Primer of spherical harmonic analysis on $S L_{2}(\mathbb{C})$

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

1. Hyperbolic three-space
2. Invariant volume for $S L_{2}(\mathbb{R})$
3. Invariant volume for $S L_{2}(\mathbb{C})$
4. Invariant Laplacian
5. Casimir on principal series
6. Radial Laplacian for $S L_{2}(\mathbb{R})$
7. Radial Laplacian for $S L_{2}(\mathbb{C})$
8. Spherical functions on $S L_{2}(\mathbb{C})$
9. Spherical transform on $S L_{2}(\mathbb{C})$
10. Spherical expansion of δ
11. Free-space fundamental solution

We derive basic L^{2} properties of $S U(2)$-bi-invariant functions on $S L_{2}(\mathbb{C})$.
One important thing neglected here is development of global Sobolev theory for $S U(2)$-bi-invariant functions on $S L_{2}(\mathbb{C})$. Nevertheless, the L^{2} theory suggests the correct approach to such a Sobolev theory, and our heuristic for solving

$$
(\Delta-s(z-1))^{2} u_{z}=\delta \quad\left(\text { on } S L_{2}(\mathbb{C}) / S U(2)\right)
$$

motivates the Sobolev theory.
Throughout, corresponding phenomena for $S L_{2}(\mathbb{R})$ are compared.
[1.1] Hyperbolic three-space With $G=S L_{2}(\mathbb{C})$ and $K=S U(2)$, the quotient G / K is a model of hyperbolic three-space. ${ }^{[1]}$ Similarly, $S L_{2}(\mathbb{R}) / S O(2)$ is a model of hyperbolic two-space.

The standard split component in both $S L_{2}(\mathbb{R})$ and $S L_{2}(\mathbb{C})$ is

$$
A=\left\{a_{r}=\left(\begin{array}{cc}
e^{r / 2} & 0 \\
0 & e^{-r / 2}
\end{array}\right): r \in \mathbb{R}\right\}
$$

Let

$$
A^{+}=\left\{a_{r}=\left(\begin{array}{cc}
e^{r / 2} & 0 \\
0 & e^{-r / 2}
\end{array}\right): r \geq 0\right\}
$$

The Cartan decomposition is ${ }^{[2]}$

$$
G=K A^{+} K
$$

[1] We have no reason to give any definition of hyperbolic three-space other than as this quotient of $S L_{2}(\mathbb{C})$ by $S U(2)$, as we invoke no other properties than those that follow from this model, so there is no immediate reason to elaborate on any comparison with other definitions.
[2] If we knew $g \in S L_{2}(\mathbb{C})$ had an expression $g=k a_{r} k^{\prime}$, then $g g^{*}=k a_{2 r} k^{*}$, where g^{*} is conjugate transpose. This suggests how to determine components k, a_{r}, k^{\prime} : by the spectral theorem for positive-definite hermitian operators $g g^{*}$, we can find $k \in S U(2)$ and a diagonal matrix $a_{2 r}$ of positive real eigenvalues, so that $g g^{*}=k a_{2 r} k^{*}$. We claim that $k^{\prime}=\left(k a_{r}\right)^{-1} g \in S U(2)$. Indeed,

$$
\left(\left(k a_{r}\right)^{-1} g\right)\left(\left(k a_{r}\right)^{-1} g\right)^{*}=a_{r}^{-1} k^{-1}\left(g g^{*}\right) k a_{r}^{-1}=a_{r}^{-1} k^{-1} k a_{2 r} k^{*} k a_{r}^{-1}=1
$$

The same argument works to give a Cartan decomposition for $S L_{n}(\mathbb{C})$.

The non-negative r-coordinate gives a left G-invariant metric d on G / K by

$$
d(g K, h K)=r \quad \text { where } \quad h^{-1} g \in K a_{r} K
$$

[1.2] Invariant volume for $S L_{2}(\mathbb{R})$ We recall how to express a G-invariant measure in Cartan/radial coordinates. Since K acts on left and right in Cartan coordinates, and Haar measure on G is left and right invariant, the only question is determination of the dependence on radius. That is, a priori we know that for some function f of radius the G-invariant measure is

$$
d\left(k a_{r} k^{\prime}\right)=f(r) d k d r d k^{\prime} \quad\left(\text { with } k, k^{\prime} \in K, r>0\right)
$$

The smaller case of $S L_{2}(\mathbb{R})$ is worth reviewing first. Let \mathfrak{a} be the Lie algebra of the split component A, and \mathfrak{k} the Lie algebra of $K=S O(2)$. For fixed $r>0$, the mapping $\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{k} \rightarrow G$ by

$$
\theta \oplus \alpha \oplus \theta^{\prime} \rightarrow \exp (\theta) \cdot a_{r} \exp (\alpha) \cdot \exp \left(\theta^{\prime}\right)
$$

induces a linear map to the tangent space to G at a_{r}, identified with \mathfrak{g} by left-translating back to $1 \in G$ by left multiplication by a_{r}^{-1} :

$$
\theta \oplus \alpha \oplus \theta^{\prime} \rightarrow a_{r}^{-1} \cdot \exp (\theta) \cdot a_{r} \exp (\alpha) \cdot \exp \left(\theta^{\prime}\right)
$$

The Adjoint action of a_{r} on θ moves it enough so that the resulting vectors, together with \mathfrak{a} and \mathfrak{k}, span \mathfrak{g}. Thus, to determine the function f, fix an arbitrary basis for \mathfrak{g} and compute the Jacobian of this map, as $r>0$ varies, in terms of it. Obviously it is convenient to take

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \in \mathfrak{a} \quad \theta=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \in \mathfrak{k}
$$

and then choose

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The image

$$
a_{r}^{-1} \theta a_{r}=\left(\begin{array}{cc}
0 & e^{-r} \\
-e^{r} & 0
\end{array}\right)
$$

of θ under $\operatorname{Ad} a_{r}^{-1}$ is expressible as a linear combination $x \sigma+y \theta$ of σ and θ, by solving

$$
\left\{\begin{array}{l}
x+y=e^{-r} \\
x-y=-e^{r}
\end{array}\right.
$$

yielding $x=-\sinh r$ and $y=\cosh r$. That is, the map of $\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{k}$ to the tangent space at a_{r} sends

$$
a \theta \oplus b h \oplus c \theta \longrightarrow-a \sinh r \cdot \sigma \oplus b h \oplus(c+a \cosh r) \theta \quad \quad \text { (with } a, b, c \in \mathbb{R} \text {) }
$$

