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The complex unit disk

D = {z ∈ C : |z| < 1}

has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon
them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall
some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and
corresponding groups acting by linear fractional (Möbius) transformations. Happily, many of the higher-
dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest
case.

1. The disk, upper half-plane, SL2(R), and U(1, 1)
2. Classical groups over C and over R
3. The four families of self-adjoint cones
4. The four families of classical domains
5. Harish-Chandra’s and Borel’s realization of domains

1. The disk, upper half-plane, SL2(R), and U(1, 1)

The group

GL2(C) = {
(
a b
c d

)
: a, b, c, d ∈ C, ad− bc 6= 0}

acts on the extended complex plane C ∪∞ by linear fractional transformations(
a b
c d

)
(z) =

az + b

cz + d

with the traditional natural convention about arithmetic with ∞. But we can be more precise, in a form
helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1,
by defining P1 to be a set of cosets

P1 = {
(
u
v

)
: not both u, v are 0}/C× =

(
C2 − {0}

)
/C×

where C× acts by scalar multiplication. That is, P1 is the set of equivalence classes of non-zero 2-by-1 vectors
under the equivalence relation(

u
v

)
∼
(
u′

v′

)
if and only if

(
u
v

)
= c ·

(
u′

v′

)
for some non-zero c ∈ C×

In other words, P1 is the quotient of C2−{0} by the action of C×. The complex line C1 is imbedded in this
model of P1 by

z →
(
z
1

)
The point at infinity ∞ is now easily and precisely described as

∞ =

(
1
0

)
1
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Certainly the matrix multiplication action of GL2(C) on C2 stabilizes non-zero vectors, and commutes
with scalar multiplication, so GL2(C) has a natural action on P1. This action, linear in the homogeneous
coordinates, becomes the usual linear fractional action in the usual complex coordinates:(

a b
c d

)
(z) =

(
a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
=

(
(az + b)/(cz + d)

1

)
when cz+ d 6= 0, since we can multiply through by (cz+ d)−1 to normalize the lower entry back to 1, unless
it is 0, in which case we’ve mapped to ∞.

The action of GL2(C) is transitive on P1, since it is transitive on C2 −{0}, and P1 is the image of C2 −{0}.

The condition defining the open unit disk

D = {z ∈ C : |z| < 1} ⊂ C

can be rewritten as

D = {z ∈ C :

(
z
1

)∗(−1 0
0 1

)(
z
1

)
> 0}

where T ∗ is conjugate transpose of a matrix T . The standard unitary group U(1, 1) of signature (1, 1) is

U(1, 1) = {g ∈ GL2(C) : g∗
(
−1 0

0 1

)
g =

(
−1 0

0 1

)
}

We can easily prove that U(1, 1) stabilizes the disk D, as follows. For z ∈ D and

g =

(
a b
c d

)
∈ U(1, 1)

compute

1− |g(z)|2 =

(
g(z)

1

)∗(−1 0
0 1

)(
g(z)

1

)
=

1

(cz + d)∗
·
(
az + b
cz + d

)∗(−1 0
0 1

)(
az + b
cz + d

)
· 1

(cz + d)

=
1

|cz + d|2
·
(
z
1

)∗
g∗
(
−1 0

0 1

)
g

(
z
1

)
=

1

|cz + d|2
·
(
z
1

)∗(−1 0
0 1

)(
z
1

)
since g is in the unitary group. Then

1− |g(z)|2 =
1

|cz + d|2
(1− |z|2) > 0

In fact, to be sure that cz + d 6= 0 in this situation, we should have really computed (by the same method)
that

|cz + d|2 · (1− |g(z)|2) = 1− |z|2

Since 1− |z|2 > 0 and |cz + d| ≥ 0, necessarily |cz + d| > 0 and 1− |g(z)|2 > 0.

