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These notes give the beginning of a treatment of reduction theory for classical groups following Tamagawa-
Mostow and Godement’s Bourbaki article. For the moment, the non-compact case is neglected.

• Affine heights
• Minkowski reduction
• Imbeddings of arithmetic quotients
• Mahler’s criterion for compactness
• Compactness of anisotropic quotients of orthogonal groups

1. Affine heights

Let Kv be the standard compact subgroup of GL(n,Qv): namely, for Qv ≈ R the usual orthogonal group
O(n), and for Qv non-archimedean it is GL(n,Zv). (The fact that theses subgroups are maximal compact
will not be needed.) Let V = Qn, and VA = V ⊗ A. Let GL(n,A) act on the right on An by matrix
multiplication.

For the real prime v of Q define the local height function ηv on x = (x1, . . . , xn) ∈ VQv
= Qn

v by

ηv(x) =
√

x2
1 + . . . + x2

n

For a non-archimedean prime v of Q define the local height function ηv on x = (x1, . . . , xn) ∈ VQv = Qn
v

by
ηv(x) = sup

i
|xi|v

A vector x ∈ VA is primitive if it is of the form xog where g ∈ GL(n,A) and xo ∈ VQ. That is, it is an
image of a rational point of the vectorspace by an element of the adele group. For x = (x1, . . . , xn) ∈ VQ, at
almost all non-archimedean primes v the xi’s are in Zv and have greatest common divisor 1 (locally). Since
elements of the adele group are in Kv almost everywhere, this property is not changed by multiplication by
g ∈ GL(n,A). That is, any primitive vector x has the property that at almost all v the components of x are
locally integral and have (local) greatest common divisor 1.

For primitive x ∈ VA define the global height

η(x) =
∏
v

ηv(xv)

Since x is primitive, at almost all finite primes the local height is 1, so this product has only finitely many
non-1 factors.

• For t ∈ J and primitive x ∈ An, η(tx) = |t|η(x), where |t| is the idele norm.
• If a sequence of vectors in An goes to 0, then their heights go to zero also.
• If the heights of some (primitive) vectors xi go to zero, then there are scalars ti ∈ Q× so that tixi goes to
0 in An.
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• For g ∈ GL(n,A) and c > 0, the set of non-zero vectors x ∈ Qn so that η(xg) < c is finite modulo Q×. In
particular, the infimum of {η(xg) : x ∈ Qn − 0} is positive, and is assumed.
• For a compact subset E of GL(n,A) there are constants c, c′ > 0 so that for all primitive vectors x and
for all g ∈ E

c η(x) ≤ η(xg) ≤ c′ η(x)

Proof: The first assertion follows from the product formula.

For the second assertion: if a sequence of vectors xi goes to 0, then for every large N > 0 and small ε > 0
there is io so that i ≥ io implies ηv(xv) < ε at archimedean primes, and xv ∈ NZn

v for every finite v. Then
η(x) ≤ ε`/N where ` is the number of archimedean primes. So the heights go to zero.

For the third assertion: suppose that η(xi) goes to 0, for some primitive vectors xi. At almost all finite v the
vector xi is in Zn

v and the entries have local gcd 1. Since Z is a principal ideal domain, we can choose si ∈ Q
to that at every finite prime v the components of sixi are locally integral and have greatest common divisor
1. Then the local contribution to the height function from all finite primes is 1. Therefore, the archimedean
height of sixi, Euclidean distance, goes to 0. Finally, we need some choice of trick to make the vectors go to
0 in An. For example, for each index i let Ni be the greatest integer so that

η∞(sixi) <
1

(Ni!)2

Let ti = si ·Ni!. Then tixi goes to 0 in An.

For the fourth assertion: fix g ∈ GL(n,A). Since K preserves heights, via the Iwasawa decomposition we
may suppose that g is in the group PA of upper triangular matrices in GL(n,A). Let gij be the (i, j)th entry
of g. Choose representatives x = (x1, . . . , xn) for non-zero vectors in Qn modulo Q× such that, letting µ be
the first index with xµ 6= 0, then xµ = 1. That is, x is of the form

x = (0, , . . . , 0, 1, xµ+1, . . . , xn)

To illustrate the idea of the argument with a light notation, first consider n = 2, let g =
(

a b
0 d

)
and

x = (1, y). Thus,

x · g = (1, y)
(

a b
0 d

)
= (a, b + yd)

From the definition of the local heights, at each place v of k

max(|a|v, |b + yd|v) ≤ hv(xg)

from which
|b + yd|v

∏
w 6=v

|a|w ≤
∏
all w

hw(xg) = h(xg)

Since g is fixed, a is fixed, and at almost all places |a|w = 1. Thus, for h(xg) < c there is a uniform c′ such
that

|b + yd|v ≤ c′ (for all v)

