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First, I confess I never understood Siegel’s arguments for his mass formula relating positive definite quadratic
forms and Eisenstein series. Of course, Siegel’s context did not separate things into local and global arguments.

On the other hand, while current technique is arguably much more sophisticated, the questions addressed
are commensurately more complicated, so that simplification of a proof of a basic Siegel-Weil formula may
get lost in more difficult issues. For example, the work of Kudla-Rallis on regularization addresses much
more delicate questions than the simple equality of holomorphic Eisenstein series and linear combinations of
theta series in the region of convergence.

Here I will use by-now-standard methods to prove a modern form of a Siegel-Weil formula for SL2 over
totally real number fields k.

[0.0.1] Theorem: (Vague version of Siegel-Weil) Certain holomorphic Eisenstein series of weights 4` (with
` = 1, 2, 3, . . .) are certain linear combinations of holomorphic theta series attached to certain totally positive
definite quadratic forms of dimension 8`.

1. Weil/oscillator representations

We must define a Weil representation for O(Q)×SL2, where for simplicity we only use certain 8`-dimensional
quadratic forms.

Fix a non-degenerate quadratic form Q over a number field k, with dimension 8` divisible by 8, and so that
Q = Q1⊕Q1 where Q1 is a non-degenerate quadratic form with dimension divisible by 4, and discriminant
a square. (The discriminant of a 4`-dimensional quadratic form is just the determinant of the matrix of
the form with respect to a choice of basis.) This hypothesis on the quadratic form simplifies the following
discussion.

Fix a non-trivial (continuous) character ψ on the adeles A of k, trivial on k viewed as sitting inside A. Let
G = SL2(k) and H = O(Q). Let v be a place of k. The local Weil or oscillator representation ρ of
Gv × Hv is defined on the vector space S (8` × 1) of Schwartz-Bruhat functions on the space of 8`-by-1
matrices with entries in kv. For h ∈ H, the action is

ρ(h)f (t) = f(h−1t)

for Schwartz-Bruhat function f and 8`-by-1 matrix t. (The inverse assures associativity.)

The definition of ρv on Gv is done in pieces. For

n =

(
1 x
0 1

)
∈ Nv

the unipotent radical of the standard parabolic subgroup

P = {
(
∗ ∗
0 ∗

)
}

the action is
ρ(n)f (t) = ψ(

x

2
Q(t)) f(t)

For

m =

(
a 0
0 a−1

)
∈Mv
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where Mv is the standard Levi component of Pv (consisting of all such elements m)

ρ(m)f (t) = |a|4`v f(ta)

The exponent of |a| is half the dimension. Finally, for the Weyl element

w =

(
0 −1
1 0

)
define

ρ(w)f (t) = f̂(t)

where f̂ is the Fourier transform

f̂(t) =

∫
k8`×1

ψ(−〈ξ, t〉) f(ξ) dξ

where the integral is over the 8`-by-1 matrices with entries in k, and the measure is an additive Haar measure
normalized as usual, described in greater detail below. The Weil repn ρ is defined on arbitrary group elements
by using the (spherical) Bruhat decomposition of Gv.

[1.0.1] Remark: This is a peculiar way to define a representation. It is not clear that ρ is a group
homomorphism on Gv. Work is required to verify that extending by Bruhat decomposition is well-defined.
Verification that ρ is a group homomorphism is not trivial, but can be done directly.

[1.0.2] Remark: Without the simplifying hypotheses on the quadratic form, the definition of the Weil
representation on the Levi component must be adjusted by a finite-order character, and the definition on
the Weyl element must be adjusted by an eighth root of unity.

For each place v of k define a local Weil representation ρv as sketched just above (where we suppressed
the subscript). The global Weil representation is on the space of Schwartz-Bruhat functions on the
space of 8`-by-1 matrices with entries in the adeles A of k. This Schwartz-Bruhat space is usually described
as a restricted tensor product of the local Schwartz-Bruhat spaces, so almost everywhere one has a
distinguished local Schwartz-Bruhat function fvo. So that the global/adelic Fourier transform is well-defined
on the global/adelic Schwartz-Bruhat space, almost everywhere these distinguished vectors must be their
own Fourier transform. The usual way to do this, at absolutely unramified non-archimedean places v of k,
take fvo to be the characteristic function of 8`-by-1 matrices with entries in the local integers ov.

