The Constant Term

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/rgarrett/

- Basic estimates
- The hierarchy of constant terms

Let G be a reductive real Lie group, for example $G=G L(n, \mathbb{R})$. Let A be a maximal \mathbb{R}-split torus, in the case of $G L(n, \mathbb{R})$ the diagonal matrices, with connected component of the identity A^{+}. Let K be a maximal compact subgroup of G, for $G L(n, \mathbb{R})$ the standard orthogonal group $O(n)$. Let N be the unipotent radical of a minimal parabolic containing A, in the case of $G L(n, \mathbb{R})$ upper-triangular unipotent matrices. The Iwasawa decomposition of G is with respect to this data is

$$
G=N \cdot A^{+} \cdot K
$$

Thus, the function $g \longrightarrow a_{g}$ defined by expressing $g=n a_{g} k$ with $n \in N, a \in A^{+}, k \in K$ is well-defined.
Let $\log : A^{+} \longrightarrow \mathfrak{a}$ be the inverse of the Lie exponential map from the Lie algebra \mathfrak{a} of A^{+}to A^{+}itself. For λ in the complexification $\mathfrak{a}^{*} \otimes_{\mathbb{R}} \mathbb{C}$ of the group of characters of \mathfrak{a}, keeping in mind that $a_{g} \in A^{+}$, write

$$
a_{g}^{\lambda}=e^{\lambda\left(\log a_{g}\right)}
$$

For brevity, we may abbreviate the function $g \longrightarrow a_{g}^{\lambda}$ simply as a^{λ}.
[0.1] Lemma: Let C be a compact set in $G, x \in G$. Then there is a compact subset C_{A} of A^{+}such that $y \in x C$ implies $a_{y} \in a_{x} \cdot C_{A}$.

Proof: Let $G=N \cdot A^{+} \cdot K$ be an Iwasawa decomposition as above. Given a compact subset C of $G, C \cdot K$ is still compact and contains C, and is right K-stable. For a right K-stable compact subset C

$$
C \subset\left(N A^{+} \cap C\right) \cdot K
$$

since in Iwasawa coordinates $p k \in C$ with $p \in N A^{+}$and $k \in K$ implies by right K-stability that $p=(p k) \cdot k^{-1}$ is also in C. There are compact subsets $C_{N} \subset N, C_{A} \subset A^{+}$so that

$$
K \cdot C \subset C_{N} \cdot C_{A} \cdot K
$$

Then

$$
x C \subset N a_{x} K \cdot C \subset N a_{x} \cdot C_{N} C_{A} K \subset N \cdot\left(a_{x} N a_{x}^{-1}\right) \cdot\left(a_{x} C_{A}\right) \cdot K \subset N \cdot\left(a_{x} C_{A}\right) \cdot K
$$

which shows that for $y \in x C$ the element a_{y} is in $a_{x} C_{A}$.
A left $N \cap \Gamma$-invariant function \mathbb{C}-valued f on G is said to be of moderate growth of exponent λ on a fixed Siegel set

$$
S_{t}=\left\{x \in G: a_{x}^{\alpha} \geq t \text { for all positive simple roots } \alpha\right\}
$$

if

$$
f(g)=O\left(a_{g}^{\lambda}\right) \quad\left(\text { for } g \in S_{t}\right)
$$

[0.2] Corollary: Fix an exponent λ. For any $\varphi \in \mathrm{C}_{c}^{\infty}(G)$ there is a constant c and constant $0<\mu$ so that, for any f of moderate growth of exponent λ on a Siegel set $S_{t}, \varphi \cdot f$ is of moderate growth of exponent λ on the Siegel set $S_{\mu t}$.

Proof: Let C be a compact set containing the support of φ. Then

$$
\varphi f(x)=\int_{G} f(x g) \varphi(g) d g=\int_{G} f(g) \varphi\left(x^{-1} g\right) d g=\int_{x C} f(g) \varphi\left(x^{-1} g\right) d g
$$

By the previous lemma, there is a compact subset C_{A} of A^{+}such that for $y \in x C$ we have $a_{y} \in a_{x} C_{A}$. Thus, there is a constant c such that, in absolute value,

$$
|\varphi f(x)| \leq \sup |\varphi| \int_{x C}|f(g)| d g \leq \sup |\varphi| \cdot c \cdot \int_{x C} a_{x}^{\lambda} d g \leq \sup |\varphi| \cdot c \cdot \operatorname{meas}(C) \cdot a_{x}^{\lambda}
$$

by invoking the previous lemma.
[0.3] Corollary: If f is smooth and of moderate growth with exponent λ on Siegel sets, and if $\varphi \cdot f=f$ for some $\varphi \in \mathrm{C}_{c}^{\infty}(G)$, then f is of uniform moderate growth of exponent λ, in the sense that for any differential operator L in the universal enveloping algebra of the Lie algebra of $G, L f$ is of moderate growth with exponent λ on Siegel sets.

