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des groupes classiques, Acta Math. 113 (1965),
1-87.

1



Vague (classic) Siegel-Weil: Certain linear
combinations of holomorphic theta series are
(exactly) holomorphic Eisenstein series.

Example, and arithmetic content: As
modular forms for the congruence subgroup

Γθ of SL2(Z) generated by

(
1 2
0 1

)
and(

0 −1
1 0

)
,

∑
v∈Z8

e−πi|v|
2z = E

(i∞)
4 (z)

where E
(i∞)
4 is the weight-four Eisenstein series

taking value 1 at i∞ and 0 at the other cusp.

θ8(z) =
∑
v∈Z8 e−πi|v|

2z is a theta series.

The Fourier expansion of the Eisenstein series is

1+
(2π)4

3!ζ(4)(24 − 1)

∑
N≥1

( ∑
0<c|N

c3 · (−1)N+c
)
eπiNz
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Theta series and Eisenstein series are opposites,
in construction and in Fourier expansions.

The N th Fourier coefficient of the theta series
is the representation number ν8(N), the number
of ways to express N as a sum of 8 squares of
integers. In particular, an integer.

The N th Fourier coefficient of the Eisenstein
series involves ζ(4)/π4 and sums-of-divisors.

For example, with N = 1,

16 = ν8(1) =
(2π)4

3!ζ(4)(24 − 1)

Thus,

ζ(4) =
(2π)4

3!(24 − 1) · 16
=

π4

90
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Oppositely, for p an odd prime,

ν8(p) = 16 ·
∑

0<c|p

c3 · (−1)p+c = 16 · (1 + p3)

And, for another odd prime q 6= p,

ν8(pq)

16
=

∑
0<c|pq

c3 · (−1)pq+c

= 1 + p3 + q3 + (pq)3 = (1 + p3)(1 + q3)

=
ν8(p)

16
· ν8(q)

16

Similarly, for relatively prime, odd m,n,

ν8(mn)

16
=

ν8(m)

16
· ν8(n)

16

None of these facts is obvious.
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Another example: There do exist 8-by-8
symmetric integer matrices with determinant
1 and even diagonal entries:

Q =



8 3 0 0 0 0 0 0
3 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2



The associated theta series

θQ(z) =
∑
v∈Z8

e−πi(v
tQv)z

is a weight-four level-one holomorphic modular
form. Thus,

θQ(z) = E4(z) = 1 +
(2π)4

3!ζ(4)

∑
n≥1

σ3(n)e2πinz
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As with θ8, the Fourier coefficients of θQ are
representation numbers

νQ(n) = card{v ∈ Zn : vtQv = n}

Cor From the coefficient of e2πiz,

νQ(1) =
(2π)4

3!ζ(4)
=

24

3!
· 90 = 240

Thus,

νQ(n) =
(2π)4

3!ζ(4)
σ3(n) = 240σ3(n)

And, again, νQ(n)/240 is weakly multiplicative:
for relatively prime 0 < m,n ∈ Z,

νQ(mn)

240
=

νQ(m)

240
· νQ(n)

240
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Likewise, because the only weight-eight level-
one holomorphic elliptic modular form is (the
Eisenstein series) E8,

∑
n≥0

νQ⊕Q(n) eπinz = θQ⊕Q(z)

= θQ(z) · θQ(z)

= E8(z) = 1 +
(2π)8

7!ζ(8)

∑
n≥1

σ7(n)e2πinz

entailing more non-obvious identities, for
example,

ζ(8) =
28π8

7! · 480
=

π8

9450

Patterns of easy equality of theta series and
Eisenstein series cannot continue simply,
because there are holomorphic cuspforms of
higher weights.

The futility of a naive hope that all theta series
are Eisenstein series reflects the non-triviality of
the precise Siegel-Weil relation.
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Why are theta series modular forms?

The classical argument mirrors proofs that local
Weil representations are representations, and
that for k-rational quadratic forms, the global
Weil representation has properties reflecting
global arithmetic.

Gunning 1962 echoes the most classical
argument. My Holomorphic Hilbert Modular
Forms 1990 modernizes that argument to
a degree (and might suggest revising the
whole approach to overtly use the Weil
representation).

Of course, this is an anachronistic and causality-
reversing description.

To be clear, for holomorphic Siegel-Weil, the
first substantive issue is that such a theta
series is a modular form. And this is essentially
equivalent to construction (and details) of
the local and global Weil representation. The
subtler, second issue is about arranging linear
combinations to obtain exactly Eisenstein series.
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A more general set-up

To simplify, consider quadratic spaces of
the form Q = Q1 ⊕ Q1, so that the Weil
representation descends from a two-fold cover
to the symplectic groups Sp2n(A).