That is, mapping from $\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{k}$ to $\mathbb{R} \sigma \oplus \mathfrak{a} \oplus \mathfrak{k}$ in a, b, c coordinates,

$$
(a, b, c) \longrightarrow(-a \sinh r, b, c+a \cosh r)
$$

Thus, up to an irrelevant constant,

$$
\text { Haar measure }=d\left(k a_{r} k^{\prime}\right)=|\sinh r| d k d r d k^{\prime} \quad\left(\text { for } S L_{2}(\mathbb{R})\right)
$$

[1.3] Invariant volume for $S L_{2}(\mathbb{C})$ Returning to $S L_{2}(\mathbb{C})$, the same sort of argument is applied, but now the Lie algebra \mathfrak{k} of $K=S U(2)$ is larger, namely,

$$
\mathfrak{k}=\mathbb{R} \cdot \theta+\mathbb{R} \cdot i \sigma+\mathbb{R} \cdot i h
$$

The Adjoint action of a_{r} on the third of these summands is trivial, on the first is the case of $S L_{2}(\mathbb{R})$ already considered. On the second summand, considerations essentially the same as for the first apply to the subspace $\mathbb{R} \cdot i \sigma+\mathbb{R} \cdot i \theta$, with the roles of θ and σ reversed, as follows. Write ${ }^{[3]} \alpha=i \theta$ and $\beta=i \sigma$. Then, as in the argument for $S L_{2}(\mathbb{R})$, solve for the coefficients x, y such that

$$
x \cdot \alpha+y \cdot \beta=a_{r}^{-1} \beta a_{r}
$$

This is

$$
\left\{\begin{array}{c}
x \cdot i+y \cdot i=e^{-r} \cdot i \\
x \cdot(-i)+y \cdot i=e^{r} \cdot i
\end{array}\right.
$$

Then $x=-\sinh r$, we have a further factor of $\sinh r$, altogether giving two factors of $\sinh r$, and

$$
\text { Haar measure }=d\left(k a_{r} k^{\prime}\right)=|\sinh r|^{2} d k d r d k^{\prime}=\sinh ^{2} r d k d r d k^{\prime} \quad \text { (for } S L_{2}(\mathbb{C}) \text {) }
$$

[1.4] Invariant Laplacian The Laplacian Δ on G / K is the restriction of the Casimir operator on G to right K-invariant functions. Let \langle,$\rangle be the \mathbb{R}$-valued Ad G-invariant pairing on the Lie algebra $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$ given by

$$
\langle x, y\rangle=\operatorname{Re}(\operatorname{tr}(x y))
$$

As usual, this non-degenerate pairing gives a natural identification of \mathfrak{g} with its \mathbb{R}-linear dual \mathfrak{g}^{*}. The chain of G-equivariant natural maps

$$
\operatorname{End}_{\mathbb{R}}(\mathfrak{g}) \rightarrow \mathfrak{g} \otimes_{\mathbb{R}} \mathfrak{g}^{*} \approx \mathfrak{g} \otimes_{\mathbb{R}} \mathfrak{g} \subset \bigotimes \bullet \mathfrak{g} \rightarrow U \mathfrak{g}
$$

maps the identity endomorphism $1_{\mathfrak{g}}$, which certainly commutes with the action of G on \mathfrak{g}, to an element Ω of the universal enveloping algebra $U \mathfrak{g}$ therefore commuting with the action of G. Thus, certainly Ω is in the center ${ }^{[4]} \mathfrak{z}$ of the enveloping algebra, and is a multiple ${ }^{[5]}$ of the Casimir element. It is not immmediate that this is not accidentally 0 , but the computation below of the effect of Ω on certain representations will incidentally prove non-vanishing. The description via the maps above implies that, for any basis x_{i} of \mathfrak{g}, letting x_{i}^{*} be the dual basis with respect to \langle,$\rangle ,$

$$
\Omega=\sum_{i} x_{i} x_{i}^{*} \in \mathfrak{z} \subset U \mathfrak{g}
$$

[3] Without some notational device, one might inadvertently imagine that there is \mathbb{C}-linearity sufficient to allow us to pull out the i as a scalar!
[4] To refer to the center \mathfrak{z} is slightly misleading, since the argument shows that Ω is in the subalgebra $(U \mathfrak{g})^{G}$ of G-invariant elements of $U \mathfrak{g}$, in general possibly slightly smaller than the center \mathfrak{z}. Nevertheless, this abuse of language is common.
${ }^{[5]}$ That this construction produces a multiple of Casimir follows whenever \mathfrak{g} is irreducible as a G-representation under Adjoint, by the adjunction

$$
\operatorname{Hom}_{G}\left(\mathfrak{g} \otimes \mathfrak{g}^{*}, \text { triv }\right) \approx \operatorname{Hom}_{G}\left(\mathfrak{g}, \operatorname{Hom}\left(\mathfrak{g}^{*}, \text { triv }\right)\right) \approx \operatorname{Hom}_{G}(\mathfrak{g}, \mathfrak{g})
$$

and invoking Schur's lemma to know that the latter Hom is one-dimensional. For simple G, the highest-weight criterion, together with the fact that root spaces \mathfrak{g}_{α} in \mathfrak{g} interact by $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}$, almost immediately proves irreducibility. Irreducibility in small cases such as $S L_{2}(\mathbb{R})$ can be verified even more directly.