The complex upper half-plane is
H = {z ∈ C : Imz > 0}

In the spirit of giving matrix expressions for defining inequalities,

Imz =
1

2i
·
(
z
1

)∗(
0 −1
1 0

)(
z
1

)
2
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This suggests taking

G = {g ∈ GL2(C) : g∗
(

0 −1
1 0

)
g =

(
0 −1
1 0

)
}

Just as in the discussion of the disk, for z ∈ H and

g =

(
a b
c d

)
∈ G

compute

2i · Img(z) =

(
g(z)

1

)∗(
0 −1
1 0

)(
g(z)

1

)
=

1

(cz + d)∗
·
(
az + b
cz + d

)∗(
0 −1
1 0

)(
az + b
cz + d

)
· 1

(cz + d)

=
1

|cz + d|2
·
(
z
1

)∗
g∗
(

0 −1
1 0

)
g

(
z
1

)
=

1

|cz + d|2
·
(
z
1

)∗(
0 −1
1 0

)(
z
1

)
since g is in G. Then

Img(z) =
1

|cz + d|2
Imz > 0

To be sure that cz + d 6= 0, compute in the same way that

|cz + d|2 · Img(z) = Imz

Since Imz > 0 and |cz + d| ≥ 0, necessarily |cz + d| > 0 and Img(z) > 0.

Since the center

Z = {
(
t 0
0 t

)
: t ∈ C}

of GL2(C) acts trivially on C ⊂ P1, one might expect some simplification of matters by restricting our
attention to the action of

SL2(C) = {g ∈ GL2(C) : det g = 1}

since under the quotient map GL2(C) → GL2(C)/Z the subgroup SL2(C) maps surjectively to the whole
quotient GL2(C)/Z. The special but well-known formula(

a b
c d

)−1
=

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)
for the inverse of a two-by-two matrix implies that

SL2(C) = {g ∈ GL2(C) : g>
(

0 −1
1 0

)
g =

(
0 −1
1 0

)
}

Thus, the subgroup in SL2(C) stabilizing the upper half-plane is

G′ = {g ∈ GL2(C) : g>
(

0 −1
1 0

)
g =

(
0 −1
1 0

)
and g∗

(
0 −1
1 0

)
g =

(
0 −1
1 0

)
}

In particular, for such g we have g> = g∗, so the entries of g are real. Thus, we have shown that

{g ∈ SL2(C) : g · H = H} = SL2(R) = {g ∈ GL2(R) : det g = 1}

This is the group usually prescribed to act on the upper half-plane. Again, arbitrary complex scalar matrices
act trivially on P1, so it is reasonable that we get a clearer determination of this stabilizing group by
restricting attention to SL2(C).

3
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The Cayley map c : D→ H is the holomorphic isomorphism given by the linear fractional transformation

c =
1√
2
·
(

1 i
i 1

)
∈ SL2(C)

If we use

SU(1, 1) = {g ∈ SL2(C) : g∗
(
−1 0

0 1

)
g =

(
−1 0

0 1

)
}

instead of U(1, 1) as the group stabilizing the disk D, then it is easy to check that

c−1 · SL2(R) · c = SU(1, 1)

Thus, the disk and the upper half-plane are the same thing apart from coordinates. On the upper half-plane,
the subgroup

{
(

1 b
0 1

)
·
(
a 0
0 a−1

)
} ⊂ SL2(R)

acts by affine transformations (
1 b
0 1

)
·
(
a 0
0 a−1

)
(z) = a2z + b

In particular, this shows that SL2(R) is transitive on H. On the other hand, in the action of SU(1, 1) on
the disk D, the subgroup

{
(
µ 0
0 µ−1

)
: |µ| = 1}

acts by affine transformations (
µ 0
0 µ−1

)
(z) = µ2 · z

This is the subgroup of SU(1, 1) fixing the point 0 ∈ D. When the latter subgroup is conjugated by the
Cayley element c to obtain the corresponding subgroup of SL2(R) fixing c(0) = i ∈ H, consisting of elements

c ·
(
µ 0
0 µ−1

)
· c−1 =

(
µ+µ−1

2
µ−µ−1

2i

−µ−µ
−1

2i
µ+µ−1

2

)
=

(
cos θ sin θ
− sin θ cos θ

)

for θ ∈ R such that µ = eiθ.