Proof: The point is that the left- G-invariant differential operators X 'on the right' attached to the right regular representation of G, arising from X in the Lie algebra of G by

$$
X f(x)=\left.\frac{\partial}{\partial s}\right|_{s=0} f\left(x \cdot e^{s X}\right)
$$

interact nicely with the action of $\varphi \in \mathrm{C}_{c}^{\infty}(G)$ on f, as follows.

$$
X(\varphi \cdot f)(x)=\left.\frac{\partial}{\partial s}\right|_{s=0} \int_{G} f\left(x \cdot e^{s X} g\right) \varphi(g) d g=\left.\frac{\partial}{\partial s}\right|_{s=0} \int_{G} f(x g) \varphi\left(e^{-s X} g\right) d g
$$

by replacing g by $e^{-s X} g$. Then this is

$$
\left.\int_{G} f(x g) \frac{\partial}{\partial s}\right|_{s=0} \varphi\left(e^{-s X} g\right) d g=\int_{G} f(x g) X^{\mathrm{left}} \varphi(g) d g
$$

where $X^{\text {left }}$ is the (right- G-invariant) differential operator 'on the left' naturally attached to X via the left regular representation. ${ }^{[1]}$ Thus, since $\varphi \cdot f=f$,

$$
X f(x)=X(\varphi \cdot f)(x)=\left(\left(X^{\text {left }} \varphi\right) \cdot f\right)(x)
$$

which is of moderate growth of exponent λ, by the previous corollary. Thus, by induction on the degree of the differential operator $L, L f$ is of moderate growth of exponent λ.
[0.4] Proposition: Let P be an arbitrary maximal (proper) parabolic (containing the maximal split torus A) with Levi component M and unipotent radical N. Let f be smooth and left ($N \cap \Gamma$)-invariant. Let

$$
\alpha: a_{x} \longrightarrow a_{x}^{\alpha}
$$

be the simple positive root in (the Lie algebra of) N so that every root β in N satisfies $\beta \geq \alpha$. Suppose that for any Y in the Lie algebra of G the (right) Lie derivative $Y f$ is of moderate growth of exponent λ in Siegel sets. Then

$$
\left(f-f_{P}\right)(x)=O\left(a_{x}^{\lambda-\alpha}\right)
$$

[1] The interchange of differentiation and integration is justified by observing that the integral is compactly supported, continuous, and takes values in a quasi-complete locally convex topological vector space on which differentiation is a continuous linear map.
[0.5] Remark: For $G=G L(n)$, the standard simple positive roots are

$$
\alpha_{i}\left(\begin{array}{cccc}
m_{1} & & & \\
& m_{2} & & \\
& & \ddots & \\
& & & m_{n}
\end{array}\right)=m_{i} / m_{i+1}
$$

for $1 \leq i \leq n-1$.
[0.6] Remark: For non-maximal parabolics there is not the same sort of clear decrease of the exponent of growth. Instead, a somewhat more complicated estimate holds.

Proof: First, we give a proof for $G=G L(2)$. Normalizing the measure of $(\Gamma \cap N) \backslash N$ to be 1,

$$
\left(f_{P}-f\right)(x)=\int_{(\Gamma \cap N) \backslash N} f(n x)-f(x) d n=\int_{0 \leq t \leq 1} f\left(e^{t X} \cdot x\right)-f(x) d t
$$

where X is the element

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

in the Lie algebra of N. By the fundamental theorem of calculus

$$
f\left(e^{t X} \cdot x\right)-f(x)=\left.\int_{0}^{t} \frac{\partial}{\partial r}\right|_{r=0} f\left(e^{(r+s) X} \cdot x\right) d s=\int_{0}^{t}-X^{\mathrm{left}} f\left(e^{s X} \cdot x\right) d s
$$

where $X^{\text {left }}$ is the natural right- G-invariant operator attached to X via the left regular representation. The main mechanism of this proof resides in the conversion of this operator to a left-G-invariant operator attached to the right regular representation, as follows.