To be sure that the character ψ and the measures dξ are their own Fourier transforms almost everywhere is
as in Iwasawa-Tate theory.

[1.0.3] Remark: We must also check, for continuity, that almost everywhere locally at places v

ρ(ho)fvo = fvo

where ho lies in a specified (maximal) compact subgroup Hvo of Hv. We may as well take Hvo to be the
elements of Hv with entries in the local integers. Due to our simplifying hypotheses on the quadratic form,
at almost all primes v the local Witt index of Q is maximal, meaning that there is a 4`-dimensional maximal
isotropic subspace, and this choice of Hvo works out.

[1.0.4] Remark: For subsequent applications, the number field k will be totally real, and the quadratic
form Q positive definite at every archimedean place of k. For the basic set-up this is not necessary.
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2. Theta correspondences

Let ρ be the Weil representation as above on the product GA × HA of G = SL2 and orthogonal group
H = O(Q). Let ϕ be an adelic Schwartz-Bruhat function, and define the associated theta kernel

Θϕ(g, h) =
∑
x

ρ(g, h)ϕ (x)

where x ranges over 8`-by-1 matrices with entries in k. It is a little exercise to see that this theta kernel
is continuous in both g and h in the respective adele groups, and is SL2(k) × O(Q)k-invariant. The latter
invariance uses adelic Poisson summation.

We can use the theta kernel as we might any kernel function to define two maps, called theta liftings or
theta correspondences. For f a compactly-supported continuous function on O(Q)k\O(Q)A, define the
theta lift

Θϕ(f)(g) =

∫
O(Q)k\O(Q)A

f(h) Θϕ(g, h) dh

Similarly, for f a compactly-supported continuous function on SL2(k)\SL2(A), define the theta lift in the
other direction by

Θϕ(f)(h) =

∫
SL2(k)\SL2(A)

f(g) Θϕ(g, h) dg

In both cases the image is a continuous function on the target adele group, and is left-invariant under SL2(k)
or O(Q)k.

That is, at least in this crude sense, the theta liftings (depending on the Schwartz-Bruhat function ϕ) map
automorphic forms on O(Q) to automorphic forms on SL2, and vice-versa. We’ll be concerned only with
the first case, which roughly maps automorphic forms on the orthogonal group to automorphic forms on
SL2.

[2.0.1] Remark: The general restriction to compactly-supported continuous functions is a non-trivial and
too-constrictive condition for general application, since automorphic forms have compact support only on
compact arithmetic quotients. However, in the case we care about for the Siegel-Weil formula this restrictive
hypothesis will be met.

In particular, for orthogonal groups, by reduction theory, the arithmetic quotient O(Q)k\O(Q)A is
compact if and only if the quadratic form is k-anisotropic. Thus, for globally anisotropic quadratic forms
the associated arithmetic quotient of the orthogonal group is indeed compact, and the theta lifting assuredly
makes sense as an operator sending automorphic forms on the orthogonal group to automorphic forms
on SL2.

Specifically, for the example of the Siegel-Weil formula here, take k totally real, and the quadratic form
positive definite at all archimedean places. This assures that the quadratic form is anisotropic at every
real place, so is globally anisotropic.

[2.0.2] Remark: Recall that the general form of the Hasse-Minkowski theorem asserts that a quadratic
form is globally anisotropic if and only if it is locally anisotropic everywhere. Of course, one direction of this
implication is trivial.

In particular, we are interested in precisely identifying the image Θϕ(1) of the identically-one function 1 on
the orthogonal group. As noted, this function is compactly-supported when the quadratic form is anisotropic.
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3. Siegel’s Eisenstein series

Let P be the standard parabolic subgroup of SL2 consisting of upper-triangular matrices, as usual. Define
characters χs for s ∈ C on PA by

χs

(
a ∗
0 a−1

)
= |a|2s

A continuous C-valued right-K-finite [1] function ε(g) on the adele group SL2(A) with the left equivariance
property

ε(pg) = χs(p) ε(g)

for p ∈ P (A) is in the (adelic) principal series Is. Consider the Eisenstein series attached to the kernel
ε by

E(g) =
∑

γ∈Pk\SL2(k)

ε(γg)

This series is nicely convergent for Re(s) > 1, so defines an automorphic form.

