUk\Gk

∑
β∈Uk

ϕ(βγg) =
∑

ZkHkUk\Gk

∑
ψ∈(Uk\UA)bϕ̂γg(ψ)

where

ϕ̂g(ψ) =
∫
UA

ψ(u)ϕ(ug) du (for g ∈ GA)
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The leading term: The inner summand for ψ = 1 gives a vector from which an extremely degenerate
Eisenstein series for the (r − 1, 1) parabolic P r−1,1 = ZHU is formed by the outer sum. That is,

g →
∫
UA

ϕ(ug) du

is left equivariant by a character on P r−1,1
A , and is left invariant by P r−1,1

k , namely,∫
UA

ϕ(upg) du =
∫
UA

ϕ(p · p−1up · g) du = δP r−1,1(m) ·
∫
UA

ϕ(m · u · g) du

=
∣∣∣∣detA
dr−1

∣∣∣∣s′+1 ∫
UA

ϕ(ug) du (where p =
(
A ∗
0 d

)
, A ∈ GLr−1, d ∈ GL1)

The normalization is explicated by setting g = 1:∫
UA

ϕ(u) du =
∫
U∞

ϕ∞ ·
∫
Ufin

ϕfin =
∫
U∞

ϕ∞ ·meas (Ufin ∩Kfin) =
∫
U∞

ϕ∞

A natural normalization would have been that this value be 1, so the Eisenstein series here implicitly includes
the archimedean integral and finite-prime measure constant as factors:∫

U∞

ϕ∞ · Er−1,1
s′+1 (g) =

∑
γ∈P r−1,1

k \Gk

(∫
UA

ϕ(uγg) du

)

As advance warning: the pole at s′ = 0 of this leading term will be cancelled by a contribution from the
continuous part of the spectral decomposition, below.

Main terms: appearance of Q from GL2: The group Hk is transitive on non-trivial characters on
Uk\UA. As usual, for fixed non-trivial character ψ0 on k\A, let

ψξ(u) = ψ0(ξ · ur−1,r) (for ξ ∈ k×)

The spectral expansion of P with the leading term removed, is

∑
γ∈P r−1,1

k \Gk

∑
α∈P r−2,1

k \Hk

∑
ξ∈k×

ϕ̂αγg(ψξ)


where P r−2,1 is the parabolic subgroup of H ≈ GLr−1. Let

U ′ = {

 1r−2 ∗
1

1

} U ′′ = {

 1r−2

1 ∗
1

}
Let

Θ = {

 1r−2

∗ ∗
∗ ∗

}
Then the expansion of the Poincaré series with leading term removed is

∑
γ∈P r−2,1,1

k \Gk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′)

∫
U ′A

ϕ(u′u′′γg) du′ du′′



=
∑

γ∈P r−2,2
k \Gk

∑
α∈P 1,1\Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′)

∫
U ′A

ϕ(u′u′′αγg) du′ du′′



9
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Letting

ϕ̃(g) =
∫
U ′A

ϕ(u′g) du′

the expansion becomes

∑
γ∈P r−2,2

k \Gk

∑
α∈P 1,1\Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′αγg) du′′

We claim the equivariance

ϕ̃(pg) = |detA|s
′+1 · |a|s

′
· |d|−(r−1)s′−(r−2) · ϕ̃(g) (for p =

A ∗ ∗
a

d

 ∈ GA, with A ∈ GLr−2)

This is verified by changing variables in the defining integral: let x ∈ Ar−1 and compute 1r−2 x
1

1

A b c
a

d

 =

A b c+ xd
a

d

 =

A b c
a

d

 1r−2 A−1xd
1

1


Thus, |detA|s′ · |a|s′ · |d|−(r−1)s′ comes out of the definition of ϕ, and another |detA| · |d|2−r from the
change-of-measure in the change of variables replacing x by Ax/d in the integral defining ϕ̃ from ϕ. Note
that

|a|s
′
· |d|−(r−1)s′−(r−2) = |det

(
a

d

)
|−

(r−2)
2 ·(s′+1) · |a/d|

rs′+(r−2)
2

Thus, letting

Φ(g) =
∑

α∈P 1,1
k \Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′αg) du′′

we can write
P(g) −

∑
γ∈P r−1,1

k \Gk

∫
UA

ϕ(uγg) du =
∑

γ∈P r−2,2
k \Gk

Φ(γg)

This is not an Eisenstein series for P r−2,2 in the strictest sense. An expression in terms of genuine Eisenstein
series is helpful in understanding meromorphic continuations.

