
(July 9, 2010)

Basic Rankin-Selberg

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/̃ garrett/

We present the simplest possible example of the Rankin-Selberg method, namely for a pair of holomorphic
modular forms for SL(2,Z), treated independently in 1939 by Rankin and 1940 by Selberg. (Rankin has
remarked that the general idea came from his advisor and mentor, Ingham.) We also recall a proof of the
analytic continuation of the relevant Eisenstein series. That is, we consider the simplest instance of an
identity

〈f · Es, g〉 = L-function

where f, g are cuspforms and Es is an Eisenstein series. Or, contrariwise, one might consider

〈ResGHEs, f〉 = L-function

where the notation indicates that the Eisenstein series on a larger group was restricted to a smaller group H
and there integrated against a cuspform f . One should note that it is not at all obvious that such integrals
should yield L-functions or Dirichlet series of any sort.

Let f , g be two holomorphic cuspforms on the upper half-plane H of weight 2k for SL(2,Z), with Fourier
expansions

f(z) =
∑
n>0

an e
2πinz

g(z) =
∑
n>0

bn e
2πinz

Let Γ = SL(2,Z) for brevity, and let

P = {
(
∗ ∗
0 ∗

)
∈ Γ}

Then define an Eisenstein series Es by

Es(z) =
∑

γ∈P\Γ

Im(γz)s

where
(
a b
c d

)
∈ Γ acts on z in the upper half-plane as usual by linear fractional transformations

(
a b
c d

)
(z) =

az + b

cz + d

Noting that

Im
(
a b
c d

)
(z) =

Im(z)
|cz + d|2

one can verify that the series defining Es converges absolutely (and uniformly on compacta) for Re(s) > 1.
In that region it is straightforward to verify that Es is SL(2,Z)-invariant.

Further, it is standard (and proven below as an appendix) that Es has an analytic continuation to s ∈ C
with a functional equation described as follows. First, let

ξ(s) = π−s/2 Γ(
s

2
) ζ(s)
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be the usual zeta function
ζ(s) =

∑
n≥1

1
ns

along with its gamma factor π−s/2Γ( s2 ). Recall the functional equation of zeta

ξ(1− s) = ξ(s)

The functional equation of the Eisenstein series is

ξ(2s)Es = ξ(2− 2s)E1−s

and the expression ξ(2s)Es has poles only at s = 0, 1. By the identity principle of complex analysis the
analytic continuation is also SL(2,Z)-invariant.

It is also important to verify that both in the convergent region and when analytically continued the
Eisenstein series is of moderate growth as Im(x) goes to +∞, meaning that

|Es(z)| = O(yN )

for some N , as y → +∞, for z = x+ iy in the standard fundamental domain

F = {z ∈ H : |x| ≤ 1
2
, |z| ≥ 1}

for SL(2,Z)\H.

The Petersson inner product for weight 2k modular forms is

〈f, g〉 =
∫

Γ\H
f(z) g(z) y2k dx dy

y2

where dx dy/y2 is a SL(2,R)-invariant measure on H. Note that the expression

f(z) g(z) y2k

is Γ-invariant.

The simplest Rankin-Selberg integral (from Rankin 1939 and Selberg 1940) is

〈f · Es, g〉

This integral converges for all s ∈ C since on the fundamental domain F the analytically continued Eisenstein
series is of moderate growth, and the cuspforms are of rapid decay in the sense that on F

|f(z)| = O(y−N )

for all N .

[0.0.1] Theorem:

〈f · Es, g〉 = (4π)−(s+2k−1) Γ(s+ 2k − 1)
∑
n≥1

an bn
ns+2k−1

The function

ξ(2s) 〈f · Es, g〉 = (4π)−(s+2k−1) ξ(2s) Γ(s+ 2k − 1)
∑
n≥1

an bn
ns+2k−1

2



Paul Garrett: Basic Rankin-Selberg (July 9, 2010)

has an analytic continuation to C with poles at most at s = 0, 1.

