Moments for L-functions for $G L_{r} \times G L_{r-1}$

A. Diaconu, P. Garrett, D. Goldfeld garrett@math.umn.edu http://www.math.umn.edu/garrett/

1. Introduction
2. Background and normalizations
3. Moment expansion
4. Spectral expansion of Poincaré series
5. Appendix: half-degenerate Eisenstein series

1. Introduction

We exhibit elementary kernels \mathfrak{P} which produce sums of integral moments for cuspforms f on $G L_{r}$ by

$$
\int_{Z_{\mathbb{A}} G L_{r}(k) \backslash G L_{r}(\mathbb{A})} \mathfrak{P} \cdot|f|^{2}=\sum_{F \text { on } G L_{r-1}} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left|\rho_{F}\right|^{2} \cdot\left|L\left(s, \pi_{f} \times \pi_{F}\right)\right|^{2} M(s) d s+\text { (non-cuspidal part) }
$$

over number fields k, with certain weights $M(s)$, where F runs over an orthogonal basis for cuspforms on $G L_{r-1}, \rho_{F}$ is a general analogue of the leading Fourier coefficient of a $G L_{2}$ cuspform, and π_{f} and π_{F} are the irreducible cuspidal automorphic representations generated by f and F, respectively. There are further noncuspidal spectral terms analogous to the sum over cuspforms, but, presumably, the cuspidal part dominates. The Poincaré series \mathfrak{P} admits a spectral decomposition, surprisingly consisting of only three parts: a leading term, a sum arising from cuspforms on $G L_{2}$, and a continuous part from $G L_{2}$. That is, no cuspforms on $G L_{\ell}$ with $2<\ell \leq r$ contribute. This spectral decomposition facilitates the meromorphic continuation of \mathfrak{P} in auxiliary parameters.

Moments of level-one holomorphic elliptic modular forms were treated in [Good 1983] and [Good 1986], the latter using an idea that is a precursor of part of the present approach. Level-one waveforms over \mathbb{Q} appear in [Diaconu-Goldfeld 2006a], over $\mathbb{Q}(i)$ in [Diaconu-Goldfeld 2006b]. Arbitrary level, groundfield, and infinity-type for $G L_{2}$ are in [Diaconu-Garrett 2009a] and [Diaconu-Garrett 2009b].

We have in mind application not only to cuspforms, but also to truncated Eisenstein series or wave packets of Eisenstein series, thus applying harmonic analysis on $G L_{r}$ to L-functions attached to $G L_{1}$, touching upon high integral moments of $\zeta_{k}(s)$.

For context, we review the [Diaconu-Goldfeld 2006a] treatment of spherical waveforms f for $G L_{2}(\mathbb{Q})$. In that case, the sum of moments is a single term

$$
\int_{Z_{\mathbb{A}} G L_{2}(\mathbb{Q}) \backslash G L_{2}(\mathbb{A})} \mathfrak{P}(g)|f(g)|^{2} d g=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} L\left(s^{\prime}+s, f\right) \cdot \bar{L}(s, f) \cdot \Gamma\left(s, z, w, f_{\infty}\right) d s
$$

where $\Gamma\left(s, z, w, f_{\infty}\right)$ is a ratios of products of gammas, with arguments depending upon the archimedean data of f. Here the Poincaré series $\mathfrak{P}(g)=\mathfrak{P}(g, z, w)$ has a spectral expansion

$$
\begin{gathered}
\mathfrak{P}(z, w)=\frac{\pi^{\frac{1-w}{2}} \Gamma\left(\frac{w-1}{2}\right)}{\pi^{-\frac{w}{2}} \Gamma\left(\frac{w}{2}\right)} \cdot E_{1+z}+\frac{1}{2} \sum_{F \text { on } G L_{2}} \rho_{\bar{F}} \cdot L\left(\frac{1}{2}+z, \bar{F}\right) \cdot \mathcal{G}\left(\frac{1}{2}-i t_{F}, z, w\right) \cdot F \\
+\frac{1}{4 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{\zeta(z+s) \zeta(z+1-s)}{\xi(2-2 s)} \mathcal{G}(1-s, z, w) \cdot E_{s} d s \quad\left(\text { for } \operatorname{Re}(z) \gg \frac{1}{2}, \operatorname{Re}(w) \gg 1\right)
\end{gathered}
$$

where $\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$, where \mathcal{G} is essentially a product of gamma function values

$$
\mathcal{G}(s, z, w)=\pi^{-\left(z+\frac{w}{2}\right)} \frac{\Gamma\left(\frac{z+1-s}{2}\right) \Gamma\left(\frac{z+s}{2}\right) \Gamma\left(\frac{z-s+w}{2}\right) \Gamma\left(\frac{z+s-1+w}{2}\right)}{\Gamma\left(z+\frac{w}{2}\right)}
$$

and F is summed over (an orthogonal basis for) spherical (at finite primes) cuspforms on $G L_{2}$ with Laplacian eigenvalues $\frac{1}{4}+t_{F}^{2}$, and E_{s} is the usual spherical Eisenstein series. The continuous part, the integral of Eisenstein series, cancels the pole at $z=1$ of the leading term, and when evaluated at $z=0$ is

$$
\begin{gathered}
\mathfrak{P}(g, 0, w)=(\text { holomorphic at } z=0)+\frac{1}{2} \sum_{F \text { on } G L_{2}} \rho_{\bar{F}} \cdot L\left(\frac{1}{2}, \bar{F}\right) \cdot \mathcal{G}\left(\frac{1}{2}-i t_{F}, 0, w\right) \cdot F \\
\quad+\frac{1}{4 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{\zeta(s) \zeta(1-s)}{\xi(2-2 s)} \mathcal{G}(1-s, 0, w) \cdot E_{s} d s
\end{gathered}
$$

In this spectral expansion, the coefficient in front of a cuspform F includes \mathcal{G} evaluated at $z=0$ and $s=\frac{1}{2} \pm i t_{F}$, namely

$$
\mathcal{G}\left(\frac{1}{2}-i t_{F}, 0, w\right)=\pi^{-\frac{w}{2}} \frac{\Gamma\left(\frac{\frac{1}{2}-i t_{F}}{2}\right) \Gamma\left(\frac{\frac{1}{2}+i t_{F}}{2}\right) \Gamma\left(\frac{w-\frac{1}{2}-i t_{F}}{2}\right) \Gamma\left(\frac{w-\frac{1}{2}+i t_{F}}{2}\right)}{\Gamma\left(\frac{w}{2}\right)}
$$

The gamma function has poles at $0,-1,-2, \ldots$, so this coefficient has poles at $w=\frac{1}{2} \pm i t_{F},-\frac{3}{2} \pm i t_{F}, \ldots$. Over \mathbb{Q}, among spherical cuspforms (or for any fixed level) these values have no accumulation point. The continuous part of the spectral side at $z=0$ is

$$
\frac{1}{4 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{\xi(s) \xi(1-s)}{\xi(2-2 s)} \frac{\Gamma\left(\frac{w-s}{2}\right) \Gamma\left(\frac{w-1+s}{2}\right)}{\Gamma\left(\frac{w}{2}\right)} \cdot E_{s} d s
$$

with gamma factors grouped with corresponding zeta functions, to form the completed L-functions ξ. Thus, the evident pole of the leading term at $w=1$ can be exploited, using the continuation to $\operatorname{Re}(w)>1 / 2$. A contour-shifting argument shows that the continuous part of this spectral decomposition has a meromorphic continuation to \mathbb{C} with poles at $\rho / 2$ for zeros ρ of ζ, in addition to the poles from the gamma functions.

Already for $G L_{2}$, over general ground fields k, infinitely many Hecke characters enter both the spectral decomposition of the Poincaré series and the moment expression. This naturally complicates isolation of literal moments, and complicates analysis of poles via the spectral expansion. Suppressing constants, the moment expansion is a sum of twists by χ 's

$$
\int_{Z_{\mathbb{A}} G L_{2}(k) \backslash G L_{2}(\mathbb{A})} \mathfrak{P} \cdot|f|^{2}=\sum_{\chi} \int_{\operatorname{Re}(s)=\frac{1}{2}} L\left(s^{\prime}+s, f \otimes \chi\right) \cdot L(1-s, \bar{f} \otimes \bar{\chi}) \cdot M_{\chi}(s) d s
$$

And, suppressing constants, the spectral expansion is

$$
\begin{aligned}
\mathfrak{P}= & (\infty-\text { part }) \cdot E_{1+z}+\sum_{F \text { on } G L_{2}}(\infty-\text { part }) \cdot \rho_{\bar{F}} \cdot L\left(\frac{1}{2}+z, \bar{F}\right) \cdot F \\
& +\sum_{\chi} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{L(z+s, \bar{\chi}) L(z+1-s, \chi)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \mathcal{G}_{\chi}(s) \cdot E_{s, \chi} d s
\end{aligned}
$$

In the simplest case beyond $G L_{2}$, take f a spherical cuspform for $G L_{3}(\mathbb{Q})$. We construct a weight function $\Gamma\left(s, z, w, f_{\infty}, F_{\infty}\right)$ depending upon complex parameters s, z, and w, and upon the archimedean data for both f and cuspforms F on $G L_{2}$, with explicit asymptotic behavior, such that the moment expansion is

$$
\begin{gathered}
\int_{Z_{\mathbb{A}} G L_{3}(\mathbb{Q}) \backslash G L_{3}(\mathbb{A})} \mathfrak{P}(z, w) \cdot|f|^{2} d g=\sum_{F \text { on } G L_{2}}\left|\rho_{F}\right|^{2} \frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left|L\left(s, \pi_{f} \times \pi_{F}\right)\right|^{2} \cdot \Gamma\left(s, 0, w, f_{\infty}, F_{\infty}\right) d s \\
\quad+\frac{1}{4 \pi i} \frac{1}{2 \pi i} \sum_{k \in \mathbb{Z}} \int_{\operatorname{Re}\left(s_{1}\right)=\frac{1}{2}} \int_{\operatorname{Re}\left(s_{2}\right)=\frac{1}{2}} \frac{\left|L\left(s_{1}, \pi_{f} \times \pi_{\left.E_{1}^{\left(k-s_{2}\right.}\right)}\right)\right|^{2}}{\left|\xi\left(1-2 i t_{2}\right)\right|^{2}} \cdot \Gamma\left(s_{1}, 0, w, f_{\infty}, E_{1-s_{2}, \infty}^{(k)}\right) d s_{1} d s_{2}
\end{gathered}
$$

where F runs over (an orthogonal basis for) all level-one cuspforms on $G L_{2}$, with no restriction on the right K_{∞}-type, and $E_{s}^{(k)}$ is the usual level-one Eisenstein series of K_{∞}-type k. Here and throughout, for $\operatorname{Re}(s)=1 / 2$, write $1-s$ in place of \bar{s}, to maintain holomorphy in complex-conjugated parameters.