Suppose Q is positive-definite at archimedean
places (which then must be real). This entails
that all the theta series and Eisenstein series
correspond to holomorphic modular forms, for
local Weil-representation reasons.

The essential issues already arise for
SL2 × O(Q) over Q. The same ideas apply to
Sp2n ×O(Q), over totally real number fields k.

The global Weil representation restricted to
Sp2n × O(Q) acts on the Schwartz functions
ϕ on QA × An. View the latter as dimQ × n
rectangular matrices.

The action of h ∈ O(Q)A is elementary,
induced from the natural linear action on QA,
on functions by (h · ϕ)(v) = ϕ(h−1 · v).
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g ∈ Sp2n(A) acts via the Weil representation,
defined in pieces: using the simplifying
assumptions on Q, with standard additive
character ψ on A/k,(

a 0
0 ta−1

)
ϕ(v)

= χQ(det a) · | det a| 12 dimQ · ϕ(v · a)(
1 x
0 1

)
ϕ(v) = ψ( 1

2 tr
(
Q(v) · x

)
) · ϕ(v)(

0 −1
1 0

)
ϕ(v)

= χQ(−1) · ϕ̂(v) (locally everywhere)

For present purposes, a theta kernel Φϕ is a
function of g ∈ Sp2n(A):

Φϕ(g) =
∑

v∈Qk⊗kn
(g · ϕ)(v)

The theta series in the Siegel-Weil formula is

θϕ(g) =

∫
O(Q)k\O(Q)A

( ∑
v∈Qk⊗kn

(g ·ϕ)(h−1v)
)
dh
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In fact, especially because O(Q)k\O(Q)A is
compact, the integral easily passes inside the
sum: ∫

O(Q)k\O(Q)A

( ∑
v∈Qk⊗kn

(g · ϕ)(h−1v)
)
hd

=
∑

v∈Qk⊗kn

∫
O(Q)k\O(Q)A

(g · ϕ)(h−1v) dh

=
∑

v∈Qk⊗kn
(g · ϕ̃)(h−1v) = Φϕ̃(g)

where

ϕ̃(g) =

∫
O(Q)k\O(Q)A

h · ϕ dh

That is, with compact O(Q)k\O(Q)A,

θϕ = Φϕ̃
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Claim: Every Φϕ is left Sp2n(k)-invariant.

Proof: We prove that it is left-invariant by

Nk = {nx =

(
1 S
0 1

)
: St = S, S over k}

by

Mk = {ma =

(
a 0
0 ta−1

)
: a ∈ GLn(k)}

and by the Weyl element

w = {
(

0 −1
1 0

)
A Bruhat decomposition shows that these
generate Sp2n(k).

First, in fact, each summand (g · ϕ)(v) for v in
Qk ⊗ kn is left Nk-invariant:

((nxg) · ϕ)(v) = (nx · (g · ϕ))(v)

= ψ( 1
2 tr
(
Q(v) · x

)
) · (g · ϕ)(v) = 1 · (g · ϕ)(v)

because ψ is trivial on k.
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Second,∑
v

((mag) · ϕ)(v) =
∑
v

(ma · (g · ϕ))(v)

= χQ(det a) · | det a| 12 dimQ
∑
v

(g · ϕ)(vm)

= 1 ·
∑
v

(g · ϕ)(v)

by the product formula, by the fact that
GLn(k) stabilizes Qk ⊗ kn, and by the fact that
χQ is a Hecke character.

Last,∑
v

((wg) · ϕ)(v) =
∑
v

(w · (g · ϕ))(v)

= χQ(−1) ·
∑
v

(ĝ · ϕ)(v) =
∑
v

(g · ϕ)(v)

by Poisson summation, since χQ is a Hecke
character. ///
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On the other hand, Siegel-parabolic Eisenstein
series Ef on Sp2n, holomorphic or not, are
attached to functions f on Sp2n left-invariant
by

NA = {
(

1 S
0 1

)
: St = S, S adelic}

and by

Mk = {
(
a 0
0 ta−1

)
: a ∈ GLn(k)}

Under various hypotheses assuring convergence,

Ef (g) =
∑

γ∈NkMk\Sp2n(k)

f(γ · g)

The relevant f = fϕ for Siegel-Weil is

fϕ(g) = (g · ϕ)(0)
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Siegel-Weil (classical, holomorphic)
Given n, for dimQ sufficiently large,

θϕ = Efϕ (with fϕ(g) = (g · ϕ)(0))

Expanded: ∫
O(Q)k\O(Q)A

∑
v

(g · ϕ)(h−1v) dh

=
∑

γ∈NkMk\Sp2n(k)

(
γg · ϕ

)
(0)

Cor Equality of 0th Fourier coefficients is the
Siegel Mass Formula.
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Note By the positive-definiteness of Q at
archimedean places, the integral over
O(Q)k\O(Q)A is actually a finite sum, weighted
by various volumes:

Proof: Generally, when Hk is globally
anisotropic, Hk\HA is compact. For classical
groups, this is Mahler’s criterion: Godement’s
Sem. Bourbaki talk on Reduction Theory, 1963.