[3.0.1] Remark: This convergence is not so hard to verify here in this special case of SL2, but is not
elementary in general.

By the definition of continuity and K-finiteness on the adele group the kernel ε is a finite sum of products

ε({gv}) =
⊗

′
v εv(gv)

For a totally real number field k, when 2 < s = ` ∈ Z, and when the infinite-prime vectors εv are (constant
multiples of) the special form

εv(

(
a ∗
0 a−1

)(
cos θ sin θ
− sin θ cos θ

)
) = |a|` ei`θ

the Eisenstein series is holomorphic of weight ` in two (equivalent) senses: First, the classical automorphic
forms attached to this Eisenstein series are all literally holomorphic of weight `. Second, the representation of
SL2(kv) generated by such εv is a holomorphic discrete series representation of weight `; it is irreducible.

[3.0.2] Remark: By definition of K-finiteness, for almost all finite primes v, εv is right Kv-invariant. For
such v, εv is the standard spherical vector in the principal series representations of SL2(kv) consisting
of all left Pv, χs-equivariant (right Kv-finite) functions on SL2(kv).

[3.0.3] Remark: For 2 < s = k ∈ Z the finite-prime principal series are irreducible. (And, as noted above,
the holomorphic discrete series subrepresentation of these infinite-prime principal series are also irreducible).
Neither of these assertions is trivial to verify, but both are standard.

[3.0.4] Remark: Also, for 1 < Re(s) the finite-prime principal series representations are definitely not
unitarizable. This is also not trivial, but is standard.

[1] A function f on a group is right K-finite for a subgroup K when the collection of right translates Rxf , defined

by Rxf(y) = f(yx), is a finite-dimensional space of functions.
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4. Eisenstein series from the Weil representation

One way to make an Eisenstein series from the Weil representation is as follows. This does not directly
connect to theta series or the theta correspondence, but sets up that comparison.

Let ϕ be in the Schwartz-Bruhat space S (8`×1) on 8`-by-1 matrices over the adeles A of the number field k.
Keep the earlier hypotheses on the quadratic form Q (and hence on the Weil representation). The function

ε(g) = (ρ(g)ϕ)(0)

is readily seen to be in the adelic principal series Is with s = 4`. Define an Eisenstein series by

Eϕ(g) =
∑

γ∈Pk\SL2(k)

(ρ(γg)ϕ)(0)

[4.0.1] Remark: The Schwartz-Bruhat function ϕ is a finite sum of tensor products of local Schwartz-
Bruhat functions ϕv, almost all of which are the characteristic function of the set of 8`-by-1 matrices with
entries in the local integers ov. From this, a little computation with the Weil representation shows that the
corresponding εv really is right Kv-invariant.

5. Holomorphic discrete series

At least for the most classical applications, we want automorphic forms to be holomorphic. That is, we want
automorphic forms to generate holomorphic discrete series locally at archimedean primes.

Therefore, we take k totally real (has only real archimedean completions), since SL2(R) has holomorphic
discrete series (discussed momentarily) while SL2(C) has no such representations. For present purposes it is
not necessary to know why SL2(C) fails to have holomorphic discrete series, only to understand that SL2(R)
does have such.

For less obvious reasons, we take totally positive definite quadratic form Q, that is, is positive definite locally
at all the archimedean places of k. Otherwise, it will turn out that we will not have created holomorphic
automorphic forms. It is not easy to see why this positive-definiteness is necessary, but it is relatively easy
to verify that taking Q totally positive definite is sufficient, insofar as the discussion below succeeds.

For the present discussion, let

c =

(
1 i
i 1

)
/
√

2

be the usual Cayley element. The significance of this element can be understood in a variety of ways, but
we choose a relatively elementary viewpoint. The linear fractional transformation

z → c(z) =
z + i

iz + 1

maps the complex unit disk to the upper half-plane. For a real archimedean prime v