More generally, for a cuspform f on $G L_{r}$ with $r \geq 3$, whether over \mathbb{Q} or over a numberfield, the moment expansion includes an infinite sum of terms $\left|L\left(s, \pi_{f} \times \pi_{F}^{\prime}\right)\right|^{2}$ over an orthogonal basis for cuspforms F on $G L_{r-1}$, as well as integrals of products of L-functions $L\left(s, \pi_{f} \times \pi_{F}\right)$ for F ranging over cuspforms on $G L_{r_{1}} \times \ldots \times G L_{r_{\ell}}$ for all partitions $\left(r_{1}, \ldots, r_{\ell}\right)$ of r.

Generally, the spectral expansion for $G L_{r}$ is an induced-up version of that for $G L_{2}$. Suppressing constants, using groundfield \mathbb{Q} to skirt Hecke characters,

$$
\begin{gathered}
\mathfrak{P}=(\infty-\text { part }) \cdot E_{z+1}^{r-1,1}+\sum_{F \text { on } G L_{2}}(\infty-\text { part }) \cdot \rho_{\bar{F}} \cdot L\left(\frac{r z+r-2}{2}+\frac{1}{2}, \bar{F}\right) \cdot E_{\frac{z+1}{2}, F}^{r-2,2} \\
+\int_{\operatorname{Re}(s)=\frac{1}{2}}(\infty-\operatorname{part}) \cdot \frac{\zeta\left(\frac{r z+r-2}{2}+\frac{1}{2}-s\right) \cdot \zeta\left(\frac{r z+r-2}{2}+\frac{1}{2}+s\right)}{\zeta(2-2 s)} \cdot E_{z+1, s-\frac{z+1}{2},-s-\frac{z+1}{2}}^{r-2,1,1} d s
\end{gathered}
$$

where the Eisenstein series are normalized naively.
Again over \mathbb{Q}, the most-continuous part of the moment expansion for $G L_{r}$ is of the form

$$
\int_{\operatorname{Re}(s)=\frac{1}{2}} \int_{t \in \Lambda}\left|L\left(s, \pi_{f} \times \pi_{E_{\frac{1}{2}+i t}^{\min }}\right)\right|^{2} M_{t}(s) d s d t=\iint_{\Lambda}\left|\frac{\Pi_{1 \leq \ell \leq r-1} L\left(s+i t_{\ell}, f\right)}{\Pi_{1 \leq j<\ell<n} \zeta\left(1-i t_{j}+i t_{\ell}\right)}\right|^{2} M_{t}(s) d s d t
$$

where

$$
\Lambda=\left\{t \in \mathbb{R}^{r-1}: t_{1}+\ldots+t_{r-1}=0\right\}
$$

and where M is a weight function depending upon f and F. More generally, let $r-1=m \cdot b$. For F on $G L_{m}$, let

$$
F^{\Delta}=F \otimes \ldots \otimes F
$$

on $G L_{m} \times \ldots \times G L_{m}$. Inside the moment expansion we have (recall Langlands-Shahidi)

$$
\int_{\operatorname{Re}(s)=\frac{1}{2}} \int_{\Lambda}\left|L\left(s, \pi_{f} \times \pi_{E_{F} \Delta, \frac{1}{2}+i t}\right)\right|^{2} M_{F, t}(s) d s d t=\iint\left|\frac{\Pi_{1 \leq \ell \leq b} L\left(s+i t_{\ell}, \pi_{f} \times \pi_{F}\right)}{\Pi_{1 \leq j<\ell \leq b} L\left(1-i t_{j}+i t_{\ell}, \pi_{F} \times \pi_{F^{\vee}}\right)}\right|^{2} M d s d t
$$

Replacing the cuspform f on $G L_{r}(\mathbb{Q})$ by a (truncated) minimal-parabolic Eisenstein series E_{α} with $\alpha \in \mathbb{C}^{n-1}$, the most-continuous part of the moment expansion contains a term

$$
\iint_{\Lambda}\left|\frac{\Pi_{1 \leq \mu \leq n, 1 \leq \ell \leq r-1} \zeta\left(\alpha_{\mu}+s+i t_{\ell}\right)}{\Pi_{1 \leq j<\ell<r} \mid \zeta\left(1-i t_{j}+i t_{\ell}\right)}\right|^{2} d s d t
$$

Taking $\alpha=0 \in \mathbb{C}^{r-1}$ gives

$$
\iint_{\Lambda}\left|\frac{\Pi_{1 \leq \ell \leq r-1} \zeta\left(s+i t_{\ell}\right)^{r}}{\Pi_{1 \leq j<\ell<r} \zeta\left(1-i t_{j}+i t_{\ell}\right)}\right|^{2} M d s d t
$$

For example, for $G L_{3}$, where $\Lambda=\{(t,-t)\} \approx \mathbb{R}$,

$$
\iint_{\mathbb{R}}\left|\frac{\zeta(s+i t)^{3} \cdot \zeta(s-i t)^{3}}{\zeta(1-2 i t)}\right|^{2} M d s d t
$$

and for $G L_{4}$

$$
\int_{(s)} \int_{\Lambda}\left|\frac{\zeta\left(s+i t_{1}\right)^{4} \cdot \zeta\left(s+i t_{2}\right)^{4} \cdot \zeta\left(s+i t_{3}\right)^{4}}{\zeta\left(1-i t_{1}+i t_{2}\right) \zeta\left(1-i t_{1}+i t_{3}\right) \zeta\left(1-i t_{2}+i t_{3}\right)}\right|^{2} M d s d t
$$

2. Background and normalizations

We recall some facts concerning Whittaker models and Rankin-Selberg integral representations of L functions, and spectral theory for automorphic forms, on $G L_{r}$. To compare zeta local integrals formed from vectors in cuspidal representations to local L-functions attached to the representations, we specify distinguished vectors in irreducible representations of p-adic and archimedean groups. Locally at both p adic and archimedean places, Whittaker models with spherical vectors have a natural choice of distinguished vector, namely, the spherical vector taking value 1 at the identity element of the group.

Even in general, for the specific purposes here, at finite places the facts are clear. At archimedean places the facts are more complicated, and, further, the situation dictates choices of data, and we are not free to make ideal choices. See [Cogdell 2002], [Cogdell 2003], [Cogdell 2004] for detailed surveys, and references to the literature, mostly papers of Jacquet, Piatetski-Shapiro, and Shalika. The spectral theory is due to [Langlands 1976], [Moeglin-Waldspurger 1995], and proof of conjectures of [Jacquet 1983] in [MoeglinWaldspurger 1989].

Let P be the standard maximal proper parabolic

$$
P=P^{r-1,1}=\left\{\left(\begin{array}{cc}
(r-1) \text {-by- }(r-1) & * \\
0 & 1 \text {-by-1 }
\end{array}\right)\right\}
$$

Let

$$
U=\left\{\left(\begin{array}{cc}
1_{r-1} & * \\
0 & 1
\end{array}\right)\right\} \quad H=\left\{\left(\begin{array}{cc}
(r-1)-\text { by }-(r-1) & 0 \\
0 & 1
\end{array}\right)\right\}
$$

and

$$
N=\{\text { upper-triangular unipotent elements in } H\}
$$

$$
=(\text { unipotent radical of standard minimal parabolic in } H)
$$

and let Z be the center of G. Let K_{v} be the standard maximal compact in the k_{v}-valued points G_{v} of G. Thus, for $v<\infty, K_{v}=G L_{r}\left(\mathfrak{o}_{v}\right)$. For $v \approx \mathbb{R}$, take $K_{v}=O_{r}(\mathbb{R})$. For $v \approx \mathbb{C}$ take $K_{v}=U(r)$.

A standard choice of non-degenerate character on $N_{k} U_{k} \backslash N_{\mathbb{A}} U_{\mathbb{A}}$ is

$$
\psi(n \cdot u)=\psi_{0}\left(n_{12}+n_{23}+\ldots+n_{r-2, r-1}\right) \cdot \psi_{0}\left(u_{r-1, r}\right)
$$

where ψ_{0} is a fixed non-trivial character on \mathbb{A} / k. A cuspform f has a Fourier-Whittaker expansion along $N U$

$$
f(g)=\sum_{\xi \in N_{k} \backslash H_{k}} W_{f}(\xi g) \quad \text { where } \quad W_{f}(g)=\int_{N_{k} U_{k} \backslash N_{\mathbb{A}} U_{\mathbb{A}}} \bar{\psi}(n u) f(n u g) d n d u
$$

The Whittaker function $W_{f}(g)$ factors over primes, and a careful normalization of this factorization is set up below. Cuspforms F on H have corresponding Fourier-Whittaker expansions

$$
F(h)=\sum_{\xi \in N_{k}^{\prime} \backslash H_{k}^{\prime}} W_{F}(\xi h) \quad \text { where } \quad W_{F}(g)=\int_{N_{k}^{\prime} \backslash N_{\mathbb{A}}^{\prime}} \bar{\psi}(n) F(n h) d n
$$

where $H^{\prime} \approx G L_{r-2}$ sits inside H as H sits inside $G, N^{\prime}=N \cap H^{\prime}$, and ψ is restricted from $N U$ to N. This Whittaker function also factors $W_{F}=\bigotimes_{v} W_{F, v}$.

At finite places v, given an irreducible admissible representation π_{v} of G_{v} admitting a Whittaker model, [Jacquet-PS-Shalika 1981] shows that there is an essentially unique effective vector $W_{\pi_{v}}^{\text {eff }}$, generalizing the characterization of newform in [Casselman 1973], as follows. For π_{v} spherical, $W_{\pi_{v}}^{\text {eff }}$ is the usual unique spherical Whittaker vector taking value 1 at the identity element of the group, as in [Shintani 1976], [Casselman-Shalika 1980]. For non-spherical local representations, define effective vector as follows. Let

$$
U_{v}^{\mathrm{opp}}(\ell)=\left\{\left(\begin{array}{cc}
1_{r-1} & 0 \\
x & 1
\end{array}\right): x=0 \bmod \mathfrak{p}^{\ell}\right\}
$$

Let $K_{v}^{H} \approx G L_{r-1}\left(\mathfrak{o}_{v}\right)$ be the standard maximal compact of H_{v}. Define a congruence subgroup of K_{v} by

$$
K_{v}(\ell)=K_{v}^{H} \cdot\left(U_{v} \cap K_{v}\right) \cdot U_{v}^{\mathrm{opp}}(\ell)
$$

For a non-spherical Whittaker model π_{v} there is a unique positive integer ℓ_{v}, the conductor of π_{v}, such that π_{v} has no non-zero vectors fixed by $K_{v}\left(\ell^{\prime}\right)$ for $\ell^{\prime}<\ell_{v}$, and has a one-dimensional space of vectors fixed by $K_{v}\left(\ell_{v}\right)$. The remaining ambiguous constant is completely specified by requiring that local Rankin-Selberg integrals

$$
Z_{v}\left(s, W_{\pi_{v}}^{\mathrm{eff}} \times W_{\pi_{v}^{\prime}}^{o}\right)=\int_{N_{v} \backslash H_{v}}|\operatorname{det} Y|^{s} W_{\pi_{v}}^{\mathrm{efff}}\left(\begin{array}{ll}
Y & \\
& 1
\end{array}\right) W_{\pi_{v}^{\prime}}^{o}(Y) d Y
$$

produce the correct local factors $L_{v}\left(s, \pi_{v} \times \pi_{v}^{\prime}\right)$ of $G L_{r} \times G L_{r-1}$ Rankin-Selberg L-functions for every spherical representation π_{v}^{\prime} of the local $G L_{r-1}$, with normalized spherical Whittaker vector $W_{\pi_{v}^{\prime}}$ in π_{v}^{\prime}. That is,

$$
Z_{v}\left(s, W_{\pi_{v}}^{\mathrm{eff}} \times W_{\pi_{v}^{\prime}}^{o}\right)=L_{v}\left(s, \pi_{v} \times \pi_{v}^{\prime}\right)
$$

with no additional factor on the right-hand side. See Section 4 of [Jacquet-PS-Shalika 1983], and comments below. Cuspidal automorphic representations $\pi \approx \bigotimes_{v}^{\prime} \pi_{v}$ of $G_{\mathbb{A}}$ admit local Whittaker models at all finite places, so locally at all finite places have a unique effective vector.