For orthogonal groups O(Q), global anisotropy is
non-solvability of Q(x) = 0 for non-zero x ∈ Qk.
Certainly this is implied by local anisotropy at
any completion kv, meaning Q(x) = 0 has no
non-zero solutions x ∈ Qkv .

Hasse-Minkowski is the converse!

For dimQ > 4, there are no p-adic anisotropic
quadratic forms, so global anisotropy occurs
exactly for anisotropy at some archimedean
place. This does not happen at complex places,
so there must be a real place where the form Q
is positive-definite or negative-definite.
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When the archimedean factors of HA are all
compact,

Hk\HA/KA ≈ (Hk)fin\Hfin/Kfin

with the projection of Hk to non-archimedean
factors, and with finite-prime adele groups. The
quotient (Hk)fin\Hfin inherits compactness.

Since Kfin is (compact and) open, that further
quotient

(Hk)fin\Hfin/Kfin = compact/open

is finite. ///
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Sketch of Proof of Siegel-Weil:

Positive-definiteness at archimedean places
greatly simplifies the argument, but is
inessential.

Local computation shows that θϕ generates
holomorphic discrete series at archimedean
places (classical avatar a holomorphic modular
form). This is worth some attention:

Up to R-isomorphism, the positive-definite form
is Q(v1, . . . , v2`) =

∑
j v

2
j = |v|2. We use the

Lie algebra version of the representation, best
referenced as Segal-Shale-Weil. In sl2, as usual,
let

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
(Historically backward) differentiating the Weil
representation, these Lie algebra elements act
on functions on R2` by

18



(up to normalizing constants)

X → multiplication by
|v|2

2

Y → ∆

2
H → `+

2∑̀
j=1

vj
∂

∂vj

To determine possible principal series
representations Iχ to which this has non-
trivial maps, we’d compute its Jacquet
module, namely, X-cofixed vectors, due to the
Frobenious adjunction

Homsl2(V, Is) ≈ Homm(Vn, | · |s)

with n the Lie algebra of N , m that of M .

To simplify, dualize to consider fixed vectors
rather than co-fixed: consider the tempered
distributions S ∗. Those fixed/annihilated by
multiplication by |v|2 are supported at 0. Thus,

δ and its derivatives ∂αδ such that ∂̂αδ is a
harmonic polynomial.
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By Euler’s identity,

(
`+

2∑̀
j=1

v`
∂

∂vj

)
∂αδ =

(
`− (2`+ |α|)

)
· ∂αδ

= −(`+ |α|) · ∂αδ

Un-dualizing (at the level of characters, not
principal series), vectors in the archimedean
Weil representation map at most to principal
series induced from(
a ∗
0 a−1

)
→ a`+|α| = a

1
2 dimQ+|α| (for a > 0)

These non-unitarizable principal series are the
ones that contain holomorphic discrete series as
subrepresentations. The (` + |α|)th holomorphic
discrete series has lowest K∞ type `+ |α|.
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The intertwining Is → I1−s by (analytic
continuation of)

f −→
∫
N

f(wnxg) dx

is generically an isomorphism. For s = `+|α|, its
kernel is the holomorphic discrete series of that
weight. Since the Weil representation has no
non-zero map to I1−(`+|α|), its image in I`+|α|
must be inside the holomorphic discrete series.

In fact, the Weil representation has images

Hd ⊗ πd+ 1
2 dimQ

as O(2`) × SL2(R) representation, for
homogeneous harmonic polynomials Hd of
degree d, and holomorphic discrete series
πd+ 1

2 dimQ with lowest weight d + 1
2 dimQ, for

all d.

This entails considerable simplification for the
sequel.
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A global idea is that fϕ(g) = (g · ϕ)(0) is the
constant term

cP θϕ(g) =

∫
Nk\NA

θϕ(ug) du = fϕ(g)

of θϕ along the Siegel parabolic P = NM . Since
the summands in θϕ and Φϕ are Nk-invariant,
we can compute this constant term summand-
wise:∫
Nk\NA

(nxg ·ϕ)(v) dx =

∫
Nk\NA

(nx · (g ·ϕ))(v) dx

=

∫
Nk\NA

ψ( 1
2 tr
(
Q(v) · x

)
) (g · ϕ)(v) dx

= (g · ϕ)(v) ·
∫

Nk\NA

ψ( 1
2 tr
(
Q(v) · x

)
) dx

The integral is 0 unless the character on Nk\NA
is trivial, which is exactly for Q(v) = 0.
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Since Q is globally anisotropic (positive-definite
at least one real place), this is exactly for v = 0.
Thus, the constant-term contribution of the vth

summand is 0 unless v = 0, in which case it is
(g · ϕ)(0) = fϕ(g).