Since for almost all v the residue class field cardinality qv is strictly greater than c

|b + yd|v ≤ 1 (for almost all v)

Therefore, b + yd lies in a compact subset C of A. Since b, d are fixed, and since Q is discrete and closed in
A, the collection of images {b + dy : y ∈ k} is discrete in A. Thus, the collection of y such that b + dy lies
in C is finite.
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Now consider general n and x ∈ Qn such that h(xg) < c. Let µ − 1 be the least index such that xµ 6= 0.
Adjuts by k× such that xµ = 1. For each v, from h(xg) < c

|gµ−1,µ + xµgµ,µ|v
∏
w 6=v

|gµ−1,µ−1|w ≤ h(gx) < c

For almost all places v we have |gµ−1,µ−1|v = 1, so there is a uniform c′ such that

|gµ−1,µ + xµgµ,µ|v < c′ (for all v)

For almost all v the residue field cardinality qv is strictly greater than c′, so for almost all v

|gµ−1,µ + xµgµ,µ|v ≤ 1

Therefore, gµ−1,µ +xµgµ,µ lies in a compact subset C of A. Since Q is discrete, the collection of xµ is finite.

Continuing similarly, there are only finitely many choices for the other entries of x. Inductively, suppose
xi = 0 for i < µ− 1, and xµ, . . . , xν−1 fixed, and show that xν has only finitely many possibilities. Looking
at the νth component (xg)ν of xg,

|gµ−1,ν + xµgµ,ν + . . . + xν−1gν−1,ν + xνgν,ν |v
∏
w 6=v

|gµ−1,µ−1|w ≤ h(xg) ≤ c

For almost all places v we have |gµ−1,µ−1|w = 1, so there is a uniform c′ such that for all v

|(xg)ν |v = |gµ−1,ν + xµgµ,ν + . . . + xν−1gν−1,ν + xνgν,ν |v < c′

For almost all v the residue field cardinality qv is strictly greater than c′, so for almost all v

|gµ−1,ν + xµgµ,ν + . . . + xν−1gν−1,ν + xνgν,ν |v ≤ 1

Therefore,
gµ−1,ν + xµgµ,ν + . . . + xν−1gν−1,ν + xνgν,ν

lies in the intersection of a compact subset C of A with a closed discrete set, so lies in a finite set. Thus,
the number of possibilities for xν is finite. By induction we obtain the finiteness.

For the last assertion: let E be a compact subset of GL(n,A), and let K =
∏

v Kv. Then K · E · K is
compact, being the continuous image of a compact set. So without loss of generality E is left and right
K-stable. By Cartan decompositions the compact set E of GL(n,A) is contained in a set

K ∆ K

where ∆ is a compact set of diagonal matrices in GL(n,A). Let g = θ1δθ2 with θi ∈ K, and x a primitive
vector. By the K-invariance of the height,

η(xg)
η(x)

=
η(xθ1δθ2)

η(x)
=

η(xθ1δ)
θ(x)

=
η((xθ1)δ)
η((xθ))

Thus, the set of ratios η(xg)/η(x) for g in a compact set and x ranging over primitive vectors is exactly
the set of values η(xδ)/η(x) where δ ranges over a compact set and x varies over primitives. With diagonal
entries δi of δ,

0 < inf
δ∈∆

inf
i
|δi| ≤ η(xδ)/η(x) ≤ sup

δ∈∆
sup

i
|δi| < ∞

by compactness of ∆. ///
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2. Minkowski reduction

The previous preparations set things up to prove the basic reduction-theory result for non-compact quotients:
we prove that there is a nice approximate fundamental domain for the action of GL(n,Q) on GL(n,A).

[2.0.1] Theorem: (Adelic form of Minkowski reduction) Given g ∈ GL(n,A), there are γ ∈ GL(n,Q)
and θ ∈ K so that

p = γgθ

is upper-triangular and so that the diagonal entries pii of p satisfy the inequalities∣∣∣ pii

pi+1 i+1

∣∣∣ ≥ √
3

2
(idele norm)

Further, for i < j, the entry pij of p can be arranged to lie in any specified set of representatives in A for
the quotient piiQ\A, such as R/Z× Ẑ.

[2.0.2] Remark: Combined with Strong Approximation for SL(n), this recovers classical Minkowski
reduction for SL(n,Z) on SL(n,R). More importantly, it begins the general fundamental domain results,
in terms of Siegel sets.