The special unitary group is

SU(1, 1) = {g ∈ SL2(C) : g∗
(
−1 0

0 1

)
g =

(
−1 0

0 1

)
} = {

(
α β
β̄ ᾱ

)
: |a|2 − |b|2 = 1}

The Cayley element c conjugates SL2(R) and SU(1, 1) back and forth. Since SL2(R) acts transitively on
the upper half-plane, SU(1, 1) acts transitively on the disk. Also, this can be seen directly by verifying that
for |z| < 1 the matrix

1√
1− |z|2

·
(

1 z
z̄ 1

)
lies in SU(1, 1) and maps 0 to z.

The isotropy group in SL2(R) of the point i ∈ H is the special orthogonal group

SO(2) = {g ∈ SL2(R) : g>g = 12} = {
(

cos θ − sin θ
sin θ cos θ

)
: θ ∈ R}

4
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The natural map
SL2(R)/SO(2) −→ H

given by
g · SO(2) −→ g(i)

is readily verified to be a diffeomorphism.

The disk is an instance of Harish-Chandra’s realization of quotients analogous to SL2(R)/SO(2) as bounded
subsets of spaces Cn. The ambient complex projective space P1 in which both the bounded (disk) and
unbounded (upper half-plane) models of SL2(R)/SO(2) are realized is an instance of the compact dual,
whose general construction is due to Borel. The Cayley map from a bounded to an unbounded model was
studied in general circumstances by Piatetski-Shapiro for the classical domains, and later by Koranyi and
Wolf instrinsically.

2. Classical groups over C and over R
We list the classical complex groups and the classical real groups. Further, we tell the compact real groups,
and indicate the maximal compact subgroups of the real groups.

There are very few different classical groups over C, because C is algebraically closed and of characteristic
zero. They are

GLn(C) = invertible n-by-n matrices with complex entries (general linear groups)

Spn(C) = {g ∈ GL2n(C) : g>
(

0n −1n
1n 0n

)
g =

(
0n −1n
1n 0n

)
} (symplectic groups)

O(n,C) = {g ∈ GLn(C) : g>g = 1n} (orthogonal groups)

Sometimes what we’ve denoted Spn(C) is written Sp2n(C). Also, for some purposes the orthogonal groups
with n odd are distinguished from those with n even. Closely related to GLn(C) are

(special linear groups) SLn(C) = {g ∈ GLn(C) : det g = 1}

and likewise related to orthogonal groups are

(special orthogonal groups) SO(n,C) = O(n,C) ∩ SLn(C)

It is not hard to show that
Spn(C) ⊂ SL2n(C)

A special case of the latter is Sp1(C) = SL2(C). E. Cartan’s labels for these families are

type An SLn+1(C)
type Bn O(2n+ 1,C)
type Cn Spn(C)
type Dn O(2n,C)

Over R there is a greater variety of classical groups, since R has the proper algebraic extension C, and also
is the center of the non-commutative division algebra H, the Hamiltonian quaternions

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}

where
i2 = j2 = k2 = −1 ij = −ji = k jk = −kj = i ki = −ik = j

5
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Each family of complex group breaks up into several different types of real groups. We will not worry about
determinant-one conditions.

Type A: The groups over R affiliated with the complex general linear groups GLn(C) include are the obvious
general linear groups

GLn(R) GLn(C) GLn(H)

over the real numbers, complex numbers, and Hamiltonian quaternions. To this family also belong the
unitary groups

U(p, q) = {g ∈ GLp+q(C) : g∗
(
−1p 0

0 1q

)
g =

(
−1p 0

0 1q

)
}

of signature (p, q). As usual, often U(n, 0) and U(0, n) are denoted U(n).