Proof: For an integrable P -invariant function ϕ on H we have a general identity akin to Fubini’s theorem∫
P\H

ϕ(z)
dx dy

y2
=
∫

Γ\H

∑
γ∈P\Γ

ϕ(γz)
dx dy

y2

Applying this to
ϕ(z) = ys · f(z)g(z) y2k

we obtain ∫
P\H

ys f(z)g(z) y2k dx dy

y2
= 〈f · Es, g〉

For fundamental domain for P\H we take

Φ = {z = x+ iy ∈ H : 0 ≤ x ≤ 1}

This region is a cartesian product, and we may integrate first in x, using the Fourier expansions of f and g∫
P\H

ys f(z)g(z) yk
dx dy

y2
=
∑
m,n≥1

ambn

∫
y>0

ys+2k−1e−2π(m+n)y

(∫
0≤x≤1

e2πi(m−n)x dx

)
dy

y

=
∑
n≥1

anbn

∫
y>0

ys+2k−1e−4πny dy

y
= (4π)−(s+2k−1)

∑
n≥1

anbn n
−(s+2k−1)

∫
y>0

ys+2k−1e−4πy dy

y

= (4π)−(s+2k−1) Γ(s+ 2k − 1)
∑
n≥1

anbn
ns+2k−1

This holds by direct computation for Re(s) > 1, and then by the identity principle for the analytically
continued Eisenstein series. The integral is absolutely convergent for all s ∈ C away from the poles of the
Eisenstein series, since the Eisenstein series is of moderate growth and the cuspforms are of rapid decay.

///

Recall that for f(z) =
∑
n ane

2πinz a normalized Hecke eigenfunction we have an Euler product expansion
of the associated L-function

Lf (s) =
∑
n

an
ns

=
∏

prime p

1
1− app−s + p2k−1−2s

The quadratic denominator attached to the prime p factors

1
1− app−s + p2k−1−2s

=
1

(1− αpp−s)(1− βpp−s)

The Dirichlet series of the theorem admits an Euler product:

[0.0.2] Corollary: For f and g normalized Hecke eigenfunctions,

ξ(2s− 4k + 2) 〈f · Es−2k+1, g〉

has the Euler product expansion

(2π)−s Γ(s)
∏

prime p

1
(1− αγp−s)(1− αδp−s)(1− βγp−s)(1− βδp−s)
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where α, β are attached to f and γ, δ are attached to g, and where we have suppressed the index p on
α, β, γ, δ.

Proof: We start with the computation of the theorem, and factor the Dirichlet series

∑
n≥1

an bn
ns

over primes. The Hecke eigenfunction assumptions that

Lf (s) =
∑
n

an
ns

=
∏

prime p

1
(1− αpp−s)(1− βpp−s)

Lg(s) =
∑
n

bn
ns

=
∏

prime p

1
(1− γpp−s)(1− δpp−s)

yield (by expanding the geometric series)

ap` =
α`+1
p − β`+1

p

αp − βp
bp` =

γ`+1
p − δ`+1

p

γp − δp

Note that the assumption that g(z) is a normalized Hecke eigenfunction implies that its Fourier coefficients
are real, so we can drop the complex conjugation. The weak multiplicativity of the Fourier coefficients
immediately gives

∑
n≥1

an bn
ns

=
∏

prime p

∑
`≥0

ap` bp`

(p`)s
=

∏
prime p

∑
`≥0

(p`)−s
α`+1
p − β`+1

p

αp − βp
·
γ`+1
p − δ`+1

p

γp − δp

For fixed prime p, the inner sum over ` is essentially four geometric series. Let X = p−s and suppress the
subscript p. Sum these geometric series separately

∑
`≥0

X` · α
`+1 − β`+1

α− β
· γ

`+1 − δ`+1

γ − δ
=

1
α− β

· 1
γ − δ

·
(

αγ

1− αγX
− αδ

1− αδX
− βγ

1− βγX
+

βδ

1− βδX

)

The algebraic identity that makes this whole computation work is

1
γ − δ

·
(

αγ

1− αγX
− αδ

1− αδX

)
=

1
γ − δ

· αγ − α
2γδX − αδ + α2γδX

(1− αγX)(1− αδX)
=

α

(1− αγX)(1− αδX)

Thus, the right-hand side of the expression obtained from the sum over ` for fixed prime p is

1
α− β

·
(

α

(1− αγX)(1− αδX)
− β

(1− βγX)(1− βδX)

)
Putting everything over a common denominator, this is

1
α− β

· (α− (βγ + βδ)αX + αβ2γδX2)− (β − (αγ + αδ)βX + βα2γδX2)
(1− αγX)(1− αδX)(1− βγX)(1− βδX)

The middle terms cancel, leaving

1
α− β

· (α+ αβ2γδX2)− (β + βα2γδX2)
(1− αγX)(1− αδX)(1− βγX)(1− βδX)

=
1− αβγδX2

(1− αγX)(1− αδX)(1− βγX)(1− βδX)

4



Paul Garrett: Basic Rankin-Selberg (July 9, 2010)

Using αβ = p2k−1 and γδ = p2k−1 this is

1− p4k−2X2

(1− αγX)(1− αδX)(1− βγX)(1− βδX)
=

1− p4k−2−2s

(1− αγp−s)(1− αδp−s)(1− βγp−s)(1− βδp−s)