O(Q)A stabilizes 0, so integration over
O(Q)k\O(Q)A does not change the constant
term. But this integration does assure, via
local representation theory, that the resulting
θϕ = Φϕ̃ is the lowest-K-type vector in a
holomorphic discrete series.

In general, for an SL2 automorphic form F with
constant term F0, the difference F − EF0

is not
a cuspform. But in the holomorphic situation
(for lowest-K-type) this does hold. So θϕ − Efϕ
is a cuspform. We first sketch the rest of the
proof for SL2, then look at the complications
for Sp2n, still in the holomorphic case.
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The second idea is that θϕ and Efϕ generate the
same principal series representation locally at
almost all finite primes. Thus, their difference
locally generates that representation.

For large dimQ, the non-archimedean principal
series are in a range where the principal series is
irreducible, and outside the unitarizability range.

Holomorphic cuspforms are square-integrable,
so local representations generated by them are
unitary/unitarizable. Thus, θϕ − Efϕ 6= 0
would generate a principal series at almost all
finite places, outside the unitarizable range,
but required to be unitary by cuspidality.
Contradiction. So the difference is 0. This
completes the sketch for SL2. ///

Note: At archimedean places, the holomorphic
discrete series (which are unitarizable) do
occur as subrepresentations of principal series
outside the unitarizable range. So high-weight
holomorphic Eisenstein series locally generate
unitarizable representations at archimedean
places, but not at finite primes.
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For holomorphic Siegel modular forms, Klingen
1967 says: for large-enough weight, every
holomorphic Siegel modular form F is

F = c ·ESp2n2k +ESp2nf1
+ESp2nf2

+ . . .+ESp2nfn−1
+fn

with fm’s holomorphic cuspforms on Sp2m, and
Eisenstein series induced from cuspforms f
(Klingen-type Eisenstein series).

In the more general case, θϕ − Efϕ has leading
term 0 in the Klingen expansion. If non-zero, it
would generate a principal series at almost all
finite places, outside the unitarizable range.

Klingen-type holomorphic Eisenstein series
are made from holomorphic cuspforms, which
are L2, and therefore generate unitarizable
representations locally. The Eisenstein series
of large weight formed from cuspforms locally
generate representations at finite places that are
not only not-unitarizable, but also in a different
parameter range from the Siegel-type Eisenstein
series.

Thus, θϕ − Efϕ = 0. ///
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Fancier examples of arithmetic content

It has been known for a long time (since 1979
at least) that Eisenstein series decompose under
restriction as

ESp42k

(
z 0
0 w

)

= E2k(z) · E2k(w) +
∑
cfm f

cf · f(z) f(w)

summed over an orthogonal basis for cuspforms,
where cf is a ratio of an L-function value and a
Petersson norm.

Expression of ESp42k as a linear combination of
theta series implies at least that the Fourier
coefficients of ESp42k are rational with bounded
denominators.

Some linear algebra implies that holomorphic
cuspforms f have Fourier coefficients and
Petersson norms and L-function values with
very nice rationality properties.
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The extension of this restriction formula to
Sp2m × Sp2n → Sp2m+2n, with m ≤ n is (for
z ∈ Hm, w ∈ Hn), is

ESp2m+2n

(
z 0
0 w

)
= ESp2m2k (z) · ESp2m2k (w)

+
∑

cfm f onSL2

cf · ESp2mf (z)ESp2nf (w)

+
∑

cfm f onSp4

cf · ESp2mf (z)ESp2nf (w)

. . .+
∑

cfm f onSp2m

cf · f(z)ESp2nf (w)

Combining this with rationality properties of

E
Sp2m+2n

2k directly implies that Siegel modular
varieties are defined over number fields, etc.

Shimura’s 1970 proofs of field-of-definition
required substantial algebraic geometry of
moduli spaces (canonical models) of abelian
varieties.
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The combination of the restriction/pullback
formula with holomorphic Siegel-Weil also
implies that Klingen-type Eisenstein series have
Fourier coefficients with good rationality and
Galois properties. (Harris 1981 proved this in a
different way, akin to part of the argument here
for Siegel-Weil.)

Similarly, algebraicity/Galois properties of
normalized values of certain L-functions on
Sp2n’s and related classical groups originally
required substantial algebraic geometry.

Further, integrality properties of both
definition of the Siegel modular varieties and
special values of L-functions follow with the
decomposition formula and Siegel-Weil, not just
from the canonical models viewpoint.

The restriction formula and Siegel-Weil
also resolve the basis problem, expressing
holomorphic Siegel modular forms as theta
series. (Böcherer, PiatetskiShapiro-Rallis, et al)
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