Facts concerning archimedean local Rankin-Selberg integrals for $G L_{m} \times G L_{n}$ for general m, n are more complicated than the non-archimedean cases. See [Stade 2001], [Stade 2002], [Cogdell-PS 2003], as well as the surveys [Cogdell 2002], [Cogdell 2003], [Cogdell 2004]. The spherical case for $G L_{r} \times G L_{r-1}$ admits fairly explicit treatment, but this is insufficient for our purposes. Fortunately, for us there is no compulsion to attempt to specify the archimedean local data for Rankin-Selberg integrals. Indeed, the local archimedean Rankin-Selberg integrals will be deformed into shapes essentially unrelated to the corresponding L-factor, in any case. Thus, in the moment expansion in the theorem below we can use any systematic specification of distinguished vectors $e_{\pi_{v}}$ in irreducible representations π_{v} of G_{v}, and $e_{\pi_{v}^{\prime}}$ in π_{v}^{\prime} of H_{v}, for v archimedean. For $v \mid \infty$ and π_{v} a Whittaker model representation of G_{v} with a spherical vector, let the distinguished vector $e_{\pi_{v}}$ be the spherical vector normalized to take value 1 at the identity element of the group. Similarly, for π_{v}^{\prime} a Whittaker model representation of H_{v} with a spherical vector, let the distinguished vector $e_{\pi_{v}^{\prime}}$ be the normalized spherical vector. Anticipating that cuspforms generating spherical representations at archimedean places make up the bulk of the space of automorphic forms, we do not give an explicit choice of distinguished vector in other archimedean representations. Rather, we formulate the normalizations below, and the moment expansion, in a fashion applicable to any choice of distinguished vectors in archimedean representations.

Let π be an automorphic representation of $G_{\mathbb{A}}$, factoring over primes as $\pi \approx \bigotimes_{v}^{\prime} \pi_{v}$ admitting a global Whittaker model. Each local representation π_{v} has a Whittaker model, since π has a global Whittaker model. At each finite place v, let $W_{\pi_{v}}^{\text {eff }}$ be the normalized effective vector, and $e_{\pi_{v}}$ the distinguished vector at $v \mid \infty$. Let $f \in \pi$ be a moderate-growth automorphic form on $G_{\mathbb{A}}$ corresponding to a monomial tensor in π, consisting of the effective vector at all finite primes, and the distinguished vector $e_{\pi_{v}}$ at $v \mid \infty$. Then the global Whittaker function of f is a globally-determined constant multiple of the product of the local functions:

$$
W_{f}=\rho_{f} \cdot \bigotimes_{v \mid \infty} e_{\pi_{v}} \otimes \bigotimes_{v<\infty} W_{\pi_{v}}^{\mathrm{eff}}
$$

where ρ_{f} is a general analogue of the leading Fourier coefficient $\rho_{f}(1)$ in the $G L_{2}(\mathbb{Q})$ theory.
Let π^{\prime} be an automorphic representation of $H_{\mathbb{A}}$ spherical at all finite primes, admitting a global Whittaker model. Let π^{\prime} factor as $j: \bigotimes_{v}^{\prime} \pi_{v}^{\prime} \rightarrow \pi^{\prime}$. Certainly each π_{v}^{\prime} admits a Whittaker model. At each finite v, let $W_{\pi_{v}^{\prime}}^{o}$ be the normalized spherical vector in π_{v}^{\prime}, and at archimedean v let $e_{\pi_{v}^{\prime}}$ be the distinguished vector. For a moderate-growth automorphic form $F \in \pi^{\prime}$ corresponding to a monomial vector in the factorization of π^{\prime}, at all finite places corresponding to the spherical Whittaker function $W_{\pi_{v}^{\prime}}^{o}$, and to the distinguished vector $e_{\pi_{v}^{\prime}}$ at archimedean places, again specify a constant ρ_{F} by

$$
W_{F}=\rho_{F} \cdot \bigotimes_{v \mid \infty} e_{\pi_{v}^{\prime}} \otimes \bigotimes_{v<\infty} W_{\pi_{v}^{\prime}}^{o}
$$

When π^{\prime} occurs discretely in the space of L^{2} automorphic forms on H, each of the local factors of π^{\prime} is unitarizable, and uniquely so up to a constant, by irreducibility. For an arbitrary vector $\varepsilon=\varepsilon_{\infty}$ in π_{∞}^{\prime}, let F^{ε} be the automorphic form corresponding to $\bigotimes_{v<\infty} W_{\pi_{v}}^{o} \otimes \varepsilon$ by the isomorphism j. Define $\rho_{F^{\varepsilon}}$ by

$$
W_{F^{\varepsilon}}=\rho_{F^{\varepsilon}} \cdot \bigotimes_{v<\infty} W_{\pi_{v}}^{o} \otimes \varepsilon
$$

By Schur's Lemma, the comparison of ρ_{F} and $\rho_{F^{\varepsilon}}$ depends only upon the comparison of archimedean data, namely,

$$
\frac{\rho_{F^{\varepsilon}}}{\rho_{F}}=\frac{|\varepsilon|_{\pi_{\infty}^{\prime}}}{\left|\otimes_{v \mid \infty} e_{\pi_{v}^{\prime}}\right|_{\pi_{\infty}^{\prime}}}
$$

with Hilbert space norms on the representation π_{∞}^{\prime} at archimedean places. The ambiguity of these norms by a constant disappears in taking ratios.

Indeed, the global constants ρ_{F} and $\rho_{F^{\varepsilon}}$ can be compared by a similar device (and induction) for F and F_{ε} in any irreducible π^{\prime} occurring in the L^{2} automorphic spectral expansion for H. We do not do carry this out explicitly, since this would require setting up normalizations for the full spectral decomposition, while our main interest is in the cuspidal (hence, discrete) part.

With f cuspidal and F moderate growth, corresponding to distinguished vectors, as above, the RankinSelberg zeta integral is the finite-prime Rankin-Selberg L-function, with global constants ρ_{f} and ρ_{F}, and with archimedean local Rankin-Selberg zeta integrals depending upon the distinguished vectors at archimedean places:

$$
\int_{H_{k} \backslash H_{\mathbb{A}}}|\operatorname{det} Y|^{s-\frac{1}{2}} F(Y) f\left(\begin{array}{ll}
Y & \\
& 1
\end{array}\right) d Y=\rho_{f} \cdot \rho_{F} \cdot L\left(s, \pi \times \pi^{\prime}\right) \cdot \prod_{v \mid \infty} Z_{v}\left(s, e_{\pi_{v}} \times e_{\pi_{v}^{\prime}}\right)
$$

The finite-prime part of the Rankin-Selberg L-function appears regardless of the archimedean local data. The global constants ρ_{f} and ρ_{F} do depend partly upon the local archimedean choices, but are global objects.

We need a spectral decomposition of part of $L^{2}\left(H_{k} \backslash H_{\mathbb{A}}\right)$, as follows. Let $K_{\text {fin }}^{H}$ be the standard maximal compact $G L_{r-1}(\widehat{\mathfrak{o}})$ of $H_{\text {fin }}$, where as usual $\widehat{\mathfrak{o}}$ is $\prod_{v<\infty} \mathfrak{o}_{v}$, with \mathfrak{o}_{v} the local integers at the finite place v of k. First, there is the Hilbert direct-integral decomposition by characters ω on the central archimedean split component Z^{+}of H : let

$$
i: y \longrightarrow\left(y^{\frac{1}{d}}, \ldots, y^{\frac{1}{d}}, 1,1, \ldots\right) \quad(\text { for } y>0, \text { with } d=[k: \mathbb{Q}])
$$

be the diagonal imbedding of the positive real numbers in the archimedean factors of the ideles of k. The central archimedean split component is

$$
Z^{+}=\left\{j(y)=\left(\begin{array}{ccc}
i(y)^{1 /(r-1)} & & \\
& \ddots & \\
& & i(y)^{1 /(r-1)}
\end{array}\right) \in H_{\mathbb{A}}: y>0\right\}
$$

The point of our parametrization is that (with idele norms)

$$
|\operatorname{det} j(y)|=|i(y)|=y \quad(\text { with } y>0)
$$

The corresponding spectral decomposition is

$$
L^{2}\left(H_{k} \backslash H_{\mathbb{A}}\right) \approx \int_{\mathbb{R}}^{\oplus} L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}}, \omega_{i t}\right) d t
$$

where $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}}, \omega_{i t}\right)$ is the isotypic component of functions Φ with $|\Phi|$ in $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}}\right)$ transforming by

$$
\Phi(j(y) \cdot h)=y^{i t} \cdot \Phi(h) \quad\left(\text { for } y>0 \text { and } h \in H_{\mathbb{A}}\right)
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
under Z^{+}. The projections and spectral synthesis along Z^{+}can be written as

$$
F(h)=\int_{\mathbb{R}}\left(\int_{0}^{\infty} F(j(y) \cdot h) y^{-i t} \frac{d y}{y}\right) d t
$$

Each isotypic component $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}}, \omega_{i t}\right)$ has a direct integral decomposition as a representation of $H_{\mathbb{A}}$, of the form

$$
L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}}, \omega_{i t}\right) \approx \int_{\Xi}^{\oplus} \pi^{\prime} \otimes|\operatorname{det}|^{i t} d \pi^{\prime}
$$

where Ξ is the set of irreducibles π^{\prime} occuring in $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}}, \omega_{0}\right)$. That is, the irreducibles for general archimedean split-component character $\omega_{i t}$ differ merely by a determinant twist from the trivial splitcomponent character case. The measure is not described explicitly here, apart from the observation that the discrete part of the decomposition, including the cuspidal part, has counting measure.