Define a GL2 kernel ϕ(2) for a Poincaré series as follows. We require right invariance by the maximal
compact subgroups locally everywhere, and left equivariance

ϕ(2)(
(
a

d

)
·D) = |a/d|s · ϕ(2)(D)

Then the the archimedean data ϕ(2)
∞ is completely specified by

ϕ(2)
∞

(
1 x

1

)
= ϕ̃

 1r−2

1 x
1

 (with ϕ̃ as above)

Then put

ϕ∗(s, ϕ̃,D) =
∑
ξ∈k×

∫
UA

ψ
ξ
(u)ϕ(2)(s, uD) du (with U now the unipotent radical of P 1,1 in GL2)

10
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The corresponding GL2 Poincaré series with leading term removed is

Q(s,D) =
∑

α∈P 1,1
k \GL2(k)

ϕ∗(s, αD)

Thus, for

g =
(
A ∗

D

)
(with A ∈ GLr−2(A) and D ∈ GL2(A))

the inner integral

g →
∫
U ′′A

ψ(u′′) ϕ̃(u′′g) du′′

is expressible in terms of the kernel ϕ∗ for Q, namely,

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′g) du′′ = |detA|s

′+1 · | detD|−
(r−2)

2 ·(s′+1) · ϕ∗
(
rs′ + r − 2

2
, D

)

Thus,

∑
α∈P 1,1

k \Θk

∑
ξ∈k×

∫
U ′′A

ψ
ξ
(u′′) ϕ̃(u′′αg) du′′ = |detA|s

′+1 · | detD|−
(r−2)

2 ·(s′+1) ·Q
(
rs′ + r − 2

2
, D

)

Thus, to obtain a (not necessarily L2) spectral decomposition of the Poincaré series P (with main term
removed) we first determine the (L2) spectral decomposition of Q for r = 2, and then form P r−2,2 Eisenstein
series from the spectral fragments.

3. Spectral expansion for GLr

The spectral decomposition of the Poincaré series for r = 2 yields that for r > 2 by inducing. For r > 2,
nothing remains after all the non-L2 terms are removed. The non-L2 terms are induced from the genuinely
L2 spectral expansion of the Poincaré series on GL2.

Before carrying out the spectral expansion for r = 2, we had found that

P(g) =
(∫

U∞

ϕ∞

)
· Er+1,1

s′+1 (g) +
∑

γ∈P r−2,2
k \Gk

Φ(γg)

where

Φ
(
A ∗

D

)
= |detA|s

′+1 · | detD|− (r−2)· s
′+1
2 ·Q(

rs′ + r − 2
2

, ϕ̃,D) (with A ∈ GLr−2 and D ∈ GL2)

with Q from GL2, and

ϕ̃(g) =
∫
U ′k\U

′
A
ϕ(u′g) du′

Thus, formation of P (with its leading term removed) amounts to forming an Eisenstein series from Φ, with
analytical properties explicated by expressing Φ as a superposition of vectors generating irreducibles.

Decomposition into irreducibles:
From the decomposition of Q on GL2 for Re(s′)� 0

11
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Φ
(
A ∗
0 D

)
= |detA|2·

s′+1
2 · | detD|− (r−2)· s

′+1
2 ·Q(

rs′ + r − 2
2

, ϕ̃,D)

= |detA|2·
s′+1

2 · | detD|− (r−2)· s
′+1
2

∑
F

(∫
PGL2(k∞ )̃

ϕ∞ ·WF,∞

)
· L(

rs′ + r − 2
2

+ 1
2 , F ) · F

〈F, F 〉

+ |detA|2·
s′+1

2 · | detD|− (r−2)· s
′+1
2

∑
χ

χ(d)
4πiκ

∫
Re(s)= 1

2

(∫
PGL2(k∞)

ϕ̃∞ ·WE
1−s,χ,∞

)
·
L( rs

′+r−2
2 + 1− s, χ) · L( rs

′+r−2
2 + s, χ)

L(2− 2s, χ2)
·|d|−( rs

′+r−2
2 +s−1/2) ·Es,χ(D) ds

Least continuous part of Poincaré series:
Let

Φ s′+1
2 ,F

(
(
A ∗
0 D

)
· θ) = |detA|2·

s′+1
2 · | detD|− (r−2)· s

′+1
2 F (D) (for θ ∈ KA)

and define a half-degenerate Eisenstein series

Er−2,2
s′+1

2 ,F
(g) =

∑
γ∈P r−2,2

k \Gk

Φ s′+1
2 ,F

(γg)