Kv = SO(2) = c · {
(
eiθ 0
0 e−iθ

)
} · c−1 = {

(
cos θ sin θ
− sin θ cos θ

)
}

Thus, on the complexified Lie algebra gC of SL2(R), Kv has three eigenspaces

kC = trivial eigenspace = c · {
(
∗ 0
0 ∗

)
} · c−1
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p+ = c · {
(

0 ∗
0 0

)
} · c−1

p− = c · {
(

0 0
∗ 0

)
} · c−1

Choose

R = c ·
(

0 1
0 0

)
· c−1 = raising operator

L = c ·
(

0 0
1 0

)
· c−1 = lowering operator

Justification for the names will be clear shortly. Let any element α in the Lie algebra g of the group SL2(R)
act by the standard infinitesimal action on any (smooth) vector x in a representation π:

dπ(α)x =
d

dt

∣∣∣
t=0

π(etα)x

The smoothness hypothesis on x is as usual that the function

g −→ π(g)x

is infinitely-differentiable on the real Lie group SL2(R). Let R and L, or any element in the complexification
of the Lie algebra, act on a (smooth) vector x in a by the complexification: suppose that the element is
α+ iβ with α and β in the (real) Lie algebra, and put

dπ(α+ iβ)x = dπ(α)x+ i dπ(β)x

We may suppress the dπ notation.

Let x be a vector in a representation π of SL2(R) with the weight-` Kv-equivariance property

π

(
cos θ sin θ
− sin θ cos θ

)
x = ei`θ · x

[5.0.1] Proposition: For a smooth weight-` vector x, Rx has weight `+ 2 and Lx has weight `− 2.

Proof: Both assertions are immediate from the hypothesis and from the fact that(
cos θ sin θ
− sin θ cos θ

)
R

(
cos θ sin θ
− sin θ cos θ

)−1
= e2iθ ·R

(
cos θ sin θ
− sin θ cos θ

)
L

(
cos θ sin θ
− sin θ cos θ

)−1
= e−2iθ · L

///

[5.0.2] Remark: Thus, R raises weights and L lowers weights.

[5.0.3] Definition: A (smooth) vector x in a representation is holomorphic if it is annihilated by L, and
is an SO(2) = Kv eigenvector.

[5.0.4] Remark: It is supposedly well known by now that a classical automorphic form living on a complex
domain is holomorphic in the elementary sense if and only if when converted to an automorphic form on a
Lie group (or on an adele group) it is holomorphic in this representation-theoretic sense.
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The defining property of the weight ` holomorphic discrete series representation π` of SL2(R) (with
` ≥ 2) is that it is generated by a holomorphic vector xo. The lowest K-type of π` is ` (or, really, the
representation of Kv indexed by `). (The K-type is not so easily indexed for larger groups, of course.) In a
typical abuse of language, the complex-linear span of xo in π` is also called the lowest K-type of π`.

[5.0.5] Theorem: For ` ≥ 2 there exists a weight-` holomorphic discrete series representation of SL2(R),
unique up to isomorphism. (We won’t prove this here, but it is not difficult.) ///

[5.0.6] Proposition: For totally real fields k, at infinite primes v, for (totally) positive-definite quadratic
form Q, for ϕv the Gaussian (attached to Q)

ϕv(x) = e−πQ[x]

for any 8`-by-1 matrix x the function
g → ρ(g)ϕ(x)

is holomorphic, and generates a holomorphic discrete series representation of weight 4`. It lies in the lowest
K-type 4` of the holomorphic discrete series π4`.

[5.0.7] Corollary: The corresponding εv is holomorphic, and generates a holomorphic discrete series
representation of weight 4`. It lies in the lowest K-type 4` of that holomorphic discrete series.

[5.0.8] Remark: That is, with such choice of Schwartz-Bruhat functions at infinite primes, the Eisenstein
series arising from ϕ via the Weil representation really is a holomorphic automorphic form.

[5.0.9] Corollary: The corresponding

g → Θϕ(g, h) =
∑
x

ρ(g, h)ϕ (x)

is holomorphic for any h ∈ Hv.

[5.0.10] Remark: That is, with such choice of Schwartz-Bruhat functions at infinite primes, the theta series
arising from ϕ really are holomorphic automorphic forms.

6. Outline of proof of Siegel-Weil formula

We suppose that the number field k is totally real, and that the quadratic form Q is 8`-dimensional, with
further specifics as above at archimedean primes. In particular, Q is positive-definite at all infinite primes.
Choose a Schwartz-Bruhat function ϕ in S (8` × 1) with the infinite-prime factors ϕv being the standard
Gaussians. Let 1 denote the identically-one function on the adelized orthogonal group O(Q). Then

[6.0.1] Theorem: (Siegel-Weil)
Eϕ = Θϕ(1)

That is, the theta lift of the constant function 1 on the orthogonal group is ‘the’ Eisenstein series on SL2.