$$
X^{\text {left }} f\left(e^{s X} \cdot x\right)=\left(\left.\frac{\partial}{\partial r}\right|_{r=0} f\right)\left(e^{r X+s X} \cdot x\right)=\left(\left.\frac{\partial}{\partial r}\right|_{r=0} f\right)\left(e^{s X} \cdot x \cdot e^{r \cdot \operatorname{Ad} x^{-1}(X)}\right)=\operatorname{Ad} x^{-1}(X) f\left(e^{s X} \cdot x\right)
$$

where $\operatorname{Ad} x^{-1}(X)$ is the left- G-invariant operator attached to X via the right regular representation. Let

$$
x=n_{x} a_{x} \theta_{x}
$$

with $n_{x} \in N, a_{x} \in M, \theta_{x} \in K$. Then

$$
\operatorname{Ad} x^{-1}(X)=\operatorname{Ad}\left(\theta_{x}^{-1} a_{x}^{-1} n_{x}^{-1}\right)(X)=\operatorname{Ad}\left(\theta_{x}^{-1} a_{x}^{-1}\right)(X)
$$

Further,

$$
\operatorname{Ad} a_{x}^{-1}(X)=\left(a_{x}\right)^{-2} \cdot X
$$

since X is in the $a_{x} \longrightarrow a_{x}^{2}$ rootspace. Then

$$
\operatorname{Ad}\left(\theta_{x}^{-1} a_{x}^{-1}\right)(X)=a_{x}^{-2} \cdot \operatorname{Ad} \theta_{x}^{-1}(X)=a_{x}^{-2} \cdot \sum_{i} c_{i}\left(\theta_{x}\right) Y_{i}
$$

where the c_{i} are continuous functions (depending upon X) on K and $\left\{Y_{i}\right\}$ is a basis for the Lie algebra of G. Since the c_{i} are continuous on the compact set K, they have a uniform bound c. Altogether,

$$
\left(f_{P}-f\right)(x)=\int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} a_{x}^{-2} \cdot\left(-\sum_{i} c_{i}\left(\theta_{x}\right) Y_{i}\right) f\left(e^{s X} \cdot x\right) d s d t
$$

$$
\begin{aligned}
=a_{x}^{-2} \cdot \sum_{i} c_{i}\left(\theta_{x}\right) \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} & \left(-X_{i} f\right)\left(e^{s X} \cdot x\right) d s d t=a_{x}^{-2} \cdot \sum_{i} c_{i}\left(\theta_{x}\right) \int_{0 \leq t \leq 1}\left(-Y_{i} f\right)\left(e^{t X} \cdot x\right) d t \\
& =a_{x}^{-2} \cdot \sum_{i} c_{i}\left(\theta_{x}\right)\left(-Y_{i} f\right)_{P}(x)
\end{aligned}
$$

In this case the only root in N is $a_{x} \longrightarrow a_{x}^{2}$, so the assertion of the proposition holds in this case (where $G=G L(2))$.

Next, we redo the proof to work at least for maximal proper parabolics P having abelian unipotent radicals N. (The general case is complicated only in aspects somewhat irrelevant to the main point.) Normalizing the measure of $(\Gamma \cap N) \backslash N$ to be 1, we can write

$$
\left(f-f_{P}\right)(x)=\int_{(\Gamma \cap N) \backslash N} f(n x)-f(x) d n=\int_{[0,1]^{k}} f\left(e^{t_{1} X_{1}+\cdots+t_{k} X_{k}} \cdot x\right)-f(x) d t_{1} \ldots d t_{k}
$$

where X_{1}, \ldots, X_{k} is a basis for the Lie algebra of N so that

$$
\left\{t_{1} X_{1}+\cdots+t_{k} X_{k}: 0 \leq t_{i} \leq 1,1 \leq i \leq k\right\}
$$

maps bijectively to $(\Gamma \cap N) \backslash N$, using the abelian-ness to know that this is possible.
By the fundamental theorem of calculus, for X in the Lie algebra,

$$
f\left(e^{t X} \cdot x\right)-f(x)=\left.\int_{0}^{t} \frac{\partial}{\partial r}\right|_{r=0} f\left(e^{(r+s) X} \cdot x\right) d s=\int_{0}^{t}-X^{\mathrm{left}} f\left(e^{s X} \cdot x\right) d s
$$

where $X^{\text {left }}$ is the natural right- G-invariant operator attached to X. (The main mechanism of this proof resides in the conversion of such operators to left-G-invariant operators.) Rewrite this integral (by untelescoping) as a sum of k integrals of the form

$$
\int_{[0,1]^{k}} f\left(e^{t_{1} X_{1}+\cdots+t_{i} X_{i}} \cdot x\right)-f\left(e^{t_{1} X_{1}+\cdots+t_{i-1} X_{i-1}} \cdot x\right) d t_{1} \ldots d t_{k}
$$