Then the most-cuspidal (or least continuous) part of the Poincaré series is

∑
F

(∫
PGL2(k∞)

ϕ̃ ·WF,∞

)
·
L( rs

′+r−2
2 + 1

2 , F )
〈F, F 〉

· Er−2,2
s′+1

2 ,F
(cuspforms F on GL2)

The summands of this expression have relatively well understood meromorphic continuations. As discussed
in an appendix, the half-degenerate Eisenstein series Er−2,2

s,F has no poles in Re(s) ≥ 1/2. With s = (s′+1)/2
this assures absence of poles in Re(s′) ≥ 0.

Continuous part of the Poincare series: The Eisenstein series integral part of Q onGL2 gives degenerate
Eisenstein series attached to the (r − 2, 1, 1)-parabolic in GLr. This arises from a similar consideration as
for GL2 cuspforms, but for GL2 Eisenstein series, as follows.

Let Es,χ be the usual Eisenstein series for GL2, and let

Φ s′+1
2 ,Es,χ

(
(
A ∗
0 D

)
· θ) = |detA|2·

s′+1
2 · | detD|− (r−2)· s

′+1
2 Es,χ(D) (for θ ∈ KA)

and define an Eisenstein series

Er−2,2
s′+1

2 ,Es,χ
(g) =

∑
γ∈P r−2,2

k \Gk

Φ s′+1
2 ,Es,χ

(γg)

For given s ∈ C, an easy variant of Godement’s criterion proves convergence for sufficiently large Re(s′).
Then, ignoring the issue of interchange of sums and integrals, the Poincaré series has most continuous

part ∑
χ

χ(d)
4πiκ

∫
Re(s)= 1

2

(∫
PGL2(k∞)

ϕ̃∞ ·WE
1−s,χ,∞

)

×
L( rs

′+r−2
2 + 1− s, χ) · L( rs

′+r−2
2 + s, χ)

L(2− 2s, χ2)
· |d|−( rs

′+r−2
2 +s−1/2) · Er−2,2

s′+1
2 ,Es,χ

ds
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That is, it is the analytically continued Es on the line Re(s) = 1
2 that enters. However, as usual, for

Re(s) � 0 and Re(s′) � 0 this iterated formation of Eisenstein series is equal to a single-step Eisenstein
series. The equality persists after analytic continuation.

Thus, let

Φs1,s2,s3,χ(

A ∗ ∗
0 m2 ∗
0 0 m3

 · θ)
= |detA|s1 · |m2|s2χ(m2) · |m3|s3χ(m3) (for θ ∈ KA and A ∈ GLr−2)

and
Er−2,1,1
s1,s2,s3,χ =

∑
γ∈P r−2,1,1

k \Gk

Φs1,s2,s3,χ(γg)

Then, ignoring the issue of interchange of sums and integrals, the Poincaré series has most continuous part∑
χ

χ(d)
4πiκ

∫
Re(s)= 1

2

(∫
PGL2(k∞)

ϕ̃∞ ·WE
1−s,χ,∞

)

×
L( rs

′+r−2
2 + 1− s, χ) · L( rs

′+r−2
2 + s, χ)

L(2− 2s, χ2)
· |d|−( rs

′+r−2
2 +s−1/2) · Er−2,1,1

2· s′+1
2 , s−(r−2)· s′+1

2 , −s−(r−2)· s′+1
2 , χ

ds

Comment: It is remarkable that there are no further terms in the spectral expansion of P, beyond the
main term, the cuspidal GL2 part induced up to GLr, and the continuous GL2 part induced up to GLr.