The numerator is exactly the p-factor of ζ(2s + 2 − 4k), as indicated in the assertion of the theorem, and
the gamma factor (with power of π) is as asserted. ///

[0.0.3] Remark: The tensor product L-function

L(f ⊗ g, s) =
∏

prime p

1

det(14 − p−s
(
α 0
0 β

)
⊗
(
γ 0
0 δ

)
)

=
∏

prime p

1
(1− αγp−s)(1− αδp−s)(1− βγp−s)(1− βδp−s)

attached to f and g was only recently shown by Ramakrishnan to be attached to an automorphic form on
GL(4), matching general (mostly unproven) conjectures of Langlands.

[0.0.4] Remark: Rankin’s original purpose in considering the tensor product L-function was to approach
Ramanujan’s conjecture on the size of Hecke eigenvalues, and Rankin did achieve the best result at that
time. More recent work of Shahidi and Kim-Shahidi is a (modernized) continuation of this theme, though
by now the L-functions themselves have acquired their own interest.

Now we sketch a method for proving analytic continuation and functional equation of the Eisenstein series,
taking the simplest possible case, following Godement’s 1966 rewriting of an idea that occurred in Rankin’s
1939 paper, if not earlier.

Again, let P be the upper triangular matrices in SL(2,Z). The Eisenstein series may be expressed as

Es(z) =
∑

γ∈P\SL(2,Z)

Im(γ(z))s =
1
2
·

∑
c,d coprime

ys

|cz + d|2s

where γ =
(
a b
c d

)
. The factor of 1

2 is present because (−c,−d) gives a contribution identical to that of

(c, d). A standard and convenient related form is

Ẽs(z) = 2 ζ(2s)Es(z) =
∑

(c,d)6=(0,0)

ys

|cz + d|2s

where (c, d) is summed over all non-zero vectors in Z2, dropping the coprimality condition, and dropping
the factor of 1

2 . Both expressions converge for Re(s) > 1.

[0.0.5] Theorem: The function

π−sΓ(s)Ẽs(z) = 2π−sΓ(s)ζ(2s)Es(z)

has a meromorphic continuation to s ∈ C with poles only at s = 0, 1, which are simple, and is invariant
under

s→ 1− s

The residue of Es(z) at s = 1 is the constant function 3/π. The function Es(z) has no pole in Re(s) > 1
2

other than at s = 1.
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Proof: We prove the meromorphic continuation and functional equation. For (c, d) = v ∈ R2, consider the
Gaussian

ϕ(v) = e−π|v|
2

= e−π(c2+d2)

where v → |v| is the usual length function on R2. For g ∈ GL(2,R), define

Θ(g) =
∑
v∈Z2

ϕ(v · g) =
∑

(c,d)∈Z2

e−π|(c,d)g|2

where we view v ∈ R2 as being a row vector. Consider the integral representation (a Mellin transform)∫ ∞
0

t2s (Θ(tg)− 1)
dt

t

where the t in the argument of Θ simply acts by scalar multiplication on g ∈ GL(2,R). On one hand,
integrating term-by-term gives∫ ∞

0

t2s (Θ(tg)− 1)
dt

t
=

∑
v 6=(0,0)

∫ ∞
0

t2s e−π|tvg|
2 dt

t

Since
π|tvg|2 = (t ·

√
π|vg|)2

we can change variables by replacing t by t/(
√
π|vg|) to obtain

∑
v 6=(0,0)

(
√
π|vg|)−2s

∫ ∞
0

t2s e−t
2 dt

t
=

1
2
π−s

∑
v 6=(0,0)

|vg|−2s

∫ ∞
0

ts et
dt

t

=
1
2
π−sΓ(s)

∑
v 6=(0,0)

|vg|−2s

Now we want g ∈ SL(2,R) of a simple sort and chosen to map i in the upper half-plane to x+ iy (acting by
linear fractional transformations). One reasonable choice is

g =
(

1 x
0 1

)(√
y 0

0 1/
√
y

)
Using this choice of G and writing out v = (c, d) gives

vg = (c, d)g = ( c d )
(

1 x
0 1

)(√
y 0

0 1/
√
y

)
= (c
√
y, (cx+ d)/

√
y)

and thus ∑
v

|vg|−2s =
∑
v

|(c√y, (cx+ d)/
√
y)|−2s =

∑
v

(c2y + (cx+ d)2/y)−s

=
∑
v

ys

(c2y2 + (cx+ d)2)s
=
∑
v

ys

|ciy + cx+ d|2s
=
∑
v

ys

|cz + d|2s

Thus, we see that the integral representation yields the Eisenstein series Ẽ with a leading power of π and a
gamma function.