For our applications, we are concerned with the subspaces $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}} / K_{\text {fin }}^{H}, \omega\right)$ of right $K_{\text {fin }}^{H}$-invariant functions. Since each π^{\prime} factors over primes as a restricted tensor product $\pi^{\prime} \approx \bigotimes_{v}^{\prime} \pi_{v}^{\prime}$ of irreducibles π_{v}^{\prime} of the local points H_{v}, the decomposition of $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}} / K_{\text {fin }}^{H}, \omega\right)$ only involves the subset Ξ^{o} consisting of irreducibles $\pi^{\prime} \in \Xi$ such that for every finite place v the local representation π_{v}^{\prime} is spherical. Let π_{∞}^{\prime} be the archimedean factor of π^{\prime}, and $\pi_{\text {fin }}^{\prime}$ the finite-place factor, so $\pi^{\prime} \approx \pi_{\infty}^{\prime} \otimes \pi_{\text {fin }}^{\prime}$. Let $\pi_{\text {fin }}^{\prime o}$ be the one-dimensional space of $K_{\text {fin }}^{H}$-fixed vectors in $\pi_{\text {fin }}^{\prime}$. As a representation of the archimedean part H_{∞} of $H_{\mathbb{A}}$,

$$
L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}} / K_{\mathrm{fin}}^{H}, \omega_{i t}\right) \approx \int_{\Xi^{o}}^{\oplus}\left(\pi_{\infty}^{\prime} \otimes \pi_{\mathrm{fin}}^{\prime o}\right) \otimes|\operatorname{det}|^{i t} d \pi^{\prime}
$$

An automorphic spectral decomposition for F in $L^{2}\left(Z^{+} H_{k} \backslash H_{\mathbb{A}} / K_{\text {fin }}^{H}, \omega_{i t}\right)$ can be written in the form

$$
\left.F=\left.\int_{\Xi^{o}} \sum_{j}\left\langle F, \Phi_{\pi^{\prime} j} \otimes\right| \operatorname{det}\right|^{i t}\right\rangle \cdot \Phi_{\pi^{\prime} j} \otimes|\operatorname{det}|^{i t} d \pi^{\prime}
$$

where Ξ^{o} indexes spherical automorphic representations π^{\prime} with trivial archimedean split-component character entering the spectral expansion, for each of these j indexes an orthonormal basis in the archimedean component π_{∞}^{\prime}, and $\Phi_{\pi^{\prime} j}$ is the corresponding moderate-growth spherical automorphic form in the global π^{\prime}. The pairing is the natural one, namely,

$$
\left.\left.\left\langle F, \Phi_{\pi^{\prime} j} \otimes\right| \operatorname{det}\right|^{i t}\right\rangle=\int_{H_{k} \backslash H_{\mathbb{A}}} F(h) \bar{\Phi}_{\pi^{\prime} j}(h)|\operatorname{det} h|^{-i t} d h
$$

3. Moment expansion

We define a Poincaré series $\mathfrak{P}=\mathfrak{P}_{\varphi_{\infty}, z, w}$ depending on archimedean data φ_{∞} and two complex parameters z, w, such that, for a cuspform f of conductor ℓ on $G=G L_{r}$ over a number field k, the integral

$$
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}}|f|^{2} \cdot \mathfrak{P}
$$

is an integral moment of L-functions attached to f, in the sense that it is a sum and integral over a spectral family, namely, a weighted average over spectral components with respect to $L^{2}\left(G L_{r-1}(k) \backslash G L_{r-1}(\mathbb{A})\right)$. Subsequently, we will obtain a spectral expansion of the Poincaré series, giving the meromorphic continuation of this integral in the complex parameters.

For $z \in \mathbb{C}$, let

$$
\varphi=\bigotimes_{v} \varphi_{v}
$$

where for v finite

$$
\varphi_{v}(g)=\left\{\begin{array}{cl}
\left|(\operatorname{det} A) / d^{r-1}\right|_{v}^{z} & \left(\text { for } g=m k \text { with } m=\left(\begin{array}{cc}
A & 0 \\
0 & d
\end{array}\right) \text { in } Z_{v} H_{v} \text { and } k \in K_{v}\right) \\
0 & \text { (otherwise) }
\end{array}\right.
$$

For v archimedean require right K_{v}-invariance and left equivariance

$$
\varphi_{v}(m g)=\left|\frac{\operatorname{det} A}{d^{r-1}}\right|_{v}^{z} \cdot \varphi_{v}(g) \quad\left(\text { for } g \in G_{v}, \text { for } m=\left(\begin{array}{cc}
A & 0 \\
0 & d
\end{array}\right) \in Z_{v} H_{v}\right)
$$

Thus, for $v \mid \infty$, the further data determining φ_{v} consists of its values on U_{v}. A simple useful choice of archimedean data is

$$
\varphi_{v}\left(\begin{array}{cc}
1_{r-1} & x \\
0 & 1
\end{array}\right)=\left(1+\left|x_{1}\right|^{2}+\ldots+\left|x_{r-1}\right|^{2}\right)^{-\left[k_{v}: \mathbb{R}\right] w / 2} \quad\left(\text { where } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{r-1}
\end{array}\right), \text { and } w \in \mathbb{C}\right)
$$

The norm $\left|x_{1}\right|^{2}+\ldots+\left|x_{r-1}\right|^{2}$ is normalized to be invariant under K_{v}. Thus, φ is left $Z_{\mathbb{A}} H_{k}$-invariant. We attach to φ a Poincaré series

$$
\mathfrak{P}(g)=\sum_{\gamma \in Z_{k} H_{k} \backslash G_{k}} \varphi(\gamma g)
$$

With subscripts ∞ denoting the archimedean parts of various objects, for $h, m \in H_{\infty}$, define

$$
\mathcal{K}(h, m)=\int_{U_{\infty}} \varphi_{\infty}(u) \psi_{\infty}\left(h u h^{-1}\right) \bar{\psi}_{\infty}\left(m u m^{-1}\right) d u
$$

Let $\pi \approx \otimes^{\prime} \pi_{v}$ be a cuspidal automorphic representation of G, with finite set S of finite primes such that π_{v} is spherical for finite $v \notin S$, and π_{v} has conductor ℓ_{v} for $v \in S$. We say a cuspform f in π is a newform if it is spherical at finite $v \notin S$ and is right $K_{v}\left(\ell_{v}\right)$-fixed for $v \in S$. As above, the global Whittaker function W_{f} of f factors as

$$
W_{f}=\rho_{f} \cdot \bigotimes_{v<\infty} W_{\pi_{v}}^{\mathrm{eff}} \otimes \bigotimes_{v \mid \infty} e_{\pi_{v}}
$$

Let $e_{\pi_{\infty}}=\otimes_{v \mid \infty} e_{\pi_{v}}$. Let π^{\prime} be an automorphic representation of H admitting a global Whittaker model, with unitarizable archimedean factor π_{∞}^{\prime}, with orthonormal basis $\varepsilon_{\pi^{\prime} j}$ for π_{∞}^{\prime}. The gamma factors appearing in the moment expansion below are

$$
=\sum_{j} \int_{N_{\infty} \backslash H_{\infty}} \int_{N_{\infty} \backslash H_{\infty}} \int_{K_{\infty}} e_{\pi_{\infty}}(h k) \varepsilon_{\pi^{\prime} j}(h)|\operatorname{det} h|^{z+s-\frac{1}{2}} \bar{e}_{\pi_{\infty}}(m k) \bar{\varepsilon}_{\pi^{\prime} j}(m)|\operatorname{det} m|^{\frac{1}{2}-s} \mathcal{K}(h, m) d m d h d k
$$

The sum over the orthonormal basis for π_{∞}^{\prime} is simply an expression for a projection operator, so is necessarily independent of the orthonormal basis indexed by j. Thus, the sum indeed depends only on the archimedean Whittaker model π_{∞}^{\prime}.

For each automorphic representation π^{\prime} of H occurring (continuously or discretely) in the automorphic spectral expansion for H, and admitting a global Whittaker model, and spherical at all finite primes, let $F_{\pi^{\prime}}$ be an automorphic form in π^{\prime} corresponding to the spherical vector at all finite places and to the distinguished vector $e_{\pi_{\infty}^{\prime}}$ in the archimedean part.
3.1 Theorem: Let f be a cuspform, as just above. For $\operatorname{Re}(z) \gg 1$ and $\operatorname{Re}(w) \gg 1$, we have the moment expansion

$$
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}}|f|^{2} \cdot \mathfrak{P}=\left|\rho_{f}\right|^{2} \int_{\Xi^{o}}\left|\rho_{F_{\pi^{\prime}}}\right|^{2} \int_{\mathbb{R}} L\left(\frac{1}{2}+i t+z, \pi \otimes \pi^{\prime}\right) L\left(\frac{1}{2}-i t, \bar{\pi} \otimes \bar{\pi}^{\prime}\right) \Gamma\left(e_{\pi_{\infty}}, \pi_{\infty}^{\prime}, \frac{1}{2}+i t, z\right) d t d \pi^{\prime}
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
Proof: The typical first unwinding is

$$
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}} \mathfrak{P}(g)|f(g)|^{2} d g=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} \varphi(g)|f(g)|^{2} d g
$$

Express f in its Fourier-Whittaker expansion, and unwind further:

$$
\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} \varphi(g) \sum_{\eta \in N_{k} \backslash H_{k}} W_{f}(\eta g) \bar{f}(g) d g=\int_{Z_{\mathbb{A}} N_{k} \backslash G_{\mathbb{A}}} \varphi(g) W_{f}(g) \bar{f}(g) d g
$$

Use an Iwasawa decomposition $G=(H Z) U K$ everywhere locally to rewrite the whole integral as

$$
\int_{N_{k} \backslash H_{\mathbb{A}} \times U_{\mathbb{A}} \times K_{\mathbb{A}}} \varphi(h u k) W_{f}(h u k) \bar{f}(h u k) d h d u d k
$$

At finite primes $v \notin S$, the right integral over K_{v} can be dropped, since all the functions in the integrand are right K_{v}-invariant. At finite primes $v \in S$, using the newform assumption on f, the one-dimensionality of the $K_{v}\left(\ell_{v}\right)$-fixed vectors in π_{v} implies that the K_{v}-type in which the effective vector lies is irreducible. Thus, by Schur orthogonality and inner product formulas, a diagonal integral of $f\left(x k_{v}\right) \cdot \bar{f}\left(y k_{v}\right)$ over $k_{v} \in K_{v}$ is a positive constant multiple of $f(x) \bar{f}(y)$, for all $x, y \in G_{\mathbb{A}}$. Thus, the integrals over K_{v} for v finite can be dropped entirely, and, up to a positive constant depending only upon the right K_{v}-type of f at $v \in S$, the whole integral is

$$
\int_{N_{k} \backslash H_{\mathbb{A}} \times U_{\mathbb{A}} \times K_{\infty}} \varphi(h u k) W_{f}(h u k) \bar{f}(h u k) d h d u d k
$$