4. Appendix: half-degenerate Eisenstein series
Take q > 1, and let f be a cuspform on GLq(A), in the strong sense that f is in L2(GLq(k)\GLq(A)1),

and f meets the Gelfand-Fomin-Graev conditions∫
Nk\NA

f(ng) dn = 0 (for almost all g)

and f generates an irreducible representation of GLq(kν) locally at all places ν of k. For a Schwartz function
Φ on Aq×r and Hecke character χ, let

ϕ(g) = ϕχ,f,Φ(g) = χ(det g)q
∫
GLq(A)

f(h−1)χ(deth)r Φ(h · [0q×(r−q) 1q] · g) dh

This function ϕ has the same central character as f . It is left invariant by the adele points of the unipotent
radical

N = {
(

1r−q ∗
1r

)
} (unipotent radical of P = P r−q,q)

The function ϕ is left invariant under the k-rational points Mk of the standard Levi component of P ,

M = {
(
a

d

)
: a ∈ GLr−q, d ∈ GLr}

To understand the normalization, observe that

ξ(χr, f,Φ(0, ∗)) = ϕ(1) =
∫
GLq(A)

f(h−1)χ(deth)r Φ(h · [0q×(r−q) 1q]) dh

13
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is a zeta integral as in [Godement-Jacquet 1972] for the standard L-function attached to the cuspform f (or
perhaps a contragredient). Thus, the Eisenstein series formed from ϕ includes this zeta integral as a factor,
so write

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g) =
∑

γ∈Pk\GLr(k)

ϕ(γ g) (convergent for Re(χ) >> 0)

Now prove the meromorphic continuation via Poisson summation:

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g)

= χ(det g)q
∑

γ∈Pk\GLr(k)

∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

α∈GLq(k)

Φ(h−1 · [0 α] · g) dh

= χ(det g)q
∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

y∈kq×r, full rank

Φ(h−1 · y · g) dh

The Gelfand-Fomin-Graev condition on f will compensate for the otherwise-irksome full-rank constraint.
Anticipating that we can drop the rank condition suggests that we define

ΘΦ(h, g) =
∑

y∈kq×r
Φ(h−1 · y · g)

As in [Godement-Jacquet 1972], the non-full-rank terms integrate to 0:
4.1 Proposition: For f a cuspform, less-than-full-rank terms integrate to 0, that is,∫

GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

y∈kq×r, rank <q

Φ(h−1 · y · g) dh = 0

Proof: Since this is asserted for arbitrary Schwartz functions Φ, we can take g = 1. By linear algebra, given
y0 ∈ kq×r of rank `, there is α ∈ GLq(k) such that

α · y0 =
(

y`×r
0(q−`)×r

)
(with `-by-r block y`×r of rank `)

Thus, without loss of generality fix y0 of the latter shape. Let Y be the orbit of y0 under left multiplication
by the rational points of the parabolic

P `,q−` = {
(
`-by-` ∗

0 (q − `)-by-(q − `)

)
} ⊂ GLq

This is some set of matrices of the same shape as y0. Then the subsum over GLq(k) · y0 is∫
GLq(k)\GLq(A)

f(h)χ(deth)−r
∑

y∈GLq(k)·y0

Φ(h−1 · y) dh =
∫
P `,q−`k \GLq(A)

f(h)χ(deth)−r
∑
y∈Y

Φ(h−1 · y) dh

Let N and M be the unipotent radical and standard Levi component of P `,q−`,

N =
(

1` ∗
0 1q−`

)
M =

(
`-by-` 0

0 (q − `)-by-(q − `)

)
Then the integral can be rewritten as an iterated integral
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NkMk\GLq(A)

f(h)χ(deth)−r
∑
y∈Y

Φ(h−1 · y) dh

=
∫
NAMk\GLq(A)

∑
y∈Y

∫
Nk\NA

f(nh)χ(detnh)−r Φ((nh)−1 · y) dn dh

=
∫
NAMk\GLq(A)

∑
y∈Y

χ(deth)−r Φ(h−1 · y)

(∫
Nk\NA

f(nh) dn

)
dh

since all fragments but f(nh) in the integrand are left invariant by NA. But the inner integral of f(nh)
is 0, by the Gelfand-Fomin-Graev condition, so the whole is 0. ///

Let ι denote the transpose-inverse involution(s). Poisson summation gives

ΘΦ(h, g) =
∑

y∈kq×r
Φ(h−1 · y · g)

= |det(h−1)ι|r |det gι|q
∑

y∈kq×r
Φ̂((hι)−1 · y · gι) = |det(h−1)ι|r |det gι|q ΘbΦ(hι, gι)

As with ΘΦ, the not-full-rank summands in ΘbΦ integrate to 0 against cuspforms. Thus, letting