Fix the index i, and abbreviate

$$
Y=t_{1} X_{1}+\cdots+t_{i-1} X_{i-1}
$$

and let $t=t_{i}, X=X_{i}$. Then, by the fundamental theorem of calculus, the previous integrand integrated just in $t=t_{i}$ is

$$
\begin{gathered}
\int_{0 \leq t \leq 1} f\left(e^{Y+t X} \cdot x\right)-f\left(e^{Y} \cdot x\right) d t=\left.\int_{0 \leq t \leq 1} \int_{0 \leq s \leq t} \frac{\partial}{\partial s}\right|_{s=0} f\left(e^{Y+s X+t X} \cdot x\right) d s d t \\
=\int_{0 \leq t \leq 1} \int_{0 \leq s \leq t}\left(-X^{\mathrm{left}} f\right)\left(e^{Y+s X} \cdot x\right) d s d t
\end{gathered}
$$

We convert the operator $X^{\text {left }}$ to an operator on the right (and, thus, left G-invariant), as follows.

$$
\begin{gathered}
\left(X^{\text {left }} f\right)\left(e^{Y+s X} \cdot x\right)=\left(\left.\frac{\partial}{\partial r}\right|_{r=0} f\right)\left(e^{Y+r X+s X} \cdot x\right) \\
=\left(\left.\frac{\partial}{\partial r}\right|_{r=0} f\right)\left(e^{Y+s X} \cdot x \cdot e^{r \cdot \operatorname{Ad} x^{-1}(X)}\right)=\operatorname{Ad} x^{-1}(Y) f\left(e^{Y+s X} \cdot x\right)
\end{gathered}
$$

where $\operatorname{Ad} x^{-1}(X)$ is the left- G-invariant operator attached to Y via the right regular representation. Let

$$
x=n_{x} a_{x} \theta_{x}
$$

with $n_{x} \in N, a_{x} \in M, \theta_{x} \in K$. Then

$$
\operatorname{Ad} x^{-1}(X)=\operatorname{Ad}\left(\theta_{x}^{-1} a_{x}^{-1} n_{x}^{-1}\right)(X)=\operatorname{Ad}\left(\theta_{x}^{-1} a_{x}^{-1}\right)(X)
$$

using again the assumed abelian-ness of the Lie algebra of N. Now suppose further that X lies in the β rootspace in the Lie algebra of N. Then

$$
\operatorname{Ad} a_{x}^{-1}(X)=\beta\left(a_{x}\right)^{-1} \cdot X
$$

and

$$
\operatorname{Ad}\left(\theta_{x}^{-1} a_{x}^{-1}\right)(X)=\beta\left(a_{x}\right)^{-1} \cdot \operatorname{Ad} \theta_{x}^{-1}(X)=\beta\left(a_{x}\right)^{-1} \cdot \sum_{1 \leq i \leq k} c_{i}\left(\theta_{x}\right) Y_{i}
$$

where the c_{i} are continuous functions (depending upon X) on K and $\left\{Y_{i}\right\}$ is a basis for the Lie algebra of G. Since the c_{i} are continuous on the compact set K, they have a uniform bound c (depending on X). Then altogether

$$
\int_{0 \leq t \leq 1} f\left(e^{Y+t X} \cdot x\right)-f\left(e^{Y} \cdot x\right) d t=\beta\left(a_{x}\right)^{-1} \cdot \sum_{1 \leq i \leq k} c_{i}\left(\theta_{x}\right) \int_{0 \leq t \leq 1} \int_{0 \leq s \leq t}\left(-Y_{i} f\right)\left(e^{Y+s X} \cdot x\right) d s d t
$$

On Siegel sets, for all such β,

$$
\beta\left(a_{x}\right)^{-1}=O\left(a_{x}^{-\alpha}\right)
$$

Thus, using the exponent λ moderate growth of each of the functions $Y_{i} f$, we have found

$$
\int_{0 \leq t \leq 1} f\left(e^{Y+t X} \cdot x\right)-f\left(e^{Y} \cdot x\right) d t=O\left(a_{x}^{\lambda-\alpha}\right)
$$

or, in the original notation,

$$
\int_{0 \leq t \leq 1} f\left(e^{t_{1} X_{1}+\cdots+t_{i} X_{i}} \cdot x\right)-f\left(e^{t_{1} X_{1}+\cdots+t_{i-1} X_{i-1}} \cdot x\right) d t_{i}=O\left(a_{x}^{\lambda-\alpha}\right)
$$