Since \bar{f} is left H_{k}-invariant, it decomposes along $H_{k} \backslash H_{\mathbb{A}}$. The function $h \rightarrow f(h u k)$ with $u \in U_{\mathbb{A}}$ and $k \in K_{\infty}$ is right $K_{\text {fin }}^{H}$-invariant. Thus, \bar{f} decomposes as

$$
\bar{f}(h u k)=\int_{\mathbb{R}} \int_{\Xi^{o}} \sum_{j} \Phi_{\pi^{\prime} j}(h)|\operatorname{det} h|^{i t} \int_{H_{k} \backslash H_{\mathbb{A}}} \bar{\Phi}_{\pi^{\prime} j}(m)|\operatorname{det} m|^{-i t} \bar{f}(m u k) d m d \pi^{\prime} d t
$$

Unwind the Fourier-Whittaker expansion of \bar{f}

$$
\begin{aligned}
\bar{f}(h u k)= & \int_{\Xi^{o}} \sum_{j} \Phi_{\pi^{\prime} j}(h)|\operatorname{det} h|^{i t} \int_{H_{k} \backslash H_{\mathbb{A}}} \bar{\Phi}_{\pi^{\prime} j}(m)|\operatorname{det} m|^{-i t} \sum_{\eta \in N_{k} \backslash H_{k}} \bar{W}_{f}(\eta m u k) d m d k d \pi^{\prime} \\
& =\int_{\Xi^{o}} \Phi_{\pi^{\prime} j}(h)|\operatorname{det} h|^{i t} \int_{N_{k} \backslash H_{\mathbb{A}}} \bar{\Phi}_{\pi^{\prime} j}(m)|\operatorname{det} m|^{-i t} \bar{W}_{f}(m u k) d m d k d \pi^{\prime}
\end{aligned}
$$

Then the whole integral is

$$
\begin{gathered}
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}} \mathfrak{P}(g)|f(g)|^{2} d g \\
=\int_{\mathbb{R}} \int_{\Xi^{o}} \sum_{j} \int_{N_{k} \backslash H_{\mathbb{A}}} \int_{U_{\mathbb{A}}} \int_{K_{\infty}} \varphi(h u k) \Phi_{\pi^{\prime} j}(h)|\operatorname{det} h|^{i t} W_{f}(h u k) \int_{N_{k} \backslash H_{\mathbb{A}}} \bar{W}_{f}(m u k) \bar{\Phi}_{\pi^{\prime} j}(m)|\operatorname{det} m|^{-i t} d m d h d u d k d \pi^{\prime} d t
\end{gathered}
$$

The part of the integrand that depends upon $u \in U$ is

$$
\int_{U_{\mathbb{A}}} \varphi(h u k) W_{f}(h u k) \bar{W}_{f}(m u k) d u=\varphi(h) W_{f}(h k) \bar{W}_{f}(m k) \cdot \int_{U_{\mathbb{A}}} \varphi(u) \psi\left(h u h^{-1}\right) \bar{\psi}\left(m u m^{-1}\right) d u
$$

The latter integrand and integral visibly factor over primes. We need the following:
3.2 Lemma: Let v be a finite prime. For $h, m \in H_{v}$ such that $W_{\pi_{v}}^{\mathrm{eff}}(h) \neq 0$ and $W_{\pi_{v}}^{\mathrm{eff}}(m) \neq 0$,

$$
\int_{U_{v}} \varphi_{v}(h) \psi_{v}\left(h u h^{-1}\right) \bar{\psi}_{v}\left(\mathrm{mum}^{-1}\right) d u=\int_{U_{v} \cap K_{v}} 1 d u
$$

Proof: At a finite place $v, \varphi_{v}(u) \neq 0$ if and only if $u \in U_{v} \cap K_{v}$, and for such u

$$
\psi_{v}\left(h u h^{-1}\right) \cdot W_{\pi_{v}}(h)=W_{\pi_{v}}^{\mathrm{eff}}\left(h u h^{-1} \cdot h\right)=W_{\pi_{v}}^{\mathrm{eff}}(h u)=W_{\pi_{v}}^{\mathrm{eff}}(h) \cdot 1
$$

by the right $U_{v} \cap K_{v}$-invariance, since f is a newform, in our present sense. Thus, for $W_{\pi_{v}}^{\text {eff }}(h) \neq 0$, $\psi_{v}\left(h u h^{-1}\right)=1$, and similarly for $\psi_{v}\left(m u m^{-1}\right)$. Thus, the finite-prime part of the integral over U_{v} is just the integral of 1 over $U_{v} \cap K_{v}$, as indicated.

Returning to the proof of the theorem, the archimedean part of the integral does not behave as the previous lemma indicates the finite-prime components do, because of its non-trivial deformation by φ_{∞}. Thus, with subscripts ∞ denoting the infinite-adele part of various objects, for $h, m \in H_{\infty}$, as above, let

$$
\mathcal{K}(h, m)=\int_{U_{\infty}} \varphi_{\infty}(u) \psi_{\infty}\left(h u h^{-1}\right) \bar{\psi}_{\infty}\left(m u m^{-1}\right) d u
$$

The whole integral is

$$
\begin{gathered}
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}} \mathfrak{P}(g)|f(g)|^{2} d g \\
=\int_{\mathbb{R}} \int_{\Xi^{o}} \sum_{j} \int_{K_{\infty}} \int_{N_{k} \backslash H_{\mathbb{A}}} \int_{N_{k} \backslash H_{\mathbb{A}}} \mathcal{K}(h, m) \varphi(h) W_{f}(h k) \Phi_{\pi^{\prime} j}(h)|\operatorname{det} h|^{i t} \bar{W}_{f}(m k) \bar{\Phi}_{\pi^{\prime} j}(m)|\operatorname{det} m|^{-i t} d m d h d \pi^{\prime} d k d t
\end{gathered}
$$

Normalize the volume of $N_{k} \backslash N_{\mathbb{A}}$ to 1 . For a left N_{k}-invariant function Φ on $H_{\mathbb{A}}$, using the left $N_{\mathbb{A}^{-}}$ equivariance of W by ψ, and the left $N_{\mathbb{A}}$-invariance of φ,

$$
\int_{N_{k} \backslash N_{\mathbb{A}}} \varphi(n h) \Phi(n h) W_{f}(n h k) d n=\varphi(h) W_{f}(h) \int_{N_{k} \backslash N_{\mathbb{A}}} \psi(n) \Phi(n h) d n=\varphi(h) W_{f}(h k) W_{\Phi}(h)
$$

where

$$
W_{\Phi}(h)=\int_{N_{k} \backslash N_{\mathbb{A}}} \psi(n) \Phi(n h) d n
$$

(The integral is not against $\bar{\psi}(n)$, but $\psi(n)$.) That is, the integral over $N_{k} \backslash H_{\mathbb{A}}$ is equal to an integral against (up to an alteration of the character) the Whittaker function W_{Φ} of Φ, which factors over primes for suitable Φ. Thus, the whole integral is

$$
\begin{gathered}
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}} \mathfrak{P}(g)|f(g)|^{2} d g \\
=\int_{\mathbb{R}} \int_{\Xi^{o}} \sum_{j} \int_{N_{\mathbb{A}} \backslash H_{\mathbb{A}}} \int_{N_{\mathbb{A}} \backslash H_{\mathbb{A}}} \int_{K_{\infty}} \mathcal{K}(h, m) W_{f}(h k) W_{\Phi_{\pi^{\prime} j}}(h)|\operatorname{det} h|^{i t} \bar{W}_{f}(m k) \bar{W}_{\Phi_{\pi^{\prime} j}}(m)|\operatorname{det} m|^{-i t} d m d h d \pi^{\prime} d k d t
\end{gathered}
$$

For fixed π^{\prime}, j, t, the integral over m, h, k is a product of two Euler products, since the Whittaker functions factor over primes, normalized by global constants ρ_{f} and $\rho_{\Phi_{\pi^{\prime} j}}$. The functions $\left\{\Phi_{\pi^{\prime}, j}: j\right\}$ correspond to an orthonormal basis $\left\{\varepsilon_{\pi^{\prime} j}\right\}$ in the local archimedean part π_{∞}^{\prime} of π^{\prime}, so, as noted earlier, by Schur's lemma the global constant $\rho_{\Phi_{\pi^{\prime}}}$ is independent of j. For each π^{\prime}, let $F_{\pi^{\prime}}$ be the finite-prime spherical automorphic form corresponding to distinguished vectors at archimedean places. The $\Phi_{\pi^{\prime} j}$'s are normalized spherical at all finite places. Thus, for each π^{\prime} and j,

$$
\int_{N_{\mathbb{A}} \backslash H_{\mathbb{A}}} \int_{N_{\mathbb{A}} \backslash H_{\mathbb{A}}} \int_{K_{\infty}} \varphi(h) W_{f}(h k) W_{\Phi_{\pi^{\prime} j}}(h)|\operatorname{det} h|^{i t} \bar{W}_{f}(m k) \bar{W}_{\Phi_{\pi^{\prime} j}}(m)|\operatorname{det} m|^{-i t} d m d h d k
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)

$$
\begin{gathered}
=\left|\rho_{f}\right|^{2} \cdot\left|\bar{\rho}_{F_{\pi^{\prime}}}\right|^{2} \cdot L\left(\frac{1}{2}+i t+z, \pi \times \pi^{\prime}\right) L\left(\frac{1}{2}-i t, \pi \times \pi^{\prime}\right) \\
\times \int_{N_{\infty} \backslash H_{\infty}} \int_{N_{\infty} \backslash H_{\infty}} \int_{K_{\infty}} \int_{K_{\infty}} e_{\pi_{\infty}}(h u k) \varepsilon_{\pi^{\prime} j}(h)|\operatorname{det} h|^{i t} \bar{\varepsilon}_{\pi^{\prime} j}(m) \bar{e}_{\pi_{\infty}}(m u k)|\operatorname{det} m|^{-i t} d m d h d k
\end{gathered}
$$

This gives the assertion of the theorem.
3.3 Remark: With or without detailed knowledge of the residual part of L^{2} (meaning square-integrable residues of cuspidal-data Eisenstein series), automorphic forms not admitting Whittaker models do not enter in this expansion.

4. Spectral expansion of Poincaré series

The Poincaré series admits a spectral expansion facilitating its meromorphic continuation. The only cuspidal data appearing in this expansion is from $G L_{2}$, right K_{v}-invariant everywhere locally.