Types B,D: The groups over R affiliated with the complex orthogonal groups O(n,C) include O(n,C) itself,
and real orthogonal groups

O(p, q) = {g ∈ SLp+q(R) : g>
(
−1p 0

0 1q

)
g =

(
−1p 0

0 1q

)
}

of signature (p, q). As usual, O(n, 0) and O(0, n) are denoted O(n). There are also the quaternion skew-
hermitian groups

O∗(2n) = {g ∈ GLn(H) : g∗(i · 1n)g = i · 1n}

where g∗ denotes the conjugate-transpose with respect to the quaternion conjugation (entry-wise)

a+ bi+ cj + dk −→ a− bi− cj − dk

The i occurring in the definition of the group is the quaternion i, and is not in the center of the division
algebra of quaternions.

Types C: The groups over R affiliated with the complex symplectic groups Spn(C) include Spn(C) itself,
and real symplectic groups

Spn(R) = {g ∈ GL2n(R) : g>
(

0n −1n
1n 0n

)
g =

(
0n −1n
1n 0n

)
}

and also the quaternion hermitian groups

Sp∗(p, q) = {g ∈ GLp+q(H) : g∗
(
−1p 0

0 1q

)
g =

(
−1p 0

0 1q

)
}

with signature (p, q). As usual, Sp∗(n, 0) and Sp∗(0, n) are denoted Sp∗(n).

The fact that the signatures (p, q) are the unique invariants for groups O(p, q), U(p, q), and Sp∗(p, q) (and
that the other groups have only dimension as invariant) is the Inertia Theorem.

There are minor variations of the above families, obtained in two ways. The first is by adding a determinant-
one condition:

SLn(C) = {g ∈ GLn(C) : det g = 1}
SLn(R) = {g ∈ GLn(R) : det g = 1}
SU(p, q) = U(p, q) ∩ SLp+q(C)
SLn(H) = GLn(H) ∩ SL2n(C)
SO(p, q) = O(p, q) ∩ SLp+q(R)
SO(n,C) = O(n,C) ∩ SLn(C)
SO∗(2n) = O∗(2n) ∩ SLnn(H)

A bit of thought is necessary to make sense of SLn(H), since H is not commutative, and thus determinants
of matrices with entries in H do not behave as simply as for entries from commutative rings. The second

6
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variations, for groups preserving a quadratic, hermitian, or alternating form, is to allow similitudes, meaning
that the form is possibly changed by a scalar. For example,

GU(p, q) = {g ∈ GLp+q(C) : g∗
(
−1p 0

0 1q

)
g = µ(g) ·

(
−1p 0

0 1q

)
for some µ(g) ∈ R×}

GO(p, q) = {g ∈ GLp+q(R) : g>
(
−1p 0

0 1q

)
g = µ(g) ·

(
−1p 0

0 1q

)
for some µ(g) ∈ R×}

GSpn(R) = {g ∈ GL2n(R) : g>
(

0n −1n
1n 0n

)
g = µ(g) ·

(
0n −1n
1n 0n

)
for some µ(g) ∈ R×}

The list of the classical compact groups among the groups over R is short:

U(n) O(n) Sp∗(n)

Each of the classical groups over R has a maximal compact subgroup, unique up to conjugation (by a theorem
of E. Cartan, which can be proven case-by-case for these groups). We list the isomorphism classes of the
maximal compact subgroups in the format G ⊃ K, where G runs over groups over R and K is a maximal
compact subgroup.

GLn(C) ⊃ U(n)
GLn(R) ⊃ O(n)
GLn(H) ⊃ Sp∗(n)
U(p, q) ⊃ U(p)× U(q)
O(n,C) ⊃ O(n)
O(p, q) ⊃ O(p)×O(q)
O∗(2n) ⊃ U(n)
Spn(C) ⊃ Sp∗(n)
Spn(R) ⊃ U(n)
Sp∗(p, q) ⊃ Sp∗(p)× Sp∗(q)

In a few of these cases it is non-trivial to understand the copy of the compact group. For example, the copy
of U(n) inside Spn(R) is

U(n) ≈ {
(
a −b
b a

)
: a+ ib ∈ U(n)} ⊂ Spn(R)

Similarly, if (relying upon an inertia theorem) we use skew form(
0n −1n
1n 0n

)
to define O∗(2n), the analogously defined copy of U(n) is a maximal compact in O∗(2n).