GL+
q = {h ∈ GLq(A) : |deth| ≥ 1} GL−q = {h ∈ GLq(A) : |deth| ≤ 1}

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g) = χ(det g)q
∫
GLq(k)\GLq(A)

f(h)χ(deth)−r ΘΦ(h, g) dh

= χ(det g)q
∫
GLq(k)\GL+

q

f(h)χ(deth)−r ΘΦ(h, g) dh+ χ(det g)q
∫
GLq(k)\GL−q

f(h)χ(deth)−r ΘΦ(h, g) dh

= χ(det g)q
∫
GLq(k)\GL+

q

f(h)χ(deth)−r ΘΦ(h, g) dh

+ χ(det g)q
∫
GLq(k)\GL−q

|det(h−1)ι|r |det gι|q f(h)χ(deth)−r ΘbΦ(hι, gι) dh

By replacing h by hι in the second integral, convert it to an integral over GLq(k)\GL+
q , and the whole is

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ(g) = χ(det g)q
∫
GLq(k)\GL+

q

f(h)χ(deth)−r ΘΦ(h, g) dh

+ νχ−1(det gι)q
∫
GLq(k)\GL+

q

f(hι) νχ−1(dethι)−r ΘbΦ(h, gι) dh

Since f ◦ ι is a cuspform, the second integral is entire in χ. Thus, we have proven

ξ(χr, f,Φ(0, ∗)) · EPχ,f,Φ is entire

Remark: Except for the extreme case q = r − 1, these Eisenstein series are degenerate, so occur only
as (iterated) residues of cuspidal-data Eisenstein series. Assessing poles of residues is less effective in the
present special circumstances than the above argument.

5. Appendix: residues of degenerate Eisenstein series for P n−1,1
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We prove meromorphic continuation and determine some residues of some very degenerate Eisenstein
series (sometimes called Epstein zeta functions). We need to recall some specifics about these well-known
examples. Let

P = P r−1,1 = {
(

(r − 1)-by-(r − 1) ∗
0 1-by-1

)
}

View Ar and kr as row vectors. Let e1, . . . , er the standard basis for kr. The parabolic P is the stabilizer in
GLr of the line ker. Given a Hecke character of the form χ(α) = |α|s and a Schwartz function Φ on Ar, let

ϕ(g) = |det g|s
∫

J
|t|rs Φ(t · er · g) dt

The factor |t|rs in the integrand and the leading factor |det g|s combine to give the invariance ϕ(zg) = ϕ(g)
for z in the center ZA of G = GLr. By changing variables in the integral observe the left equivariance

ϕ(pg) = |det pg|s
∫

J
|t|rs Φ(t · er · pg) dt = |detA|s|d|−(r−1)s · ϕ(g) (for p =

(
A ∗

d

)
∈ PA)

The normalization is not ϕ(1) = 1 but

ϕ(1) =
∫

J
|t|rs Φ(t · er) dt (Tate-Iwasawa zeta integral at rs)

Denote this zeta integral by ξ = ξ(rs,Φ(0, ∗)), indicating that it only depends upon the values of Φ along the
last coordinate axis. Thus, by comparison to the standard spherical Eisenstein series Es(g) corresponding
to this sth degenerate principal series, the Eisenstein series associated to ϕ has a factor of ξ(rs,Φ(0, ∗))
included, namely

ξ(ns,Φ(0, ∗)) · Es(g) =
∑

γ∈Pk\Gk

ϕ(γg)

Poisson summation proves the meromorphic continuation of this Eisenstein series, as follows. Let

J+ = {t ∈ J : |t| ≥ 1} J− = {t ∈ J : |t| ≤ 1}

and gι = (g>)−1 (transpose inverse)

ξ(rs,Φ(0, ∗)) · Es(g) =
∑

γ∈Pk\Gk

ϕ(γg) = |det g|s
∑

γ∈Pk\Gk

∫
J
|t|rs Φ(t · x · γg) dt

= |det g|s
∑

γ∈Pk\Gk

∫
k×\J

|t|rs
∑
λ∈k×

Φ(t · λer · γg) dt = |det g|s
∫
k×\J

|t|rs
∑

x∈kr−0

Φ(t · x · g) dt

Let
Θ(g) =

∑
x∈kr

Φ(t · x · g)