The Laplacian Δ is the restriction of Ω to right K-invariant functions. For a decomposition $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$, on right K-invariant functions \mathfrak{k} acts by 0 , so for any basis x_{i} of \mathfrak{p}, and

$$
\Delta=\sum_{i} x_{i} x_{i}^{*} \quad(\text { on } G / K)
$$

[1.5] Casimir on principal series The (unramified) principal series representations of $S L_{2}(\mathbb{R})$ and $S L_{2}(\mathbb{C})$ are the simplest representations to construct. Let

$$
P=\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad\left(\text { for both } S L_{2}(\mathbb{R}) \text { and } S L_{2}(\mathbb{C})\right)
$$

The $s^{\text {th }}$ (unramified) character χ_{s} on P is ${ }^{[6]}$

$$
\chi_{s}\left(\begin{array}{cc}
a & * \\
0 & a^{-1}
\end{array}\right)= \begin{cases}|a|^{2 s} & \left(\text { for } S L_{2}(\mathbb{R})\right) \\
|a|^{4 s} & \left(\text { for } S L_{2}(\mathbb{C})\right)\end{cases}
$$

The $s^{t h}$ smooth principal series representation I_{s} for $G=S L_{2}(\mathbb{R})$ or $S L_{2}(\mathbb{C})$ is

$$
I_{s}=\left\{\text { smooth } f \text { on } G: f(p g)=\chi_{s}(p) \cdot f(g), \text { for } p \in P \text { and } g \in G\right\}
$$

A useful basis for the Lie algebra $\mathfrak{s l}_{2}(\mathbb{R})$ is

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad x=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The dual basis with respect to the pairing $\langle\alpha, \beta\rangle=\operatorname{tr}(\alpha \beta)$ is $h^{*}=\frac{1}{2} h, x^{*}=y$, and $y^{*}=x$. The Casimir operator on I_{s} can be computed by letting it act on the left, where x acts by 0 , as

$$
\Omega=\frac{1}{2} h^{2}+x y+y x=\frac{1}{2} h^{2}+[x, y]+2 y x \longrightarrow \frac{1}{2} h^{2}+h+0 \quad \text { (acting on the left) }
$$

Noting that the left action is $(g \cdot f)(x)=f\left(g^{-1} x\right)$, including an inverse, the action of Casimir on I_{s} for $S L_{2}(\mathbb{R})$ is $\frac{1}{2} h^{2}+h$ on the left. The action of h on the left is

$$
\left.f(x) \longrightarrow \frac{\partial}{\partial t}\right|_{t=0} f\left(e^{-t \cdot h} \cdot x\right)=\left.\frac{\partial}{\partial t}\right|_{t=0}\left|e^{-t}\right|^{2 s} \cdot f(x)=-2 s \cdot f(x)
$$

Thus, Casimir on I_{s} for $S L_{2}(\mathbb{R})$ is

$$
\frac{1}{2}(-2 s)^{2}+(-2 s)=2 s^{2}-2 s=2 \cdot s(s-1) \quad\left(\text { for } S L_{2}(\mathbb{R})\right)
$$

For $S L_{2}(\mathbb{C})$, we take three further basis elements $\gamma=i h, \xi=i x$, and $\eta=i y$. The further dual basis elements are $\gamma^{*}=-\frac{1}{2} \gamma, \xi^{*}=-\eta, \eta^{*}=-\xi$. Thus,

$$
\Omega=\frac{1}{2} h^{2}-\frac{1}{2} \gamma^{2}+x y+y x-\xi \eta-\eta \xi \quad\left(\text { for } S L_{2}(\mathbb{C})\right)
$$

All of γ, x, and ξ act on the left by 0 on I_{s}, and we use commutators:

$$
\Omega=\frac{1}{2} h^{2}-\frac{1}{2} \gamma^{2}+[x, y]+2 y x-[\xi, \eta]-2 \eta \xi=\frac{1}{2} h^{2}-0+h-0-(-h)=\frac{1}{2} h^{2}+2 h
$$

[6] The exponents in the definition of χ_{s} are $s^{t h}$ powers of the modular function on the parabolic P. Then the unramified principal series I_{s} and I_{1-s} generally admit non-trivial G intertwining operators between them. That is, we have fixed on a functional equation $s \rightarrow 1-s$ as opposed to other possibilities $s \rightarrow a-b s$ for other constants a, b.

On the left on I_{s}, h acts by $-4 s$, so this is

$$
\frac{1}{2}(-4 s)^{2}+2(-4 s)=8 s^{2}-8 s=8 \cdot s(s-1) \quad\left(\text { for } S L_{2}(\mathbb{C})\right)
$$

The point of these computations is verification that on both $S L_{2}(\mathbb{R})$ and $S L_{2}(\mathbb{C})$, the normalization of the character as $s^{t h}$ power of the modular function on the parabolic P gives eigenvalues that are constant multiplies of $s(s-1)$.
[1.5.1] Remark: It may prove useful to divide the $S L_{2}(\mathbb{R})$ operator by 4 , and to divide the $S L_{2}(\mathbb{C})$ by 8 , so that the renormalized Casimirs' eigenvalues on principal series I_{s} are exactly $s(s-1)$, rather than constant multiples, but this is a secondary issue. More important is the symmetry under $s \leftrightarrow 1-s$.
[1.6] Radial Laplacian for $S L_{2}(\mathbb{R})$ On left-and-right K-invariant functions

$$
F\left(k \cdot a_{r} \cdot k^{\prime}\right)=f(r) \quad\left(\text { with } k, k^{\prime} \in K \text { and } r>0\right)
$$

on G, the Laplacian becomes a differential operator in the radius r, determined as follows. Let $G=S L_{2}(\mathbb{R})$ and $K=S O(2)$ and

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \theta=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

as above. These are mutually orthogonal with respect to the pairing $\langle x, y\rangle=\operatorname{tr}(x y)$, and have lengths $2,-2,2$, respectively. Thus, Casimir is

$$
\Omega=\frac{1}{2} h^{2}-\frac{1}{2} \theta^{2}+\frac{1}{2} \sigma^{2}
$$

Since Casimir necessarily preserves K-bi-invariance, to see how it acts on a K-bi-invariant function $F\left(k \cdot a_{r} \cdot k^{\prime}\right)=f(r)$ it suffices to evaluate the outcome at a_{r}.