From above, given g ∈ GL(n,A) there is x ∈ Qn − 0 such that η(xg) > 0 is minimal among values η(x′g)
with x ∈ Qn−0. Take γ ∈ GL(n,Q) so that enγ = x, where {ei} is the standard basis for Qn. By Iwasawa,
there is θ ∈ K such that p = γgθ is upper-triangular. Then

η(γgθ) = |pnn| (pij is ijth entry of p)

Let H be the subgroup of GL(n,A) fixing en and stabilizing the subspace spanned by e1, . . . , en−1. Then
H ≈ GL(n− 1,A), and by induction we can suppose that |pi/pi+1,i+1| ≥

√
3

2 already for i < n− 1. Looking
at just the lower-right two-by-two block inside these n-by-n matrices, it suffices to consider n = 2.

Repeating: given g ∈ GL(2,A) there is x ∈ Q2 − 0 such that η(xg) is positive and minimal among all the
values η(x′g) with x ∈ Q2 − 0. Take γ ∈ GL(2,Q) such that (0 1)γ = x. By Iwasawa there is θ in the
standard compact subgroup K of GL(2,A) such that p = γgθ is upper-triangular, say

p =
(

a b
0 d

)
We wish to see that the minimality of η(xg) = η((0 1)p) gives |a/d| ≥

√
3

2 . Let x′ = (1, t) ∈ Q2. The
inequality

η((0 1)p) ≤ η(x′p)

gives
|d| ≤ η(a, b + dt) (for all t ∈ Q)

For brevity, let r = a/d and s = b/d. Dividing through by d gives, by elementary properties of the height,

1 ≤ η(r, s + t)

Changing (r, s + t) by an element of Q×, the idele r is a local unit at all finite primes of Q. By right-
multiplying by suitable (

∗ 0
0 1

)
in the standard compact subgroups at finite primes, the idele r is 1 at all finite primes.
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Given s ∈ A, choose t ∈ Q so that s + t is integral at all finite primes and |s + t|∞ ≤ 1
2 . With this t ∈ Q,

the height of (r, s + t) is

η(r, s + t) = η∞(r, s + t) =
√
|r|2∞ + |s + t|2∞ ≤

√
|r|2∞ +

1
4

From 1 ≤ η(r, s + t)

1 ≤ |r|2∞ +
1
4

which gives √
3

2
≤ |r|∞

Since r was a local unit at all finite primes, √
3

2
≤ |r|

Since |r| = |a/d|, √
3

2
≤ |a

d
|

This proves the theorem. ///

[2.0.3] Remark: This proof of Minkowski reduction uses the Euclidean-ness ofQ, and does not generalize
simply to general situations. Rather, a relatively complicated argument reduces the general case to this. The
general conclusion is analogous but the proof is different.

3. Imbeddings of arithmetic quotients

Let k be a number field. Let Q = 〈, 〉 be a non-degenerate quadratic form on a k-vectorspace V , and
G = O(Q) the corresponding orthogonal group. We have the natural imbedding G → GL(V ).

[3.0.1] Proposition: The inclusion Gk → GL(V )k induces an inclusion

Gk\GA → GL(V )k\GL(V )A

with closed image.

A general topological lemma is necessary.

[3.0.2] Lemma: Let X, Y be locally compact Hausdorff topological spaces. Further, X has a countable
open cover {Ui} such that every Ui has compact closure. Let G be a group acting continuously on X and
Y , transitively on X. Let f : X → Y be a continuous injective G-set map whose image is a closed subset of
Y . Then f is a homeomorphism of X to its image in Y .

Proof: This is a version of the Baire Category argument. Since f(X) is closed in Y the image f(X) is
itself (with the subset topology) a locally compact Hausdorff space. Therefore, without loss of generality,
f is surjective. Let Ci be the closure of Ui. The images f(Ci) of the Ci are compact, hence closed, by
Hausdorff-ness. We claim that some f(Ci) must have non-empty interior. If not, we do the usual Baire
argument: fix a non-empty open set V1 in Y with compact closure. Since f(C1) contains no non-empty open
set, V1 is not contained in f(C1), so there is a non-empty open set V2 whose closure is compact and whose
closure is contained in V1 − f(C1). Since f(C2) cannot contain V2, there is a non-empty open set V3 whose
closure is compact and whose closure is contained in V2−f(C2). A descending chain of non-empty open sets
is produced:

V1 ⊃ clos(V2) ⊃ V2 ⊃ clos(V2) ⊃ V3 ⊃ . . .
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By construction, the intersection of the chain of compact sets clos(Vi) is disjoint from all the sets f(Ci). Yet
the intersection of a descending chain of compact sets is non-empty. Contradiction. Therefore, some f(Ci)
has non-empty interior. In particular, for yo in the interior of f(Ci), the map f is open at xo = f−1(yo).

Now use the G-equivariance of f . For an open Uo containing xo such that f(Uo) is open in Y , for any g ∈ G
the set gUo is open containing gxo. By the G-equivariance,

f(gUo) = gf(Uo) = continuous image of open set = open

Therefore, since G is transitive on X, f is open at all points of X. ///

Proof: By definition of the quotient topologies, GL(V )kGA must be shown closed in GL(V )A.