3. The four families of self-adjoint cones

A cone in a real vectorspace V is a non-empty open subset C closed under scalar multiplication by positive
real numbers. A cone is convex when it is convex as a set, meaning as usual that for x, y ∈ C and t ∈ [0, 1]
then tx+ (1− t)y is also in C. Now suppose V has a positive-definite inner product 〈, 〉. Let C be a convex
cone. The adjoint cone C∗ of C is

C∗ = {λ ∈ V : 〈v, λ〉 > 0 : for all v ∈ C}

A convex cone C is self-adjoint when C = C∗. A cone is homogeneous when there is a group G of R-linear
automorphisms of the ambient vectorspace V stabilizing C and acting transitively on C. In that case,

7
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letting K be the isotropy group of a basepoint in C, we have a homeomorphism C ≈ G/K. In the following
descriptions we use the orthogonal similitude group GO(Q) of a quadratic form on a real vector space V ,

GO(Q) = {g ∈ GL(V ) : Q(gv) = µ(g) ·Q(v) for all v ∈ V }

where µ(g) ∈ R× depends on g.

There are four families of convex, self-adjoint, homogeneous cones, described as quotients G/K.

positive-definite symmetric n-by-n real matrices ≈ GLn(R)/O(n)
positive-definite hermitian n-by-n complex matrices ≈ GLn(C)/U(n)
positive-definite quaternion-hermitian n-by-n matrices ≈ GLn(H)/Sp∗(n)
interior of light cone, {(y0, y1, . . . , yn) : y20 − (y21 + . . .+ y2n) > 0, y0 > 0} ≈ GO(1, n)+/{1} ×GO(n)′

where H+ denotes the connected component of the identity in a topological group H, and

GO(n)′ = {k ∈ GO(n) : 1× k ∈ GO(n, 1)+}

The actions of the indicated groups are as follows. Proofs of transitivity are given after the descriptions of
the actions.

Elements g of G = GLn(R) act on positive definite symmetric real n-by-n matrices S by

g(S) = gSg>

The orthogonal group O(n) is the isotropy group of the n-by-n identity matrix 1n. Elements g of G = GLn(C)
act on positive definite hermitian complex n-by-n matrices S by

g(S) = gSg∗

where g∗ is conjugate-transpose. The unitary group U(n) is the isotropy group of 1n. Elements g of
G = GLn(H) act on positive definite quaternion-hermitian n-by-n matrices S by

g(S) = gSg∗

where g∗ is quaternion-conjugate-transpose. The symplectic group Sp∗(n) is the isotropy group of 1n.
Elements g of G = GO(n, 1)+ act on vectors y = (y0, y1, . . . , yn) by the natural linear action

g(y) = g · y

The imbedded orthogonal similitude group {1} ×GO(n)′ is the isotropy group of (1, 0, . . . , 0). Note that it
is necessary to restrict ourselves to the connected component of the identity to assure that we stay in the
chosen half of the interior of the light cone.

Proof of transitivity (and stabilization of the cone) of the indicated group has a common pattern for the first
three types of cones, using spectral theorems for symmetric and hermitian operators. We do just the real
case. First, for a symmetric real n-by-n matrix S (positive definite or not), by the spectral theorem there
is a matrix g ∈ GLn(R) so that S′ = gSg> is diagonal. Since S is positive definite, it must be that all the
diagonal entries of S′ are positive. Then there is a diagonal matrix h in GLn(R) so that hS′h> = 1n. Thus,
every positive definite symmetric matrix lies in the GLn(R)-orbit of 1n, so we have the transitivity.