Under the right action of \mathfrak{g} on K-bi-invariant functions, θ obviously acts by 0 . Similarly, on the left, \mathfrak{k} acts by 0 . Then, moving θ across a_{r} by Adjoint, it acts on the right by $a_{r}^{-1} \theta a_{r}$. The element σ can be expressed as a linear combination of $a_{r}^{-1} \theta a_{r}$ and θ, with coefficients depending on r : solve $x a_{r}^{-1} \theta a_{r}+y \theta=\sigma$ by solving

$$
\left\{\begin{array}{l}
e^{-r} x+y=1 \\
-e^{r} x-y=1
\end{array}\right.
$$

Thus, $x=-1 / \sinh r$ and

$$
y=1-e^{-r} x=1+\frac{2 e^{-r}}{e^{r}-e^{-r}}=\operatorname{coth} r
$$

Thus, letting $\theta_{r}=a_{r}^{-1} \theta a_{r}$,

$$
\sigma=\frac{-1}{\sinh r} \cdot \theta_{r}+\operatorname{coth} r \cdot \theta
$$

Then, in $U \mathfrak{g}$,

$$
\sigma^{2}=\left(x \theta_{r}+y \theta\right)^{2}=x^{2} \theta_{r}^{2}+x y \theta \theta_{r}+x y \theta_{r} \theta+y^{2} \theta^{2}
$$

Since the first-order operators θ and θ_{r} do not preserve right K-invariance, we want to evaluate the secondorder operators $\theta^{2}, \theta_{r}^{2}, \theta \theta_{r}$, and $\theta_{r} \theta$ at a_{r} on left-and-right K-invariant operators. The operators $\theta^{2}, \theta_{r}^{2}$, and $\theta_{r} \theta$ act by 0 on left-and-right K-invariant functions. The only term with an obstruction is $\theta \cdot \theta_{r}$: in the expression

$$
F\left(a_{r} e^{s \theta} e^{t \theta_{r}}\right)
$$

the θ term cannot be moved to the right, and the θ_{r} term cannot be moved to the left. Thus, on K-bi-invariant functions

$$
\sigma^{2} \longrightarrow 0+x y \theta \theta_{r}+0+0 \quad \text { (on } K \text {-bi-invariant functions) }
$$

As usual, although the two elements do not commute, their commutator is intelligible:

$$
\theta \theta_{r}=\left[\theta, \theta_{r}\right]+\theta_{r} \theta=-2 \sinh r \cdot h+\theta_{r} \theta
$$

Then $\theta_{r} \theta$ acts on the right by 0 on K-bi-invariant functions evaluated at points a_{r}. Thus, on K-bi-invariant functions, $\frac{1}{2} \sigma^{2}$ acts on the right by

$$
\frac{1}{2} x y(-2 \sinh r) \cdot h=\frac{1}{2} \frac{-1}{\sinh r} \cdot \operatorname{coth} r \cdot(-2 \sinh r) \cdot h=\operatorname{coth} r \cdot h
$$

Gathering all the summands of Ω, on K-bi-invariant functions $\Omega=\frac{1}{2} h^{2}+\frac{1}{2} \sigma^{2}-\frac{1}{2} \theta^{2}$ acts by

$$
\frac{1}{2} h^{2}+\operatorname{coth} r \cdot h \quad\left(\text { on } K \backslash G / K, \text { for } S L_{2}(\mathbb{R})\right)
$$

The action of h is

$$
(h \cdot F)\left(a_{r}\right)=\left.\frac{\partial}{\partial t}\right|_{t=0} F\left(a_{r} \cdot \exp (t h)\right)=\left.\frac{\partial}{\partial t}\right|_{t=0} F\left(a_{r+2 t}\right)=\left.\frac{\partial}{\partial t}\right|_{t=0} f(r+2 t)=2 f^{\prime}(r)
$$

Similarly, $\frac{1}{2} h^{2}$ sends f to $\frac{1}{2}\left(2 \cdot 2 \cdot f^{\prime \prime}\right)=2 f^{\prime \prime}$. Thus, removing the irrelevant common factor of 2 from all terms, on K-bi-invariant functions $F\left(k a_{r} k^{\prime}\right)=f(r)$ Casimir Ω is (up to a constant)

$$
f \longrightarrow f^{\prime \prime}+\operatorname{coth} r \cdot f^{\prime} \quad\left(\text { for } S L_{2}(\mathbb{R})\right)
$$

[1.7] Radial Laplacian for $S L_{2}(\mathbb{C})$ Determination of the Laplacian in radial coordinates for $S L_{2}(\mathbb{R})$ is half the computation for $S L_{2}(\mathbb{C})$. Indeed, in addition to the basis elements h, θ, σ for $\mathfrak{s l}_{2}(\mathbb{R})$, of lengths $2,-2,2$, we have $\eta=i h, \alpha=i \theta$, and $\beta=i \sigma$, of lengths $-2,2,-2$. Thus, Casimir is

$$
\Omega=\frac{1}{2} \cdot\left(h^{2}+\sigma^{2}-\theta^{2}-\eta^{2}+\alpha^{2}-\beta^{2}\right)
$$

To see the effect of Ω on K-bi-invariant functions F, it suffices to evaluate $\Omega F\left(a_{r}\right)$. Parallel to the argument for $S L_{2}(\mathbb{R}), \eta, \theta, \beta$ are in \mathfrak{k}, so under the right action on K-bi-invariant functions those summands act by 0 .