Then

ξ(rs,Φ(0, ∗)) · Es(g) = |det g|s
∫
k×\J+

|t|rs [Θ(g)− Φ(0)] dt + |det g|s
∫
k×\J−

|t|rs [Θ(g)− Φ(0)] dt

The usual estimate shows that the integral over k×\J+ converges absolutely for all s ∈ C. Rewrite the
second part of the integral as an analogous integral over k×\J+. Poisson summation gives∑

x∈kr−0

Φ(t · x · g) + Φ(0) = |t|−r|det g|−1
∑

x∈kr−0

Φ̂(t−1 · x · gι) + |t|−r|det g|−1Φ̂(0)
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Let
Θ′(gι) =

∑
x∈kr

Φ̂(t · x · gι)·

Removing the Φ(0) and Φ̂(0) terms and replacing t by t−1 in the integral over k×\J− turns this integral into

|det g|s−1

∫
k×\J+

|t|r(1−s) [Θ′(gι)− Φ̂(0)] dt

− | det g|s Φ(0)
∫
k×\J−

|t|rs dt + |det g|s−1 Φ̂(0)
∫
k×\J−

|t|r(s−1) dt

The integral over k×\J+ is entire. Thus, the non-elementary part of the integral is converted into two entire
integrals over k×\J+ together with two elementary integrals that give the only possible poles:

ξ · Es(g) = (entire)− | det g|sΦ(0)
∫
k×\J−

|t|r dt+ |det g|s−1Φ̂(0)
∫
k×\J−

|t|r(s−1) dt

With
κ =

∫
k×\J1

1 dt

the relatively elementary integrals can be evaluated

∫
k×\J−

|t|rs dt =

(∫
k×\J1

1 dt

)
·
(∫ 1

0

trs dt

)
=

κ

ns

Similarly, ∫
k×\J−

|t|r(s−1) dt =
κ

r(s− 1)

That is,

ξ(rs,Φ(0, ∗)) · Es = (entire) − κΦ(0)
rs

+
κ Φ̂(0)
r(s− 1)

Thus, the residue at s = 1 of Es is

Ress=1Es =
κ Φ̂(0)

r · ξ(r,Φ(0, ∗))

Let d be an idele such that dv generates the local different at a finite place v, and is trivial at archimedean
places. Let Φ be the standard Gaussian at archimedean places (so its integral is 1), and the characteristic
function of onv at finite places v. With the standard measure on A we have

Φ̂(0) = |d|r/2 ξ(r,Φ(0, ∗)) = ξ(r)

where ξ is the usual zeta function with standard gamma factors, but without any epsilon factor or accounting
for conductors. The residue at s = 1 is

Ress=1E =
κ · |d|r/2

n · ξ(r)

At s = 0, the relevant residue is

Ress=0ξ(rs,Φ(0, ∗)) · Es = −κΦ(0)
r
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6. Appendix: degenerate Eisenstein series for P r−2,1,1

Let P = P r−2,1,1, and

ϕs1,s2,s3

A ∗ ∗
a ∗

d

 = |detA|s1 · |a|s2 · |d|s3 (with A ∈ GLr−2, a, d ∈ GL1)

and extend ϕ to a function on G(A) = GLr(A) by requiring right KA-equivariance. Define an Eisenstein
series on G = GLr by

Es1,s2,s3(g) =
∑

γ∈P r−2,1,1
k \Gk

ϕs1,s2,s3(γg)

Symmetry in s2 and s3: This can be rewritten as an interated sum

Es1,s2,s3(g) =
∑

γ∈P r−2,2
k \Gk

ϕs1⊗E1,1
s2,s3

(γg)

where

ϕs1⊗E1,1
s2,s3

(
A ∗

D

)
= |detA|s1 · E1,1

s2,s3(D) (with A ∈ GLr−2 and D ∈ GL2)

and E1,1
s2,s3 is the GL2 Eisenstein series

E1,1
s2,s3(g) =

∑
γ∈P 1,1

k \GL2(k)

ϕs2,s3(γg) (with ϕs2,s3

(
a ∗

d

)
= |a|s2 |d|s3)

Since
|a|s2 |d|s3 = |ad|

s2+s3
2 · |a/d|

s2−s3
2

this GL2 Eisenstein series can be expressed in terms of an Eisenstein series with trivial central character,
namely

E1,1
s2,s3(g) = |det g|

s2+s3
2 · E s2−s3

2
(g)

where

Es(g) =
∑

γ∈P 1,1
k \GL2(k)