To prove transitivity of the action of O(n, 1)+ on the light cone, first note that the imbedded copy of
GO(n)′ is transitive on vectors (y0, y1, . . . , yn) with (y1, . . . , yn) non-zero. Thus, every GO(n)′-orbit has a
representative either of the form (y0, 1, 0, . . . , 0) or (y0, 0, 0, . . . , 0). In the former case, we may as well think
in terms of SO(1, 1), which contains matrices

Mt =

(
cosh t sinh t
sinh t cosh t

)
8
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with t ∈ R. Given y0 there is t ∈ R so that of Mt

(
y0
1

)
=

(
y′0
0

)
with y′0 > 0. Thus, every orbit contains

a vector (y0, 0, . . . , 0) with y0 > 0. Then dilation by a suitable positive real number (which is a similitude)
yields (1, 0, . . . , 0). Thus, every orbit contains the latter vector, which proves the transitivity.

4. The four families of classical domains

Let 1n denote the n-by-n identity matrix, and for hermitian matrices M,N write M > N to indicate that
M − N is positive definite. The four families of bounded classical domains, each diffeomorphic to a
quotient G/K for a classical real group G and maximal compact K, are as follows.

Ip,q = {p-by-q complex matrix z : 1q − z∗z > 0} ≈ U(p, q)/U(p)× U(q)
IIn = {n-by-n complex matrix z : zT = −z and 1n − z∗z > 0} ≈ O∗(2n)/U(n)
IIIn = {n-by-n complex matrix z : zT = z and 1n − z∗z > 0} ≈ Spn(R)/U(n)
IVn = {z ∈ Cn : |z1|2 + . . .+ |zn|2 < 1

2 (1 + |z21 + . . .+ z2n|) < 1} ≈ O(n, 2)/O(n)×O(2)

The fourth family of domains is less amenable than the first three, since its description is relatively ungainly.

We prove that U(p, q) stabilizes Ip,q and acts transitively upon it by generalized linear fractional
transformations (

a b
c d

)
(z) = (az + b)(cz + d)−1

where a is p-by-p, b is p-by-q, c is q-by-p, and d is q-by-q. Then, letting 0 < A mean that A is positive-definite
hermitian,

0 < 1q − z∗z =

(
z
1q

)∗(−1p 0
0 1q

)(
z
1q

)
=

(
z
1q

)∗(
a b
c d

)∗(−1p 0
0 1q

)(
a b
c d

)(
z
1q

)

=

(
az + b
cz + d

)∗(−1p 0
0 1q

)(
az + b
cz + d

)
= (cz + d)∗(cz + d)− (az + b)∗(az + b)

For the right-hand side to be positive definite, it must be that (cz + d) is non-singular, which also verifies
that the apparent definition of the action by linear fractional transformations is plausible. Then, in similar
fashion,

1q−g(z)∗g(z) =

(
g(z)
1q

)∗(−1p 0
0 1q

)(
g(z)
1q

)
= (cz+d)∗−1

(
az + b
cz + d

)∗(−1p 0
0 1q

)(
az + b
cz + d

)
(cz+d)−1

= (cz + d)∗−1
(
z
1q

)∗(
a b
c d

)∗(−1p 0
0 1q

)(
a b
c d

)(
z
1q

)
(cz + d)−1 = (cz + d)∗−1(1q − z∗z)(cz + d)−1

The latter quantity is positive definite, so the image g(z) lies back in the specified domain.

The unbounded models of these domains are

Ip≤q {(z, u) : 1
i (z−z

∗)−u∗u>0, z=q-by-q, u=(p− q)-by-q} (for p = q, hermitian upper half-space)
IIn {n-by-n quaternionic z : iz − z∗i > 0} (quaternion upper half-space)
IIIn {symmetric complex n-by-n z : −i(z − z∗) > 0} (Siegel upper half-space)
IVn {(z, u) ∈ C× Cn : 1

i (z − z̄)− |u|
2 > 0}

Note that the unbounded models In,n, IIn, and IIIn all are visibly tube domains in the sense that they are
describable as

domain = {z = x+ iy : x ∈ V, y ∈ C}

9
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where C is a self-adjoint homogeneous convex open cone in a real vector space V . The domains IVn are also
tube domains, related to light cones. The domains Ip,q with p 6= q, including the case of the complex unit
ball in Cn (which is In,1), are not tube domains.