Just as a linear combination θ and of θ conjugated across a_{r} gives σ, a linear combination of β and β conjugated across a_{r} gives α : with $\beta_{r}=a_{r}^{-1} \beta a_{r}$, solve

$$
x \cdot \beta+y \cdot \beta_{r}=\alpha
$$

This is

$$
\left\{\begin{aligned}
x \cdot i+y \cdot i e^{-r} & =i \\
x \cdot i+y \cdot i e^{r} & =-i
\end{aligned}\right.
$$

Then $y=-1 / \sinh r$ and $x=\operatorname{coth} r$. Then on K-bi-invariant functions, under the right action,

$$
\alpha^{2}=\left(x \beta+y \beta_{r}\right)^{2}=x^{2} \beta^{2}+x y \beta \beta_{r}+x y \beta_{r} \beta+y^{2} \beta_{r}^{2} \longrightarrow 0+x y \beta \beta_{r}+0+0
$$

Further,

$$
\beta \beta_{r}=\left[\beta, \beta_{r}\right]+\beta_{r} \beta \longrightarrow-2 \sinh r \cdot h+0
$$

Thus, on K-bi-invariant functions,

$$
x y \beta \beta_{r} \longrightarrow(\operatorname{coth} r) \cdot \frac{-1}{\sinh r} \cdot(-2 \sinh r) \cdot h=2 \operatorname{coth} r \cdot h
$$

Multiplying through by the $\frac{1}{2}$ from the expression for Ω, on K-bi-invariant functions

$$
\Omega \longrightarrow \frac{1}{2} h^{2}+\operatorname{coth} r \cdot h+\operatorname{coth} r \cdot h=\frac{1}{2} h^{2}+2 \operatorname{coth} r \cdot h
$$

As in the computation for $S L_{2}(\mathbb{C})$, the action of h on $f(r)=F\left(a_{r}\right)$ is $(h \cdot f)(r)=2 f^{\prime}(r)$. Thus, removing the irrelevant common factor of 2 , Casimir on K-bi-invariant functions is

$$
\left.f \longrightarrow f^{\prime \prime}(r)+2 \operatorname{coth} r \cdot f^{\prime}(r) \quad \text { (on functions } F\left(k a_{r} k^{\prime}\right)=f(r)\right)
$$

[1.7.1] Remark: Similarly, and by the same sort of computation, on $G=O(n, 1)$ the Casimir operator on K-bi-invariant functions is a constant multiple of

$$
f^{\prime \prime}(r)+(n-1) \operatorname{coth} r \cdot f^{\prime}(r)
$$

[1.8] Spherical functions on $S L_{2}(\mathbb{C})$ A spherical function on G is a smooth K-bi-invariant eigenfunction for Δ, that is, a function F such that

$$
\Delta F=\lambda \cdot F
$$

At this moment, renormalize by adjusting Ω by dividing by 8 , so that its eigenvalue on the $s^{t h}$ principal series I_{s} is exactly $s(s-1)$, rather than the $8 s(s-1)$. Thus, writing $f(r)=F\left(K a_{r} K\right)$, the computation of the Laplacian/Casimir in radial coordinates converts the spherical condition to

$$
\frac{1}{8}\left(2 f^{\prime \prime}+4 \operatorname{coth} r \cdot f\right)=\lambda \cdot f \quad(\text { with } \lambda=s(s-1))
$$

or

$$
\frac{1}{4} f^{\prime \prime}+\frac{1}{2} \operatorname{coth} r \cdot f=\lambda \cdot f \quad(\text { where } \lambda=s(s-1))
$$

The coincidence ${ }^{[7]}$ we now examine is the elementariness of the spherical functions for $S L_{2}(\mathbb{C})$. There is a heuristic that spherical functions with eigenvalues $\lambda=s(s-1)$ with $s=\frac{1}{2}+i t, t$ real, should just fail to be in L^{2}. Thus, in light of

$$
d\left(k a_{r} k^{\prime}\right)=|\sinh r|^{2} d k d r d k^{\prime} \quad\left(\text { Haar measure on } S L_{2}(\mathbb{C})\right)
$$

f might profitably be rewritten as $f=\varphi / \sinh r$ for $r>0$. Up to a constant, the differential operator on f becomes

$$
\begin{gathered}
\left(\frac{\varphi}{\sinh r}\right)^{\prime \prime}+2 \operatorname{coth} r \cdot\left(\frac{\varphi}{\sinh r}\right)^{\prime} \\
=\frac{\varphi^{\prime \prime}}{\sinh r}-\frac{2 \varphi^{\prime} \cosh r}{\sinh ^{2} r}+\varphi\left(-\frac{\sinh r}{\sinh ^{2} r}+\frac{2 \cosh ^{2} r}{\sinh ^{3} r}\right)+2 \frac{\cosh r}{\sinh r}\left(\frac{\varphi^{\prime}}{\sinh r}-\frac{\varphi \cosh r}{\sinh ^{2} r}\right) \\
=\frac{\varphi^{\prime \prime}}{\sinh r}-\frac{\varphi}{\sinh r}
\end{gathered}
$$

The original constant would give $2 \varphi^{\prime \prime} / \sinh r-2 \varphi / \sinh r$, and dividing by 8 gives

$$
\frac{1}{8} \Omega\left(\frac{\varphi}{\sinh r}\right)=\frac{\varphi^{\prime \prime}}{4 \sinh r}-\frac{\varphi}{4 \sinh r}
$$

[7] The elementariness of the spherical functions for $S L_{2}(\mathbb{C})$ does appear to be a peculiar artifact of all these computations. However, Gelfand-Naimark and Harish-Chandra and others showed that the same is true for all complex reductive groups. Thus, in the family of hyperbolic spaces and orthogonal groups acting on them, the true oddity is that only $S O(3,1)$, admitting a two-fold cover by $S L_{2}(\mathbb{C})$, is a complex Lie group.