On the other hand, to prove the meromorphic continuation, we use the integral representation of the
Eisenstein series in terms of Θ. We essentially follow an argument of Riemann for the Euler-Riemann
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zeta function, first breaking the integral into two parts, one from 0 to 1, and the other from 1 to +∞. Keep
g ∈ SL(2,R) in a compact subset of SL(2,R). Then∫ ∞

1

t2s (Θ(tg)− 1)
dt

t
= entire in s

since elementary estimates show that the integral is uniformly and absolutely convergent. Indeed, this
integral is a smooth function of g for all s ∈ C. Apply Poisson summation to the kernel: first note that the
Gaussian ϕ(v) = e−π|v|

2
is its own Fourier transform, and that

Fourier transform of (v → ϕ(tvg)) = (v → t−2 det(g)−1 · ϕ(t−1v >g−1))

where >g is g-transpose. Then Poisson summation asserts

Θ(tg) = t−2 det(g)−1 ·Θ(t−1 >g−1)

so then the slight modification for the kernel gives

Θ(tg)− 1 = t−2 det(g)−1 · [Θ(t−1 >g−1)− 1] + t−2 det(g)−1 − 1

Then we tranform the integral from 0 to 1: at first only for Re(s) > 1 we have∫ 1

0

t2s (Θ(tg)− 1)
dt

t
=
∫ 1

0

t2s
(
t−2 det(g)−1 · [Θ(t−1 >g−1)− 1] + t−2 det(g)−1 − 1

) dt
t

Replacing t by 1/t turns this into∫ ∞
1

t−2s
(
t2 det(g)−1 · [Θ(t>g−1)− 1] + t2 det(g)−1 − 1

) dt
t

Explicitly evaluating the last two elementary integrals of powers of t from 1 to ∞, using Re(s) > 1, this is

det(g)−1

∫ ∞
1

t2−2s (Θ(t>g−1)− 1)
dt

t
+

det(g)−1

2s− 2
− 1

2s

Use the fact that g has determinant 1 to simplify this to∫ ∞
1

t2−2s (Θ(t>g−1)− 1)
dt

t
+

1
2s− 2

− 1
2s

Further, for g in SL(2),
>g−1 = wgw−1

where w is the long Weyl element

w =
(

0 −1
1 0

)
Since Z2 − (0, 0) is stable under w, and since the length function v → |v|2 is invariant under w, we have

Θ(g) = Θ(wg) = Θ(gw−1)

so
Θ(>g−1) = Θ(g)

(This is certainly special to SL(2,Z), as opposed to smaller congruence subgroups.) Thus, the original
integral from 0 to 1 becomes ∫ ∞

1

t2−2s (Θ(tg)− 1)
dt

t
+

1
2s− 2

− 1
2s
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and the whole equality, with g of the special form above, is

1
2
π−sΓ(s) Ẽs(z) =

∫ ∞
1

t2s (Θ(tg)− 1)
dt

t
+
∫ ∞

1

t2−2s (Θ(tg)− 1)
dt

t
+

1
2s− 2

− 1
2s

or (multiplying through by 2)

π−sΓ(s) Ẽs(z) = 2
∫ ∞

1

t2s (Θ(tg)− 1)
dt

t
+ 2

∫ ∞
1

t2−2s (Θ(tg)− 1)
dt

t
− 1

1− s
− 1
s

The integral from 1 to ∞ is nicely convergent for all s ∈ C, uniformly in g in compacta. And of course
the elementary rational expressions of s have meromorphic continuations. Thus, the right-hand side gives
a meromorphic continuation of the Eisenstein series. Further, the right-hand side is visibly invariant under
s→ 1− s.

Finally, it is also visible that the only poles are at s = 1, 0, that the residue at s = 1 is the constant function
1, and at s = 0 the residue is the constant function 0. At s = 1 the factor π−sΓ(s) is holomorphic and has
value 1/π, so

Ress=1 Ẽs(z) = π

At s = 0 the factor π−sΓ(s) has a simple pole with residue 1, so Ẽs(z) itself is holomorphic at s = 0, and is
the constant function 1.

Now we recover the assertions for Es(z) itself. The convergence of the infinite product

ζ(2s) =
∑
n

1
n2s

=
∏

p prime

1
1− p−2s

for Re(s) > 1/2 assures that ζ(2s) is not zero for Re(s) > 1/2. And ζ(2) = π2/6. These standard facts and
the previous discussion give the full result. ///
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