In the Poincaré series \mathfrak{P}, let φ_{∞} be the archimedean data, and z, w the two complex parameters. For a spherical $G L_{2}$ cuspform F, let

$$
\Phi_{s, F}\left(\left(\begin{array}{cc}
A & * \\
0 & D
\end{array}\right) \cdot \theta\right)|\operatorname{det} A|^{2 s} \cdot|\operatorname{det} D|^{-(r-2) s} \cdot F(D) \quad\left(\text { where } \theta \in K_{\mathbb{A}}\right)
$$

and define an Eisenstein series

$$
E_{s, F}^{r-2,2}(g)=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi_{s, F}(\gamma \cdot g)
$$

Also, with
$\Phi_{s_{1}, s_{2}, s_{3}, \chi}\left(\left(\begin{array}{ccc}A & * & * \\ 0 & m_{2} & * \\ 0 & 0 & m_{3}\end{array}\right) \cdot \theta\right)=|\operatorname{det} A|^{s_{1}} \cdot\left|m_{2}\right|^{s_{2}} \chi\left(m_{2}\right) \cdot\left|m_{3}\right|^{s_{3}} \bar{\chi}\left(m_{3}\right) \quad\left(\right.$ for $\left.\theta \in K_{\mathbb{A}}, A \in G L_{r-2}\right)$
define an Eisenstein series

$$
E_{s_{1}, s_{2}, s_{3}, \chi}^{r-2,1,1}(g)=\sum_{\gamma \in P_{k}^{r-2,1,1} \backslash G_{k}} \Phi_{s_{1}, s_{2}, s_{3}, \chi}(\gamma g)
$$

4.1 Theorem: The Poincaré series \mathfrak{P} has a spectral expansion

$$
\begin{gathered}
\mathfrak{P}=\left(\int_{N_{\infty}} \varphi_{\infty}\right) E_{z+1}^{r-1,1}+\sum_{F}\left(\int_{P G L_{2}\left(k_{\infty}\right.} \widetilde{\varphi}_{\infty} W_{\bar{F}, \infty}\right) \cdot \rho_{\bar{F}} \cdot L\left(\frac{r z+r-2}{2}+\frac{1}{2}, \pi_{\bar{F}}\right) \cdot E_{\frac{z+1}{2}, F}^{r-2,2} \\
\\
+\sum_{\chi} \frac{\chi(\mathfrak{d})}{4 \pi i \kappa} \int_{R e(s)=\frac{1}{2}}\left(\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{E_{1-s, \bar{\chi}}, \infty}\right)\right. \\
\left.\left.\times \frac{L\left(\frac{r z+r-2}{2}+1-s, \bar{\chi}\right) \cdot L\left(\frac{r z+r-2}{2}+s, \chi\right)}{\Lambda\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(\frac{r z+r-2}{2}\right.}+s-\frac{1}{2}\right) \cdot E_{z+1, s-\frac{(r-2)(z+1)}{2},-s-\frac{(r-2)(z+1)}{2}, \chi}^{r-2,1,1} d s\right)
\end{gathered}
$$

where F runs over an orthonormal basis for everywhere-spherical cuspforms for $G L_{2}, \bar{\rho}_{F}$ is the $G L_{2}$ leading Fourier coefficient of \bar{F}, χ runs over unramified grossencharacters, \mathfrak{d} is the differental ideal of k, κ is the residue of $\zeta_{k}(s)$ at $s=1, W_{F, \infty}$ and $W_{E_{s, \chi}}$ are the normalized archimedean Whittaker functions for $G L_{2}$, $\pi_{\bar{F}}$ is the representation generated by $\bar{F}, L(s, \chi)$ is the usual grossencharacter L-function, and $\Lambda(s, \chi)$ is the grossencharacter L-function with its gamma factor.
4.2 Remark: Notably, the spectral expansion of \mathfrak{P} contains nothing beyond the main term, the cuspidal $G L_{2}$ part induced up to $G L_{r}$, and the continuous $G L_{2}$ part induced up to $G L_{r}$.

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
Proof: Rewrite the Poincaré series as summed in two stages, and apply Poisson summation, namely

$$
\mathfrak{P}(g)=\sum_{Z_{k} H_{k} \backslash G_{k}} \varphi(\gamma g)=\sum_{Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\beta \in U_{k}} \varphi(\beta \gamma g)=\sum_{Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\psi \in\left(U_{k} \backslash U_{\mathbb{A}}\right)^{\prime}} \widehat{\varphi}_{\gamma g}(\psi)
$$

where

$$
\widehat{\varphi}_{g}(\psi)=\int_{U_{\mathbb{A}}} \bar{\psi}(u) \varphi(u g) d u \quad\left(\text { for } g \in G_{\mathbb{A}}\right)
$$

The inner summand for ψ trivial gives the leading term in the spectral expansion of the Poincaré series. Specifically, it gives a vector from which a degenerate Eisenstein series for the $(r-1,1)$ parabolic $P^{r-1,1}=Z H U$ is formed by the outer sum. That is,

$$
g \rightarrow \int_{U_{\mathbb{A}}} \varphi(u g) d u
$$

is left equivariant by a character on $P_{\mathbb{A}}^{r-1,1}$, and is left invariant by $P_{k}^{r-1,1}$, namely,

$$
\begin{aligned}
& \int_{U_{\mathbb{A}}} \varphi(u p g) d u=\int_{U_{\mathbb{A}}} \varphi\left(p \cdot p^{-1} u p \cdot g\right) d u=\delta_{P^{r-1,1}}(m) \cdot \int_{U_{\mathbb{A}}} \varphi(m \cdot u \cdot g) d u \\
= & \left.\left|\frac{\operatorname{det} A}{d^{r-1}}\right|^{z+1} \int_{U_{\mathbb{A}}} \varphi(u g) d u \quad \quad \text { (where } p=\left(\begin{array}{cc}
A & * \\
0 & d
\end{array}\right), m=\left(\begin{array}{cc}
A & 0 \\
0 & d
\end{array}\right), A \in G L_{r-1}\right)
\end{aligned}
$$

The normalization is explicated by setting $g=1$:

$$
\int_{U_{\mathbb{A}}} \varphi(u) d u=\int_{U_{\infty}} \varphi_{\infty} \cdot \int_{U_{\text {fin }}} \varphi_{\text {fin }}=\int_{U_{\infty}} \varphi_{\infty} \cdot \operatorname{meas}\left(U_{\text {fin }} \cap K_{\text {fin }}\right)=\int_{U_{\infty}} \varphi_{\infty}
$$

A natural normalization is that this be 1, so the Eisenstein series includes the archimedean integral and finite-prime measure constant as factors:

$$
\int_{U_{\infty}} \varphi_{\infty} \cdot E_{z+1}^{r-1,1}(g)=\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}}\left(\int_{U_{\mathbb{A}}} \varphi(u \gamma g) d u\right)
$$

The group H_{k} is transitive on non-trivial characters of $U_{k} \backslash U_{\mathbb{A}}$. For fixed non-trivial character ψ_{0} on $k \backslash \mathbb{A}$, let

$$
\psi^{\xi}(u)=\psi_{0}\left(\xi \cdot u_{r-1, r}\right) \quad\left(\text { for } \xi \in k^{\times}\right)
$$

The spectral expansion of \mathfrak{P} with its leading term removed is

$$
\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}} \sum_{\alpha \in P_{k}^{r-2,1} \backslash H_{k}}\left(\sum_{\xi \in k^{\times}} \widehat{\varphi}_{\alpha \gamma g}\left(\psi^{\xi}\right)\right)
$$

where $P^{r-2,1}$ is the corresponding parabolic subgroup of $H \approx G L_{r-1}$. Let

$$
U^{\prime}=\left\{\left(\begin{array}{ccc}
1_{r-2} & & * \\
& 1 & \\
& & 1
\end{array}\right)\right\} \quad U^{\prime \prime}=\left\{\left(\begin{array}{ccc}
1_{r-2} & & \\
& 1 & * \\
& & 1
\end{array}\right)\right\}
$$

Let

$$
\Theta=\left\{\left(\begin{array}{ccc}
1_{r-2} & & \\
& * & * \\
& * & *
\end{array}\right)\right\} \approx G L_{2}
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
Regrouping the sums, the expansion of the Poincaré series with its leading term removed is

$$
\begin{aligned}
& \sum_{\gamma \in P_{k}^{r-2,1,1} \backslash G_{k}}\left(\sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \int_{U_{\mathbb{A}}^{\prime}} \varphi\left(u^{\prime} u^{\prime \prime} \gamma g\right) d u^{\prime} d u^{\prime \prime}\right) \\
= & \sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \sum_{\alpha \in P^{1,1} \backslash \Theta_{k}}\left(\sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \int_{U_{\mathbb{A}}^{\prime}} \varphi\left(u^{\prime} u^{\prime \prime} \alpha \gamma g\right) d u^{\prime} d u^{\prime \prime}\right)
\end{aligned}
$$

Letting

$$
\widetilde{\varphi}(g)=\int_{U_{\mathbb{A}}^{\prime}} \varphi\left(u^{\prime} g\right) d u^{\prime}
$$

the expansion becomes

$$
\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \sum_{\alpha \in P^{1,1} \backslash \Theta_{k}} \sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} \alpha \gamma g\right) d u^{\prime \prime}
$$

We claim the equivariance

$$
\widetilde{\varphi}(p g)=|\operatorname{det} A|^{z+1} \cdot|a|^{z} \cdot|d|^{-(r-1) z-(r-2)} \cdot \widetilde{\varphi}(g) \quad\left(\text { for } p=\left(\begin{array}{ccc}
A & * & * \\
& a & \\
& & d
\end{array}\right) \in G_{\mathbb{A}}, \text { with } A \in G L_{r-2}\right)
$$

This is verified by changing variables in the defining integral: let $x \in \mathbb{A}^{r-2}$ and compute

$$
\left(\begin{array}{ccc}
1_{r-2} & & x \\
& 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
A & b & c \\
& a & \\
& & d
\end{array}\right)=\left(\begin{array}{ccc}
A & b & c+x d \\
& a & \\
& & d
\end{array}\right)=\left(\begin{array}{ccc}
A & b & c \\
& a & \\
& & d
\end{array}\right)\left(\begin{array}{ccc}
1_{r-2} & & A^{-1} x d \\
& 1 & \\
& & 1
\end{array}\right)
$$

Thus, $|\operatorname{det} A|^{z} \cdot|a|^{z} \cdot|d|^{-(r-1) z}$ comes out of the definition of φ, and another $|\operatorname{det} A| \cdot|d|^{2-r}$ from the change-of-measure in the change of variables replacing x by $A x / d$ in the integral defining $\widetilde{\varphi}$ from φ. Note that

$$
|a|^{z} \cdot|d|^{-(r-1) z-(r-2)}=\left|\operatorname{det}\left(\begin{array}{ll}
a & \\
& d
\end{array}\right)\right|^{-\frac{(r-2)}{2} \cdot(z+1)} \cdot|a / d|^{\frac{r z+(r-2)}{2}}
$$

Thus, letting

$$
\Phi(g)=\sum_{\alpha \in P_{k}^{1,1} \backslash \Theta_{k}}\left(\sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} \alpha g\right) d u^{\prime \prime}\right)
$$

we can write

$$
\mathfrak{P}(g)-\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}} \int_{U_{\mathbb{A}}} \varphi(u \gamma g) d u=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi(\gamma g)
$$