Thus, the eigenvalue problem becomes

$$
\frac{\varphi^{\prime \prime}}{4 \sinh r}-\frac{\varphi}{4 \sinh r}=s(s-1) \cdot \frac{\varphi}{\sinh r}
$$

or simply

$$
\frac{1}{4}\left(\varphi^{\prime \prime}-\varphi\right)=s(s-1) \cdot \varphi \quad(\text { with } \lambda=s(s-1))
$$

Apparently ${ }^{[8]}$ miraculously, the differential equation has constant coefficients. Thus, with $\varphi(r)=e^{ \pm(2 s-1) r}$,

$$
\frac{1}{4}\left(\varphi^{\prime \prime}-\varphi\right)=\frac{1}{4}\left((2 s-1)^{2}-1\right) \cdot e^{ \pm(2 s-1) r}=s(s-1) \cdot e^{ \pm(2 s-1) r}
$$

Thus,

$$
\frac{1}{8} \Omega\left(\frac{e^{ \pm(2 s-1) r}}{\sinh r}\right)=s(s-1) \cdot \frac{e^{ \pm(2 s-1) r}}{\sinh r}
$$

The standard normalization requires that a spherical function take value 1 at $1 \in G$, that is, at $r=0$. The $\sinh r$ in the denominators makes both the above functions blow up like $1 / r$ at $r \rightarrow 0^{+}$. However, since the functions with parameters s and $1-s$ have the same eigenvalue, taking the difference kills the blow-up. Thus, to get value 1 at $r=0$, put

$$
\left.\varphi_{s}(r)=\frac{\sinh (2 s-1) r}{(2 s-1) \sinh r} \quad \text { (spherical function, eigenvalue } s(s-1)\right)
$$

Note that the best decay, just failing to be square-integrable, occurs for Res=$\frac{1}{2}$. When $s=\frac{1}{2}+i t$, the spherical function is

$$
\left.\varphi_{\frac{1}{2}+i t}(r)=\frac{\sin 2 t r}{2 t \sinh r} \quad \quad \text { (spherical function, eigenvalue }-\left(\frac{1}{4}+t^{2}\right)\right)
$$

[1.9] Spherical transform on $S L_{2}(\mathbb{C})$ For f a left K-invariant function on G / K, with sufficient decay, the spherical transform \tilde{f} of f is

$$
\tilde{f}(\xi)=\int_{G} f \cdot \bar{\varphi}_{\frac{1}{2}+i \xi}=\int_{G} f \cdot \varphi_{\frac{1}{2}-i \xi} \quad \text { (with real } \xi \text {) }
$$

Spherical inversion is

$$
f=\frac{16}{\pi} \int_{-\infty}^{\infty} \widetilde{f}\left(\frac{1}{2}+i \xi\right) \cdot \varphi_{\frac{1}{2}+i \xi} \cdot\left|\mathbf{c}\left(\frac{1}{2}+i \xi\right)\right|^{-2} d \xi \quad \text { where } \quad \mathbf{c}\left(\frac{1}{2}+i \xi\right)=\xi^{-1}
$$

The leading constant is inessential, and in any case depends on the normalization of measures. The fact that for $S L_{2}(\mathbb{C})$ the Harish-Chandra c-function $\mathbf{c}(s)$ is elementary is another happy coincidence. That is, spherical inversion is simply

$$
f=\frac{16}{\pi} \int_{-\infty}^{\infty} \widetilde{f}\left(\frac{1}{2}+i \xi\right) \cdot \varphi_{\frac{1}{2}+i \xi} \cdot \xi^{2} d \xi
$$

Indeed, for $S L_{2}(\mathbb{C})$, we can prove spherical inversion from classical Fourier inversion on the real line, as follows. First, normalize Fourier transform on \mathbb{R} so that Fourier inversion is

$$
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \xi x} \int_{\infty}^{\infty} e^{-i \xi x} F(u) d u d \xi \quad \text { (suitable } F \text { on } \mathbb{R} \text {) }
$$

[8] Again, there is no luck or miracle involved. Rather, spherical functions are always elementary, for complex Lie groups, as opposed to real. Gelfand-Naimark studied the complex case, as did Harish-Chandra later, prior to the much subtler consideration of the real case.

For F an odd function, this can be folded up into an assertion about sine transforms

$$
F^{\sin }(\xi)=\int_{0}^{\infty} \sin \xi x F(x) d x
$$

as

$$
F(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \xi x \int_{0}^{\infty} \sin \xi u F(u) d u d \xi
$$

Then the spherical transform can be rewritten to fit into this:

$$
\begin{aligned}
& \tilde{f}(\xi)=\int_{0}^{\infty} \varphi_{\frac{1}{2}+i \xi}\left(a_{r}\right) f\left(a_{r}\right) \sinh ^{2} r d r=\int_{0}^{\infty} \frac{\sin 2 \xi r}{2 \xi \sinh r} f\left(a_{r}\right) \sinh ^{2} r d r \\
& \quad=\frac{1}{2 \xi} \int_{0}^{\infty} \sin 2 \xi r\left(f\left(a_{r}\right) \sinh r\right) d r=\frac{1}{4 \xi} \int_{0}^{\infty} \sin \xi r\left(f\left(a_{r / 2}\right) \sinh \frac{r}{2}\right) d r
\end{aligned}
$$

That is,

$$
4 \xi \cdot \widetilde{f}(\xi)=\left(\sinh \frac{r}{2} f\left(a_{r / 2}\right)\right)^{\sin }(\xi)
$$

Then inversion gives

$$
\sinh \frac{r}{2} f\left(a_{r / 2}\right)=\frac{2}{\pi} \int_{0}^{\infty} \sin \xi r \cdot 4 \xi \cdot \tilde{f}(\xi) d \xi
$$

and

$$
f\left(a_{r / 2}\right)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \xi r}{\sinh \frac{r}{2}} \cdot 4 \xi \cdot \tilde{f}(\xi) d \xi
$$

and

$$
f\left(a_{r}\right)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin 2 \xi r}{2 \xi \sinh r} \cdot 8 \xi^{2} \cdot \widetilde{f}(\xi) d \xi=\frac{16}{\pi} \int_{0}^{\infty} \varphi_{\frac{1}{2}+i \xi}\left(a_{r}\right) \widetilde{f}(\xi) \xi^{2} d \xi
$$

There is a corresponding Plancherel theorem for f, F left-and-right K-invariant ${ }^{[9]}$ functions in $L^{2}(G)$:

$$
\int_{G} f \cdot F=\frac{16}{\pi} \int_{0}^{\infty} \widetilde{f}\left(\frac{1}{2}+i \xi\right) \cdot \widetilde{F}\left(\frac{1}{2}+i \xi\right) \cdot\left|\mathbf{c}\left(\frac{1}{2}+i \xi\right)\right|^{-2} d \xi
$$