These coordinates are more convenient to verify that, for example, Spn(R) stabilizes and acts transitively
on the Siegel upper half-space Hn by generalized linear fractional transformations(

a b
c d

)
(z) = (az + b)(cz + d)−1

using n-by-n blocks for matrices in Spn(R). To verify that cz + d is genuinely invertible, use the fact that
matrices in Sp(n,R) are real, and compute

z − z∗ =

(
z
1n

)∗(
0n −1n
1n 0n

)(
z
1n

)
=

(
z
1n

)∗(
a b
c d

)>(
0n −1n
1n 0n

)(
a b
c d

)(
z
1n

)

=

(
az + b
cz + d

)∗(
0n −1n
1n 0n

)(
az + b
cz + d

)
= (cz + d)∗(az + b)− [(cz + d)∗(az + b)]∗

Thus, the latter expression is i times a positive-definite symmetric real matrix. Thus, for any non-zero 1-by-n
complex matrix v,

0 6= v∗ ((cz + d)∗(az + b)− [(cz + d)∗(az + b)]∗) v

In particular, (cz + d)v 6= 0. Thus, cz + d is invertible, and the expression (az + b)(cz + d)−1 makes sense.
Next, we verify that (az + b)(cz + d)−1 is symmetric. To this end, similarly compute

0 = z − z> =

(
z
1n

)>(
0n −1n
1n 0n

)(
z
1n

)
=

(
z
1n

)>(
a b
c d

)>(
0n −1n
1n 0n

)(
a b
c d

)(
z
1n

)

=

(
az + b
cz + d

)>(
0n −1n
1n 0n

)(
az + b
cz + d

)
= (cz + d)>(az + b)− [(cz + d)>(az + b)]>

= (cz + d)>[(az + b)(cz + d)−1 − ((az + b)(cz + d)−1)>](cz + d) = (cz + d)>[g(z)− g(z)>](cz + d)

Since cz + d is invertible, it must be that g(z) is symmetric. Next, we verify that g(z) does lie in the Siegel
upper half-space Hn. In the equality from above

z − z∗ = (cz + d)∗(az + b)− [(cz + d)∗(az + b)]∗

left multiply by (cz + d)∗−1 and right multiply by (cz + d)−1 to obtain

(cz + d)∗−1(z − z∗)(cz + d)−1 = (az + b)(cz + d)−1 − [(az + b)(cz + d)−1]∗ = g(z)− g(z)∗

Thus, since g(z) is actually symmetric, −i(g(z)− g(z)∗) is positive-definite symmetric real.

The bounded and unbounded models of domains G/K are both open subsets of a larger compact complex
manifold called the compact dual, on which the complexified G acts by linear fractional transformations.
The bounded model is mapped to the unbounded model by a special element in the complexified group, the
Cayley element c. In the case of the domains Ip≥q, the picture is relatively easy to understand. Let

Ω = { complex p-by-q v : rank v = q}

and let Ď be the quotient
Ď = Ω/GLq(C)

where GLq(C) acts on the right by matrix multiplication. The Ω coordinates on Ď are homogeneous
coordinates. (This is a Grassmannian variety.) The group GC = GLp+q(C) acts on the left on Ω by matrix
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multiplication, and certainly preserves the maximal rank. Thus, the bounded model of the Ip,q domain
consists of points with homogeneous coordinates(

z
1q

)
and 1q − z∗z > 0

The right action of GLq(C) preserves the latter relation, so this set is well-defined via homogeneous

coordinates. The unbounded model has a similar definition in these terms, being the set of points