Then, integrating in $d t_{1}, \ldots, d t_{i-1}$ and in $d t_{i+1}, \ldots, d t_{k}$ over copies of $[0,1]$ gives the same estimate for the k-fold integral:

$$
\int_{[0,1]^{k}} f\left(e^{t_{1} X_{1}+\cdots+t_{i} X_{i}} \cdot x\right)-f\left(e^{t_{1} X_{1}+\cdots+t_{i-1} X_{i-1}} \cdot x\right) d t_{1} \ldots d t_{k}=O\left(a_{x}^{\lambda-\alpha}\right)
$$

This is the assertion.
[0.7] Corollary: Let P be a maximal proper parabolic, with α the unique simple positive root in N. For f smooth of moderate growth of exponent λ in Siegel sets, and for $\varphi \cdot f=f$ for some $\varphi \in \mathrm{C}_{c}^{\infty}(G), f-f_{P}$ is of exponent $\lambda-\ell \alpha$ for all positive integers ℓ.

Proof: If $\varphi f=f$ then the previous corollary on uniform moderate growth asserts that $L f$ is of moderate growth exponent λ for every L in the universal enveloping algebra. On the other hand, the previous proposition shows that since every $X f$ is of exponent $\lambda, f-f_{P}$ is of exponent $\lambda-\alpha$. But then the uniform moderate growth assures that every $X\left(f-f_{P}\right)$ is of exponent $\lambda-\alpha$, as well. Applying the last proposition again, we find that

$$
\left(X f-X f_{P}\right)-\left(X f-X f_{P}\right)_{P}=X f-X f_{P}=X\left(f-f_{P}\right)
$$

is of exponent $\lambda-2 \cdot \alpha$. This begins an induction which proves the corollary.

1. The hierarchy of constant terms

Let Δ denote the collection of simple (positive) roots. For each $\alpha \in \Delta$, there is a maximal proper parabolic P_{α} whose unipotent radical N^{P} has Lie algebra \mathfrak{n} containing the $\alpha^{\text {th }}$ root space \mathfrak{g}_{α} in the Lie algebra \mathfrak{g} of G. In particular, the Lie algebra \mathfrak{n} is exactly the sum of all the rootspaces \mathfrak{g}_{β} with $\beta \geq \alpha$.

Let c_{α} be the mapping which computes the P_{α} constant term

$$
c_{\alpha} f(g)=\int_{\Gamma_{N_{\alpha} \backslash N_{\alpha}}} f(n g) d n
$$

for locally integrable f left-invariant under a co-compact subgroup $\Gamma_{N_{\alpha}}$ of N_{α}. The group N_{α} has Haar measure normalized so that

$$
\operatorname{meas}\left(\Gamma_{N_{\alpha}} \backslash N_{\alpha}\right)=1
$$

In particular, for simplicity we assume a consistency relation among these co-compact subgroups $\Gamma_{N_{\alpha}}$ by letting $\Gamma_{N_{\text {min }}}$ be a cocompact subgroup of the unipotent radical of a minimal parabolic

$$
P_{\min }=\cap_{\alpha \in \Delta} P_{\alpha}
$$

and take

$$
\Gamma_{N_{\alpha}}=N_{\alpha} \cap \Gamma_{N_{\min }}
$$

A simple example is to take $G=G L(n, \mathbb{R})$ and

$$
\Gamma_{N_{\min }}=\text { upper-triangular unipotent matrices with integer entries }
$$

[1.1] Lemma: For simple roots α, β,

$$
c_{\alpha} \circ c_{\beta}=c_{\beta} \circ c_{\alpha}
$$

Proof: A direct computation, changing variables in the integrals definitions of these operators, using the unimodularity of the groups, etc.
[1.2] Proposition: Let P_{S} be the parabolic whose unipotent radical contains exactly the simple roots S. Let c_{P} be the constant term operator for P. Then

$$
1-c_{P}=\prod_{\alpha \in S}\left(1-c_{\alpha}\right)
$$

[1.3] Corollary: Let f be left $\Gamma_{N_{\min }}$-invariant and Z-finite and K-finite. Then

$$
\left(\prod_{\alpha \in \Delta}\left(1-c_{\alpha}\right)\right) f
$$

is of rapid decay in any Siegel set aligned with the implied family of parabolic subgroups.