ϕs(γg) with ϕs

(
a ∗

d

)
= |a/d|s

From the functional equation
ξ(2s) · Es = ξ(2s− 1) · E1−s

the P 1,1 Eisenstein series E1,1
s2,s3 has a functional equation under

(s2, s3) = ( 1
2 ,− 1

2 ) + (s2 − 1
2 , s3 + 1

2 )→ ( 1
2 ,− 1

2 ) + (s3 + 1
2 , s2 − 1

2 ) = (s3 + 1, s2 − 1)

given by

E1,1
s2,s3 =

ξ(s2 − s3 − 1)
ξ(s2 − s3)

· E1,1
s3+1,s2−1

Thus,

Er−2,1,1
s1,s2,s3 =

ξ(s2 − s3 − 1)
ξ(s2 − s3)

· Er−2,1,1
s1,s3+1,s2−1

18
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Pole at s1 − s2 = r − 1: There is another iterated sum expression

Er−2,1,1
s1,s2,s3(g) =

∑
γ∈P r−1,1

k \Gk

ϕEr−2,1
s1,s2 ⊗s3

(γg)

where

ϕEr−2,1
s1,s2 ⊗s3

(
A ∗

d

)
= Er−2,1

s1,s2 (A) (with A ∈ GLr−1 and d ∈ GL1)

and Er−2,1
s1,s2 is the GLr−1 Eisenstein series

Er−2,1
s1,s2

(
A ∗

d

)
=

∑
γ∈P r−2,1

k \GLr−1(k)

ϕs1,s2(γg) (with ϕs1,s2

(
A ∗

d

)
= |A|s1 |d|s2)

Since

|A|s1 |d|s2 =
∣∣∣∣detA
dr−2

∣∣∣∣
s1−s2
r−1

· | detA · d|
(r−2)s1+s2

r−1

we can express Er−2,1
s1,s2 in terms of an Eisenstein series with trivial central character, as

Er−2,1
s1,s2 (h) = |deth|

(r−2)s1+s2
r−1 · E s1−s2

r−1
(g)

where
Es(h) =

∑
P r−2,1
k \GLr−1(k)

ϕs(γh)

with

ϕs

(
A ∗

d

)
(g) =

∣∣∣∣detA
dr−2

∣∣∣∣s (for A ∈ GLr−2 and d ∈ GL1)

From the previous appendix, the Eisenstein series Es for P r−2,1 has a pole at s = 1 with constant residue

Ress=1Es =
κ · |d| r−1

2

(r − 1) · ξ(r − 1)

Thus, at s1−s2
r−1 = 1, that is, at s1 − s2 = r − 1, Er−2,1

s1,s2 (h) has residue

Ress1−s2=r−1E
r−2,1
s1,s2 (h) = |deth|

(r−2)s1+(s1−(r−1))
r−1 · κ · |d| r−1

2

(r − 1) · ξ(r − 1)
= |deth|s1−1 · κ · |d| r−1

2

(r − 1) · ξ(r − 1)

Thus, since

|detA|s1 · |a|s1−(r−1) = |det
(
A

a

)
|s1−1 ·

∣∣∣∣detA
ar−2

∣∣∣∣1 (for A ∈ GLr−2 and a ∈ GL1)

the residue is

Ress1−s2=r−1E
r−2,1,1
s1,s2,s3 =

κ · |d| r−1
2

(r − 1) · ξ(r − 1)
· Er−1,1

s1−1,s3

Residue at s1 − s3 = r: The functional equation in s2 and s3 (from GL2) is

Er−2,1,1
s1,s2,s3 =

ξ(s2 − s3 − 1)
ξ(s2 − s3)

· Er−2,1,1
s1,s3+1,s2−1
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This functional equation and the pole of Er−2,1,1
s1,s2,s3 at s− 1− s2 = r− 1 give a pole of Er−2,1,1

s1,s2,s3 at s1 − s3 = r
with residue

Ress1−s3=rE
r−2,1,1
s1,s2,s3 = Ress1−s3=r

(
ξ(s2 − s3 − 1)
ξ(s2 − s3)

· Er−2,1,1
s1,s3+1,s2−1

)

=
κ · |d| r−1

2

(r − 1) · ξ(r − 1)
· ξ(s2 − s3 − 1)

ξ(s2 − s3)
· Er−1,1

s1−1,s2−1

=
κ · |d| r−1

2

(r − 1) · ξ(r − 1)
· ξ(s2 − (s1 − r)− 1)

ξ(s2 − (s1 − r))
· Er−1,1

s1−1,s2−1
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