[1.10] Spherical expansion of δ Juxtaposing Plancherel and the idea that the spherical inversion formula should converge uniformly pointwise for smooth left-and-right K-invariant f, a spherical expansion for Dirac δ at $z_{o}=1 \cdot K$ on G / K can be inferred: noting that $\varphi_{s}\left(z_{o}\right)=1$, the presumed pointwise convergence

$$
f\left(z_{o}\right)=\int_{-\infty}^{\infty} \widetilde{f}\left(\frac{1}{2}+i \xi\right) \varphi_{\frac{1}{2}+i \xi}\left(z_{o}\right)\left|\mathbf{c}\left(\frac{1}{2}+i \xi\right)\right|^{-2} d \xi=\int_{-\infty}^{\infty} \widetilde{f}\left(\frac{1}{2}+i \xi\right) \cdot 1 \cdot\left|\mathbf{c}\left(\frac{1}{2}+i \xi\right)\right|^{-2} d \xi
$$

suggests that $\widetilde{\delta}\left(\frac{1}{2}+i \xi\right)=1$.
[1.10.1] Remark: The legitimacy of the spherical-function expansion for δ on G / K depends upon knowing convergence of the spherical inversion for smooth left-and-right K-invariant functions with suitable decay properties in the C^{∞} topology. This is greatly facilitated by the elementariness of the spherical functions here. The notion of tempered spherical distribution is fortunately much simpler than the full notion of tempered distribution on G without restrictions on the behavior under K. Even though δ is compactly supported, solution of natural differential equations requires a larger class of tempered distributions.
[9] The Plancherel theorem for the whole $L^{2}\left(S L_{2}(\mathbb{C})\right)$ was proven in [Gelfand-Naimark 1950].
[1.11] Free-space fundamental solution We start from the idea that the δ function on G / K has spherical transform computed by

$$
\widetilde{\delta}(s)=\varphi_{s}(1)=1
$$

and that δ has a spherical-function expansion (normalizing-away constants)

$$
\delta=\int_{-\infty}^{\infty} \tilde{\delta}\left(\frac{1}{2}+i \xi\right) \varphi_{\frac{1}{2}+i \xi} \xi^{2} d \xi=\int_{-\infty}^{\infty} \varphi_{\frac{1}{2}+i \xi} \xi^{2} d \xi \quad \text { (convergent as tempered distribution) }
$$

To find a free-space fundamental solution u_{s} for $(\Delta-s(s-1))^{2}$ on G / K, use the spherical transform on tempered left-and-right K-invariant distributions on G. That is, take the spherical transform of both sides of the equation $(\Delta-s(s-1))^{2} u_{s}=\delta$, obtaining

$$
\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2} \widetilde{u}_{s}\left(\frac{1}{2}+i \xi\right)=\widetilde{\delta}\left(\frac{1}{2}+i \xi\right)=1
$$

Thus,

$$
\widetilde{u}_{s}\left(\frac{1}{2}+i \xi\right)=\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{-2}
$$

By spherical inversion for tempered distributions,

$$
u_{s}=\int_{-\infty}^{\infty} \varphi_{\frac{1}{2}+i \xi} \frac{\xi^{2} d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}
$$

A local Sobolev space argument and easy estimates on φ_{s} prove that this integral converges in C^{o}. In fact, the elementary nature of φ_{s} allows a computation of u_{s} by residues, expressing u_{s} in elementary terms, making subsequent estimates easier. Recalling from above that

$$
\varphi_{\frac{1}{2}+i \xi}\left(K a_{r} K\right)=\frac{\sin 2 \xi r}{2 \xi \sinh r}
$$

the expression for u_{s} is

$$
\begin{gathered}
u_{s}\left(K a_{r} K\right)=\int_{-\infty}^{\infty} \frac{\sin 2 \xi r)}{2 \xi \sinh r} \frac{\xi^{2} d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}} \\
=\frac{1}{2 \sinh r} \int_{-\infty}^{\infty} \frac{\xi \sin (2 \xi \cdot r) d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}
\end{gathered}
$$

Use

$$
\sin 2 \xi r=\frac{e^{2 i r \xi}-e^{-2 i r \xi}}{2 i}
$$

to break the integral into two corresponding pieces. Temporarily dropping the denominator of $2 i$, one integral is

$$
\int_{-\infty}^{\infty} \frac{\xi e^{2 i r \xi} d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}
$$

Since we take $r \geq 0$, the exponential is bounded for ξ in the upper half-plane \mathfrak{H}, so auxiliary contours in \mathfrak{H} can be used to evaluate the integral by residues. Since the outcome will be holomorphic in s, we may take Res >> 1 for specificity. Also, conveniently,

$$
\frac{1}{w(w-1)-s(s-1)}=\frac{1}{(w-s)(w-(1-s))}
$$

and

$$
\begin{gathered}
\frac{1}{\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)}=\frac{1}{\left(\left(\frac{1}{2}+i \xi\right)-s\right)\left(\left(\frac{1}{2}+i \xi\right)-(1-s)\right)} \\
=\frac{1}{\left(i \xi-\left(s-\frac{1}{2}\right)\right)\left(i \xi-\left(\frac{1}{2}-s\right)\right)}=\frac{-1}{\left(\xi+i\left(s-\frac{1}{2}\right)\right)\left(\xi-i\left(s-\frac{1}{2}\right)\right)}
\end{gathered}
$$

Squaring will eliminate the sign. Thus,

$$
\int_{-\infty}^{\infty} \frac{\xi e^{2 i r \xi} d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}=2 \pi i \cdot(\text { residues at } \xi \text { in } \mathfrak{H})=2 \pi i \cdot\left(\text { residue at } \xi=i\left(s-\frac{1}{2}\right)\right)
$$