The right-hand side of the latter equality is not an Eisenstein series for $P^{r-2,2}$ in the strictest sense.
Define a $G L_{2}$ kernel $\varphi^{(2)}$ for a Poincaré series as follows. As in the general case, we require right invariance by the maximal compact subgroups locally everywhere, and left equivariance

$$
\varphi^{(2)}\left(\left(\begin{array}{ll}
a & * \\
& d
\end{array}\right) \cdot D\right)=|a / d|^{\beta} \cdot \varphi^{(2)}(D)
$$

The remaining ambiguity is the archimedean data $\varphi_{\infty}^{(2)}$, completely specified by giving its values on the archimedean part of the standard unipotent radical, namely,

$$
\varphi_{\infty}^{(2)}\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)=\widetilde{\varphi}\left(\begin{array}{ccc}
1_{r-2} & & \\
& 1 & x \\
& & 1
\end{array}\right) \quad(\widetilde{\varphi} \text { as above })
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
Let $U^{1,1}$ be the unipotent radical of the standard parabolic $P^{1,1}$ in $G L_{2}$. Express $\varphi^{(2)}$ in its Fourier expansion along $U^{1,1}$, and remove the constant term: let

$$
\varphi^{*}(\beta, D)=\varphi^{(2)}(\beta, D)-\int_{U_{\mathbb{A}}^{1,1}} \varphi^{(2)}(\beta, u D) d u=\sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{1,1}} \bar{\psi}^{\xi}(u) \varphi^{(2)}(\beta, u D) d u
$$

The corresponding $G L_{2}$ Poincaré series with leading term removed is

$$
\mathfrak{Q}(\beta, D)=\sum_{\alpha \in P_{k}^{1,1} \backslash G L_{2}(k)} \varphi^{*}(\beta, \alpha D)
$$

Thus, for

$$
g=\left(\begin{array}{cc}
A & * \\
& D
\end{array}\right) \quad\left(\text { with } A \in G L_{r-2}(\mathbb{A}) \text { and } D \in G L_{2}(\mathbb{A})\right)
$$

the inner integral

$$
g \rightarrow \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} g\right) d u^{\prime \prime}
$$

is expressible in terms of the kernel φ^{*} for \mathfrak{Q}, namely,

$$
\sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} g\right) d u^{\prime \prime}=|\operatorname{det} A|^{z+1} \cdot|\operatorname{det} D|^{-\frac{(r-2)}{2} \cdot(z+1)} \cdot \varphi^{*}\left(\frac{r z+r-2}{2}, D\right)
$$

Thus,

$$
\sum_{\alpha \in P_{k}^{1,1} \backslash \Theta_{k}} \sum_{\xi \in k^{\times}} \int_{U_{\mathbb{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} \alpha g\right) d u^{\prime \prime}=|\operatorname{det} A|^{z+1} \cdot|\operatorname{det} D|^{-\frac{(r-2)}{2} \cdot(z+1)} \cdot \mathfrak{Q}\left(\frac{r z+r-2}{2}, D\right)
$$

Thus, letting

$$
\Phi\left(\begin{array}{ll}
A & * \\
& D
\end{array}\right)=|\operatorname{det} A|^{z+1} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{z+1}{2}} \cdot \mathfrak{Q}\left(\frac{r z+r-2}{2}, D\right) \quad\left(\text { with } A \in G L_{r-2} \text { and } D \in G L_{2}\right)
$$

we have

$$
\mathfrak{P}(g)=\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{z+1}^{r_{1}, 1}(g)+\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi(\gamma g)
$$

To obtain a spectral decomposition of the Poincaré series \mathfrak{P} for $G L_{r}$, we first recall from [DiaconuGarrett 2009a] the spectral decomposition of \mathfrak{Q} for $r=2$, and then form $P^{r-2,2}$ Eisenstein series from the spectral fragments.

As in [Diaconu-Garrett 2009a], a direct computation shows that the spectral expansion of the $G L_{2}$ Poincaré series with constant term removed is

$$
\begin{gathered}
\mathfrak{Q}(\beta, D)=\sum_{F}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{\bar{F}, \infty}\right) \cdot \bar{\rho}_{F} \cdot L\left(\beta+\frac{1}{2}, \pi_{\bar{F}}\right) \cdot F \\
+\sum_{\chi} \frac{\chi(\mathfrak{d})}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{E_{1-s, \bar{\chi}}, \infty}\right) \frac{L(\beta+1-s, \bar{\chi}) \cdot L(\beta+s, \chi)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-(\beta+s-1 / 2)} \cdot E_{s, \chi}(D) d s
\end{gathered}
$$

where F runs over an orthonormal basis of everywhere-spherical cuspforms, $\bar{\rho}_{F}$ is the general $G L_{2}$ analogue of the leading Fourier coefficient, $\pi_{\bar{F}}$ is the cuspidal automorphic representation generated by $\bar{F}, W_{\bar{F}, \infty}$ and $W_{E_{s, \chi}, \infty}$ are the normalized spherical vectors in the corresponding archimedean Whittaker models, $\Lambda(s, \chi)$
is the standard L-function completed by adding the archimedean factors, and \mathfrak{d} is the differental idele. Thus, the individual spectral components of Φ are of the form

$$
\Phi_{\frac{z+1}{2}, \Psi}\left(\begin{array}{cc}
A & * \\
0 & D
\end{array} \cdot \theta\right)(\text { constant }) \cdot|\operatorname{det} A|^{z+1} \cdot|\operatorname{det} D|^{-(r-2) \frac{z+1}{2}} \cdot \Psi(D) \quad\left(\text { where } \theta \in K_{\mathbb{A}}\right)
$$

where Ψ is either a spherical $G L_{2}$ cuspform or a spherical $G L_{2}$ Eisenstein series, in either case with trivial central character.

For Ψ a spherical $G L_{2}$ cuspform F averaging over $P_{k}^{r-2,2} \backslash G_{k}$ produces a half-degenerate Eisenstein series

$$
E_{\frac{z+1}{2}, F}^{r-2,2}(g)=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi_{\frac{z+1}{2}, F}(\gamma \cdot g)
$$

As in the appendix, the half-degenerate Eisenstein series $E_{s, F}^{r-2,2}$ has no poles in $\operatorname{Re}(s) \geq 1 / 2$. With $s=(z+1) / 2$ this assures absence of poles in $\operatorname{Re}(z) \geq 0$.

The continuous spectrum part of \mathfrak{Q} produces degenerate Eisenstein series on G, as follows. With $\Psi=E_{s, \chi}$ the usual spherical, trivial central character, Eisenstein series for $G L_{2}$, define an Eisenstein series

$$
E_{\frac{z+1}{2}, E_{s, \chi}^{r-2,2}}^{r}(g)=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi_{\frac{z+1}{2}, E_{s, \chi}}(\gamma g)
$$

As usual, for $\operatorname{Re}(s) \gg 0$ and $\operatorname{Re}(z) \gg 0$, this iterated formation of Eisenstein series is equal to a single-step Eisenstein series. That is, let
$\Phi_{s_{1}, s_{2}, s_{3}, \chi}\left(\left(\begin{array}{ccc}A & * & * \\ 0 & m_{2} & * \\ 0 & 0 & m_{3}\end{array}\right) \cdot \theta\right)=|\operatorname{det} A|^{s_{1}} \cdot\left|m_{2}\right|^{s_{2}} \chi\left(m_{2}\right) \cdot\left|m_{3}\right|^{s_{3}} \bar{\chi}\left(m_{3}\right) \quad\left(\right.$ for $\left.\theta \in K_{\mathbb{A}}, A \in G L_{r-2}\right)$
and

$$
E_{s_{1}, s_{2}, s_{3}, \chi}^{r-2,1,1}(g)=\sum_{\gamma \in P_{k}^{r-2,1,1} \backslash G_{k}} \Phi_{s_{1}, s_{2}, s_{3}, \chi}(\gamma g)
$$

Taking $s_{1}=2 \cdot \frac{z+1}{2}, s_{2}=s-\frac{(r-2)(z+1)}{2}$, and $s_{3}=-s-\frac{(r-2)(z+1)}{2}$,

$$
E_{\frac{z+1}{2}, E_{s, \chi}}^{r-2,2}=E_{z+1, s-\frac{(r-2)(z+1)}{2},-s-\frac{(r-2)(z+1)}{2}, \chi}^{r-2,1,1}
$$

Adding up these spectral components yields the spectral expansion of the Poincaré series.

5. Appendix: half-degenerate Eisenstein series

Take $q>1$, and let f be a cuspform on $G L_{q}(\mathbb{A})$, in the strong sense that f is in $L^{2}\left(G L_{q}(k) \backslash G L_{q}(\mathbb{A})^{1}\right)$, and f meets the Gelfand-Fomin-Graev conditions

$$
\int_{N_{k} \backslash N_{\mathbb{A}}} f(n g) d n=0 \quad \text { (for almost all } g \text {) }
$$

and f generates an irreducible representation of $G L_{q}\left(k_{v}\right)$ locally at all places v of k. For a Schwartz function Φ on $\mathbb{A}^{q \times r}$ and Hecke character χ, let

$$
\varphi(g)=\varphi_{\chi, f, \Phi}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} 1_{q}\right] \cdot g\right) d h
$$

This function φ has the same central character as f. It is left invariant by the adele points of the unipotent radical

$$
N=\left\{\left(\begin{array}{cc}
1_{r-q} & * \\
& 1_{r}
\end{array}\right)\right\} \quad \text { (unipotent radical of } P=P^{r-q, q} \text {) }
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
The function φ is left invariant under the k-rational points M_{k} of the standard Levi component of P,

$$
M=\left\{\left(\begin{array}{ll}
a & \\
& d
\end{array}\right): a \in G L_{r-q}, d \in G L_{r}\right\}
$$

To understand the normalization, observe that

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right)=\varphi(1)=\int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} 1_{q}\right]\right) d h
$$

is a zeta integral as in [Godement-Jacquet 1972] for the standard L-function attached to the cuspform f. Thus, the Eisenstein series formed from φ includes this zeta integral as a factor, so write

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \varphi(\gamma g) \quad \quad(\text { convergent for } \operatorname{Re}(\chi) \gg 1)
$$

The meromorphic continuation follows by Poisson summation:

$$
\begin{gathered}
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g) \\
=\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{\alpha \in G L_{q}(k)} \Phi\left(h^{-1} \cdot[0 \alpha] \cdot g\right) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { full rank }} \Phi\left(h^{-1} \cdot y \cdot g\right) d h
\end{gathered}
$$

The Gelfand-Fomin-Graev condition on f fits the full-rank constraint. Anticipating that we can drop the rank condition suggests that we define

$$
\Theta_{\Phi}(h, g)=\sum_{y \in k^{q \times r}} \Phi\left(h^{-1} \cdot y \cdot g\right)
$$