Let X be the k-vectorspace of k-valued quadratic forms on V . We have a linear action ρ of g ∈ GL(V )k on
q ∈ X by

ρ(g)q (v, v) = q(g−1v, g−1v)

(with inverses for associativity). This extends to give a continuous group action of GL(V )A on XA = X⊗A.
Note that Gk is the subgroup of GL(V )k fixing the point Q ∈ X, essentially by definition.

Let Y be the set of images of Q under GL(V )k. Then

GL(V )kGA = {g ∈ GL(V )A : g(Q) ∈ Y }

That is, GL(V )kGA is the inverse image of Y . By the continuity of the group action, to prove that GL(V )kGA
is closed in GL(V )A it suffices to prove that the orbit

Y = GL(V )kGA (Q)

is closed in XA. Indeed, Y is a subset of X ⊂ XA, which is a (closed) discrete subset of XA. This proves
the proposition, invoking the previous lemma. ///

If the global base field is not Q, we need more preparation:

[3.0.3] Proposition: Let k be a number field and K a finite extension of k. Let V be Kn viewed as a
k-vectorspace. Let H = GL(n, K) viewed as a k-group, and G = GLk(V ). Then the natural inclusion

i : GLK(Kn) = H → G = GLk(V )

gives a homeomorphism of Hk\HA to its image in Gk\GA, and this image is closed.

Proof: (This resembles the argument for the previous lemma. More will be said in the next version of these
notes.)

[3.0.4] Theorem: Mahler’s criterion for compactness: Let G be an orthogonal group attached to an
n-dimensional non-degenerate k-valued quadratic form. For a subset X of GA ⊂ GL(n,A) to be compact
left modulo Gk, it is necessary and sufficient that, given xi ∈ X and vi ∈ kn such that xivi → 0 in An,
vi = 0 for sufficiently large i.

Proof: The propositions above the problem to proving an analogue for G = GL(n, k) with k = Q. In
particular, for GL(n) suppose there are positive constants c′ and c′′ such that

X ⊂ {g ∈ GL(n,A) : c′ ≤ |det g| ≤ c′′}

The serious direction of implication is to show that, if the condition is satisfied, then X is compact modulo
Gk. Let η be the affine height function on kn. Then η(xv) ≥ c1 for some c1 for any non-zero v ∈ kn. By
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the Iwasawa decomposition, can write x = pθ with θ ∈ GL(n, ok) and p upper-triangular, where ok is the
ring of integers in k. Further, since we consider x modulo Gk, and using the fact that actually k = Q, the
Minkowski reduction allows us to suppose that the diagonal entries pi of p satisfy |pi/pi+1| ≥ c for some
c > 0. Therefore, letting ei be the usual basis vectors in kn, c1 ≤ |pi| = η(xe1). And our extra hypothesis
gives us

c′ ≤ |p1 . . . pn| ≤ c′′

Thus, (by Fujisaki’s lemma, for example) the diagonal entries of elements p coming from elements of X lie
inside some compact subset of J/k×.

Certainly the superdiagonal entries, left-modulo k-rational upper-triangular matrices, can be put into a
compact set.

Therefore, X is compact left modulo GL(n, k), for k = Q. But, as remarked at the outset, the propositions
above about imbeddings of arithmetic quotients reduce the general case and the orthogonal group case to
this. ///

[3.0.5] Theorem: Let G be the orthgonal group of a non-degenerate quadratic form Q = 〈, 〉 on a
vectorspace V ≈ kn over a number field k. Then Gk\GA is compact if and only if Q is k-anisotropic.

Proof: On one hand, suppose Q is k-anisotropic. If gnvn → 0 in An with gn ∈ GA and vn ∈ An, then
Q(vngn) also goes to Q(0) = 0, by the continuity of Q. But Q(gnvn) = Q(vn), because GA preserves values of
Q. Since Q has no non-zero k-rational isotropic vectors and kn is discrete in An, this means that eventually
vn = 0. By Mahler’s criterion this implies that the quotient is compact.

On the other hand, suppose that Q is isotropic. Then there is a non-zero isotropic vector v ∈ kn. Let H
be the subgroup of GA fixing v. For all indices i let vi = v. So certainly vi does not go to 0. Now we’ll
need to exploit the fact that the topology on J is not simply the subspace topology from A, but is inherited
from the imbedding α → (α, α−1) of J → A ×A: we can find a sequence ti of ideles which go to 0 in the
A-topology (but certainly not in the J-topology). Then tivi → 0. And certainly still Q(tivi) = 0, so by
Witt’s theorem there is gi ∈ GA so that givi = tivi. Thus, givi → 0, but certainly vi does not do so. Thus,
Mahler’s criterion says that the quotient is not compact. ///
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