Dropping the factor of $2 \pi i$ for a moment, this is

$$
\begin{gathered}
\left.\left(\frac{\partial}{\partial \xi}\right)\right|_{\xi=i\left(s-\frac{1}{2}\right)}\left(\frac{\xi e^{2 i r \xi}}{\left(\xi+i\left(s-\frac{1}{2}\right)\right)^{2}}\right)=\left.\left(\frac{2 i r \xi e^{2 i r \xi}}{\left(\xi+i\left(s-\frac{1}{2}\right)\right)^{2}}+\frac{e^{2 i r \xi}}{\left(\xi+i\left(s-\frac{1}{2}\right)\right)^{2}}+\frac{-2 \xi e^{2 i r \xi}}{\left(\xi+i\left(s-\frac{1}{2}\right)\right)^{3}}\right)\right|_{\xi=i\left(s-\frac{1}{2}\right)} \\
=\frac{2 i r \cdot i\left(s-\frac{1}{2}\right) \cdot e^{2 i r \cdot i\left(s-\frac{1}{2}\right)}}{\left(2 i\left(s-\frac{1}{2}\right)\right)^{2}}=\frac{r e^{-r(2 s-1)}}{2 s-1}
\end{gathered}
$$

That is, putting back the denominator of $2 i$ and factor of $2 \pi i$,

$$
\int_{-\infty}^{\infty} \frac{\xi e^{2 i r \xi} d \xi}{2 i\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}=\frac{\pi r e^{-r(2 s-1)}}{2 s-1}
$$

Similarly, noting that the contour of integration will now be clockwise, thus contributing a sign,

$$
\int_{-\infty}^{\infty} \frac{\xi e^{-2 i r \xi} d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}=-2 \pi i \cdot\left(\text { residue at } \xi=-i\left(s-\frac{1}{2}\right) \in \mathfrak{H}\right)
$$

Temporarily dropping the $-2 \pi i$, this is

$$
\left.\left(\frac{\partial}{\partial \xi}\right)\right|_{\xi=-i\left(s-\frac{1}{2}\right)}\left(\frac{\xi e^{-2 i r \xi}}{\left(\xi-i\left(s-\frac{1}{2}\right)\right)^{2}}\right)=\frac{r e^{-r(2 s-1)}}{2 s-1}
$$

Thus, putting back the denominator of $2 i$ and factor of $-2 \pi i$,

$$
\int_{-\infty}^{\infty} \frac{\xi e^{-2 i r \xi} d \xi}{2 i\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}=\frac{-\pi r e^{-r(2 s-1)}}{2 s-1}
$$

Therefore,

$$
\int_{-\infty}^{\infty} \frac{\xi \sin (2 \xi \cdot r) d \xi}{\left(\left(\frac{1}{2}+i \xi\right)\left(\left(\frac{1}{2}+i \xi\right)-1\right)-s(s-1)\right)^{2}}=\frac{\pi r e^{-r(2 s-1)}}{2 s-1}-\frac{-\pi r e^{-r(2 s-1)}}{2 s-1}=\frac{2 \pi r e^{-r(2 s-1)}}{2 s-1}
$$

Putting back the denominator of $2 \sinh r$, the free-space fundamental solution for $(\Delta-s(s-1))^{2}$ is

$$
u_{s}\left(K a_{r} K\right)=\text { const } \times \frac{r e^{-(2 s-1) r}}{(2 s-1) \sinh r}
$$

Again, the normalization of the constant depends upon the normalization of the Laplacian.

Paul Garrett: Primer of spherical harmonic analysis on $S L_{2}(\mathbb{C})(J u l y 13,2014)$
[Bargmann 1947] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. Math. 48 (1947), 568-640.
[Berezin 1956a] F.A. Berezin, Laplace operators on semisimple Lie groups, Dokl. Akad. Nauk SSSR 107 (1956), 9-12.
[Berezin 1956b] F.A. Berezin, Representations of complex semisimple Lie groups in Banach spaces, Dokl. Akad. Nauk SSSR 110 (1956), 897-900.
[Berezin 1957] F.A. Berezin, Laplace operator on semisimple Lie groups, Trudy Moscow Mat. Obsc. 6 (1857) 371-463. English translation in Amer. Math. Soc. Transl. 21 (1962), 239-339.
[Gangolli-Varadarajan 1988] R. Gangolli, V.S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Springer-Verlag, 1988.
[Gelfand-Naimark 1950] I.M. Gelfand, M.A. Naimark, Unitary representations of the classical groups, Trudy Mat.Inst. Steklova 36 (1950), 1-288.
[Gelfand-Naimark 1952] I.M. Gelfand, M.A. Naimark, Unitary representations of the unimodular group containing the identity representation of the unitary subgroup, Trudy Moscow Mat. Obsc. 1 (1952), 423-475.
[Godement 1948] R. Godement, A theory of spherical functions I, Trans. AMS, 73 (1952), 496-536.
[HarishChandra 1958] Harish-Chandra, Spherical functions on semisimple Lie groups I, Amer. J. Math. 79 (1958), 241-310.
[Helgason 1984] S. Helgason, Groups and geometric analysis, Academic Press, 1984.
[Iwaniec 2002] H. Iwaniec, Spectral methods of automorphic forms, Graduate Studies in Mathematis 53, AMS, 2002.
[Jorgenson-Lang 2001] S. Lang, J. Jorgenson, Spherical inversion for $S L_{n}(\mathbb{R})$, Springer, 2001.
[Jorgenson-Lang 2008] S. Lang, J. Jorgenson, The heat kernel and theta inversion on $S L_{2}(\mathbb{C})$, Springer, 2008.
[Jorgenson-Lang 2009] S. Lang, J. Jorgenson, Heat Eisenstein series on $S L_{n}(\mathbb{C})$, Mem. AMS 201, no. 946, 2009.
[Harish-Chandra 1954] Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. AMS 76 (1954), 485-528.
[HarishChandra 1958] Harish-Chandra, Spherical functions on semisimple Lie groups I, Amer. J. Math. 79 (1958), 241-310.
[Helgason 1984] S. Helgason, Groups and geometric analysis, Academic Press, 1984.
[Knapp 1986] A. Knapp, Representation theory of semi-simple real Lie groups: an overview based on examples, Princeton University Press, 1986.
[Varadarajan 1989] V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups, Cambridge University Press, 1989.