As in [Godement-Jacquet 1972], the non-full-rank terms integrate to 0 :
5.1 Proposition: For f a cuspform, less-than-full-rank terms integrate to 0 , that is,

$$
\int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { rank }<q} \Phi\left(h^{-1} \cdot y \cdot g\right) d h=0
$$

Proof: Since this is asserted for arbitrary Schwartz functions Φ, we can take $g=1$. By linear algebra, given $y_{0} \in k^{q \times r}$ of rank ℓ, there is $\alpha \in G L_{q}(k)$ such that

$$
\left.\alpha \cdot y_{0}=\binom{y_{\ell \times r}}{0_{(q-\ell) \times r}} \quad \text { (with } \ell \text {-by- } r \text { block } y_{\ell \times r} \text { of rank } \ell\right)
$$

Thus, without loss of generality fix y_{0} of the latter shape. Let Y be the orbit of y_{0} under left multiplication by the rational points of the parabolic

$$
P^{\ell, q-\ell}=\left\{\left(\begin{array}{cc}
\ell \text {-by- } \ell & * \\
0 & (q-\ell) \text {-by- }(q-\ell)
\end{array}\right)\right\} \subset G L_{q}
$$

This is some set of matrices of the same shape as y_{0}. Then the subsum over $G L_{q}(k) \cdot y_{0}$ is

$$
\int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in G L_{q}(k) \cdot y_{0}} \Phi\left(h^{-1} \cdot y\right) d h=\int_{P_{k}^{\ell, q-\ell} \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in Y} \Phi\left(h^{-1} \cdot y\right) d h
$$

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
Let N and M be the unipotent radical and standard Levi component of $P^{\ell, q-\ell}$,

$$
N=\left(\begin{array}{cc}
1_{\ell} & * \\
0 & 1_{q-\ell}
\end{array}\right) \quad M=\left(\begin{array}{cc}
\ell \text {-by- } \ell & 0 \\
0 & (q-\ell) \text {-by- }(q-\ell)
\end{array}\right)
$$

Then the integral can be rewritten as an iterated integral

$$
\begin{aligned}
& \int_{N_{k} M_{k} \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in Y} \Phi\left(h^{-1} \cdot y\right) d h \\
= & \int_{N_{\mathbb{A}} M_{k} \backslash G L_{q}(\mathbb{A})} \sum_{y \in Y} \int_{N_{k} \backslash N_{\mathbb{A}}} f(n h) \chi(\operatorname{det} n h)^{-r} \Phi\left((n h)^{-1} \cdot y\right) d n d h \\
= & \int_{N_{\mathbb{A}} M_{k} \backslash G L_{q}(\mathbb{A})} \sum_{y \in Y} \chi(\operatorname{det} h)^{-r} \Phi\left(h^{-1} \cdot y\right)\left(\int_{N_{k} \backslash N_{\mathbb{A}}} f(n h) d n\right) d h
\end{aligned}
$$

since all fragments but $f(n h)$ in the integrand are left invariant by $N_{\mathbb{A}}$. The inner integral of $f(n h)$ is 0 , by the Gelfand-Fomin-Graev condition, so the whole is 0 .

Let ι denote the transpose-inverse involution. Poisson summation gives

$$
\begin{gathered}
\Theta_{\Phi}(h, g)=\sum_{y \in k^{q \times r}} \Phi\left(h^{-1} \cdot y \cdot g\right) \\
=\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} \sum_{y \in k^{q \times r}} \widehat{\Phi}\left(\left(h^{\iota}\right)^{-1} \cdot y \cdot g^{\iota}\right)=\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} \Theta_{\widehat{\Phi}}\left(h^{\iota}, g^{\iota}\right)
\end{gathered}
$$

As with Θ_{Φ}, the lower-rank summands in $\Theta_{\widehat{\Phi}}$ integrate to 0 against cuspforms. Thus, letting

$$
G L_{q}^{+}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \geq 1\right\} \quad G L_{q}^{-}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \leq 1\right\}
$$

$$
\begin{aligned}
& \text { we have } \\
& \qquad \begin{array}{l}
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h+\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{-}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
\quad+\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{-}}\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\widehat{\Phi}}\left(h^{\iota}, g^{l}\right) d h
\end{array}
\end{aligned}
$$

By replacing h by h^{ι} in the second integral, convert it to an integral over $G L_{q}(k) \backslash G L_{q}^{+}$, and the whole is

$$
\begin{gathered}
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
\quad+\chi^{-1}\left(\operatorname{det} g^{\iota}\right)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f\left(h^{\iota}\right) \nu \chi^{-1}\left(\operatorname{det} h^{\iota}\right)^{-r} \Theta_{\widehat{\Phi}}\left(h, g^{\iota}\right) d h
\end{gathered}
$$

Since $f \circ \iota$ is a cuspform, the second integral is entire in χ. Thus, we have proven

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P} \quad \text { is entire }
$$

$$
\text { Diaconu-Garrett-Goldfeld: Moments for L-functions for } G L_{r} \times G L_{r-1} \text { (December 17, 2009) }
$$

[Casselman 1973] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 206 (1973), 311-318.
[Casselman-Shalika 1980] W. Casselman, J. Shalika, The unramified principal series of p-adic groups, II, the Whittaker function, Comp. Math. 41 (1980), 207-231.
[Cogdell 2002] J. Cogdell, L-functions and Converse Theorems, in Automorphic Forms and Applications, P. Sarnak, F. Shahidi eds, IAS/Park City Mathematics Series, vol. 12, AMS, Providence, 2007, 95-178.
[Cogdell 2003] J. Cogdell, Analytic theory of L-functions for $G L_{n}$, in An Introduction to the Langlands Program, J. Bernstein and S. Gelbart eds, Birhauser, 2003, 197-228.
[Cogdell 2004] J. Cogdell, Lectures on L-functions, Converse Theorems, and Functoriality for $G L_{n}$, Fields Institute Notes, in Lectures on Automorphic L-functions, Fields Institute Monographs no. 20, AMS, Providence, 2004.
[Cogdell-PS 2003] J. Cogdell, I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions, in Contributions to Automorphic Forms, Geometry, and Number Theory (Shalikafest 2002), H. Hida, D. Ramakrishnan, and F. Shahidi eds., Johns Hopkins University Press, Baltimore, 2005.
[Diaconu-Garrett 2009a] A. Diaconu, P. Garrett, Integral moments of automorphic L-functions, J. Math. Inst. Jussieu 8 vol. 2 (2009), 335-382.
[Diaconu-Garrett 2009b] A. Diaconu, P. Garrett, Subconvexity bounds for automorphic L-functions, J. Math. Inst. Jussieu, to appear.
[Diaconu-Goldfeld 2006a] A. Diaconu, D. Goldfeld, Second moments of $G L_{2}$ automorphic L-functions, in proceedings of Gauss-Dirichlet Conference (Göttingen, 2005), Clay Math. Proc., AMS, 77-105.
[Diaconu-Goldfeld 2006b] A. Diaconu, D. Goldfeld, Second moments of Hecke L-series and multiple Dirichlet series, I, Proc. Symp. Pure Math. 75, AMS, Providence, 2006, 59-89.
[Donnelly 1982] H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Diff. Geom. 17 (1982), 239-253.
[Godement 1966b] R. Godement, Spectral decomposition of cuspforms, in Proc. Symp. Pure Math IX (Boulder Conference), AMS, 1966, 225-234.
[Godement-Jacquet 1972] R. Godement, H. Jacquet, Zeta functions of simple algebras, SLN 260, SpringerVerlag, Berlin, 1972.
[Good 1981] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981), 523-548.
[Good 1983] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1983), 278-95.
[Good 1986] A. Good, The convolution method for Dirichlet series, in Selberg Trace Formula and Related Topics (Brunswick, Maine, 1984), Contemp. Math. 53, AMS, Providence, 1986, 207-214.
[Hoffstein-Lockhart 1994] J. Hoffstein, P. Lockhart, Coefficients of Maass forms and the Siegel zero, with appendix An effective zero-free region, by D. Goldfeld, J. Hoffstein, D. Lieman, Ann. of Math. 140 (1994), 161-181.
[Hoffstein-Ramakrishnan 1995] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cuspforms, Int. Math. Research Notices 6 (1995), 279-308.
[Iwaniec-Sarnak 2000] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA special volume (2000), 705-741.
[Jacquet 1983] H. Jacquet, On the residual spectrum of $G L_{n}$, in Lie Group Representations, II, SLN 1041.
[Jacquet-PS-Shalika 1979] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Automorphic forms on GL_ , I, II, Ann. of Math. 109 (1979), 169-212, 213-258.
[Jacquet-PS-Shalika 1981] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981),199-214.

Diaconu-Garrett-Goldfeld: Moments for L-functions for $G L_{r} \times G L_{r-1}$ (December 17, 2009)
[Jacquet-PS-Shalika 1983] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.
[Jacquet-Shalika 1981] H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations I, II, Amer. J. Math. 103 (1981), 499-588, 777-815.
[Jacquet-Shalika 1990] H. Jacquet, J. Shalika, Rankin-Selberg convolutions: archimedean theory, in Festschrift in Honor of I.I. Piatetski-Shapiro, I, Weizmann Science Press, Jerusalem, 1990, 125-207.
[Langlands 1976] R. Langlands, On the functional equations satisfied by Eisenstein series, SLN 544, 1975.
[Lindenstrauss-Venkatesh 2007] E. Lindenstrauss and A. Venkatesh Existence and Weyl's law for spherical cusp forms, GAFA 17 vol 1 (2007), 220-251.
[Michel 2007] P. Michel, Analytic number theory and families of automorphic L-functions, in IAS/Park City Summer Institute Series Vol 12 Automorphic forms and applications, (2007), 179-296.
[Moeglin-Waldspurger 1989] C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de $G L_{n}$, with appendix Poles des fonctions L de pairs pour $G L_{n}$, Ann. Sci. École Norm. Sup. 22 (1989), 605-674.
[Moeglin-Waldspurger 1995] C. Moeglin, J.-L. Waldspurger, Spectral Decompositions and Eisenstein series, Cambridge Univ. Press, Cambridge, 1995.
[Shalika 1974] J. Shalika, The multiplicity-one theorem for $G L_{n}$, Ann. of Math. 100 (1974), 171-193.
[Shintani 1976] T. Shintani, On an explicit formula for class-one Whittaker functions on $G L_{n}$ over p-adic fields, Proc. Japan Acad. 52 (1976), 180-182.
[Stade 2001] E. Stade, Mellin transforms of $G L_{n}(\mathbb{R})$ Whittaker functions, Amer. J. Math. 123 (2001), 121-161.
[Stade 2002] E. Stade, Archimedean L-factors on $G L_{n} \times G L_{n}$ and generalized Barnes integrals, Israel J. Math. 127 (2002), 201-209.