 z
u
1q


with z being q-by-q, u being (p− q)-by-q, z

u
1q

 so that
1

i
(z−z∗)−u∗u>0

Again, the latter relation is stable under the right action of GLq(C), so this set is well-defined in homogeneous
coordinates. Let

c =

 1√
2
· 1q 0 i√

2
· 1q

0 1p−q 0
i√
2
· 1q 0 1√

2
· 1q


Of course if p = q = n then this is simpler, and completely analogous to the SL2(R) situation:

c =
1√
2
·
(

1n i · 1n
i · 1n 1n

)

In the case of the domains IIn the direct relation between the bounded and unbounded realizations is
computationally more irksome, since the bounded model makes no mention of quaternions, while the
unbounded model is most naturally described in such terms. The domain IVn is even less convivial in
these ad hoc terms.

5. Harish-Chandra’s and Borel’s realization of domains

The general construction of this section clarifies the phenomena connected with the four families of classical
domains. We will not prove anything, but only describe intrinsically what happens. We will verify that the
construction duplicates the bounded and unbounded models for Spn(R).

Let G be an almost simple semi-simple real Lie group, K a maximal compact subgroup of G, and suppose
that the center of K contains a circle group Z (that is, a group isomorphic to R/Z). It turns out that the
action of Z on the complexified Lie algebra gC of G decomposes gC into 3 pieces

gC = p+ ⊕ kC ⊕ p−

where k is the Lie algebra of K, and p± are χ±1-eigenspaces for a non-trivial character χ of Z. It turns out
that

G ⊂ exp p+ ·KC · exp(p−)

where KC is the complexification of K. Thus, letting

B = KC exp p−

we have
G/K ≈ GB/B ⊂ GC/B

11
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In fact, given g ∈ G, there is a unique ζ(g) ∈ p+ so that

g ∈ exp ζ(g) ·KC · exp p−

The function
g −→ ζ(g) ∈ p+

is the Harish-Chandra imbedding of G/K in the complex vector space p+. Given g, h ∈ G, the action
ζ(h)→ g · ζ(h) of g on the point ζ(h) is defined by

g · exp ζ(h) ∈ exp(g · ζ(h)) ·KC · exp p−

We can show that the above description does really work in the case of G = Spn(R), and produces the
bounded model given earlier, namely

IIIn = { symmetric n-by-n complex matrices z : 1n − z∗z > 0}
In the bounded model,

K = {
(
k 0
0 k>−1

)
: k ∈ U(n)}

KC = {
(
k 0
0 k>−1

)
: k ∈ GLn(C)}

Then

p+ = {
(

0 z
0 0

)
: z = z>}

p− = {
(

0 0
ζ 0

)
: z = z>}

Then given

(
a b
c d

)
try to solve for z, ζ, and h ∈ GLn(C) such that(

a b
c d

)
=

(
1 z
0 1

)(
h 0
0 h>−1

)(
1 0
ζ 1

)
This is (

a b
c d

)
=

(
h+ zh>−1ζ zh>−1

h>−1ζ h>−1

)
One finds that h = d>−1, and

z = bd−1 =

(
a b
c d

)
(0) (with linear fractional action)

and also ζ = d−1c. (This evidently requires that d is invertible.) That is,(
a b
c d

)
=

(
1 bd−1

0 1

)
·
(
d>−1 0

0 d

)
·
(

1 0
d−1c 1

)

To compute the action of

(
a b
c d

)
on a point z, we do a similar computation:(
a b
c d

)(
1 z
0 1

)
=

(
a az + b
c cz + d

)
which has the decomposition(

a az + b
c cz + d

)
=

(
1 (az + b)(cz + d)−1

0 1

)
·
(

(cz + d)>−1 0
0 cz + d

)
·
(

1 0
(cz + d)−1c 1

)
and thus (assuming cz + d is invertible) the action is(

a b
c d

)
(z) = (az + b)(cz + d)−1
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