Proof: (Sketch) Of course the goal is to prove that the difference

Eϕ −Θϕ(1)

is the identically-zero function.

Compute directly that, due to the holomorphy, the two Bruhat-cell parts of the constant term of Eϕ simplify:
the big-cell term is simply 0. The little-cell term is directly computed to be equal to the constant term of
the automorphic form Θϕ(1). And both Eϕ and Θϕ(1) are holomorphic. Thus, the difference

Eϕ −Θϕ(1)
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is holomorphic, of moderate growth, and with constant term 0. By the simple way that holomorphic
automorphic forms behave, this assures that Eϕ −Θϕ(1) is square-integrable, so is a cuspform.

If it were the case that at some finite prime v the Eisenstein series Eϕ and the theta-lift Θϕ(1) locally
generated isomorphic irreducible representations of SL2(kv), then the difference Eϕ − Θϕ(1) would also
generate an isomorphic copy of that irreducible representation of SL2(kv). We know that almost everywhere
the Eisenstein series Eϕ generates the irreducible principal series I4`. Below we will sketch a proof that almost
everywhere Θϕ(1) generates that same irreducible. Granting this, we find that the difference Eϕ − Θϕ(1)
generates I4` almost everywhere.

Since the difference Eϕ−Θϕ(1) is square-integrable and locally generates the irreducible representation I4` of
SL2(kv) for at least one finite prime v, if this difference were not identically zero then the local representation
I4` would be unitarizable. We have noted that it is not, so we must conclude that the difference Eϕ−Θϕ(1)
is 0. This proves the Siegel-Weil formula. ///

[6.0.2] Remark: We don’t get any contradiction to unitariness by looking at archimedean primes, because
the holomorphic discrete series are unitary.

7. Computing some Jacquet modules

To complete a reasonable sketch of a proof of Siegel-Weil, even in our simple case, we should verify that at
almost all primes the theta-lift Θϕ(1) generates the principal series I4` at almost all finite primes. This is
true regardless of ϕ, although the finite set of exceptional primes changes depending upon the choice of ϕ.

To verify this, we compute the Jacquet module of the representation of SL2(kv) generated by the trivial-
representation co-isotype for O(Q)v of the Weil representation ρ. (Note that the Jacquet module is the
trivial-representation co-isotype for the standard unipotent radical Nv in SL2(kv).)

[7.0.1] Lemma: Almost everywhere locally, the trivial-representation co-isotype for O(Q)v of the local Weil
representation ρv is I4`-isotypic.

Proof: We may suppose that the residue field characteristic is not 2. By Frobenius reciprocity, the assertion
of the lemma is equivalent to the assertion that, as a Pv-representation, the trivial-representation co-isotype
for O(Q)v ×Nv of ρv is a sum of copies of the one-dimensional representation(

a ∗
0 a−1

)
→ |a|4`

That is, the trivial-representation co-isotype for O(Q)v ×Nv of ρv consists entirely of vectors which are left
Pv-equivariant by the character χ4`.

This terminology is standard, if not common: the trivial-representation co-isotype of a representation space
(σ, V ) of a group G is the smallest quotient space

q : (σ, V )→ (τ,W )

through which every intertwining operator from (σ, V ) to the trivial G-representation factors. If all
representations at hand were unitary, this quotient would be isomorphic to a subrepresentation, but in
general this is not so. The Jacquet module is the trivial-representation co-isotype for the unipotent radical
Nv, and the theta-lift of 1 generates the trivial representation of O(Q)v, so the intertwining operator

ρ→ Θϕ(1)

must indeed factor through the trivial-representation co-isotype for O(Q)v ×Nv.
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Also we must recall that we have an exact sequence of Schwartz-Bruhat spaces

0→ S(Y )→ S(X)→ S(X − Y )→ 0

for any totally disconnected space X and open subset Y ⊂ X. In this context, S(X) is the collection
of locally constant compactly-supported complex-valued functions on a totally-disconnected space X. The
proof of this assertion is not difficult, and goes back at least to Bruhat’s early work circa 1960.

Let
q : ρ→ trivial co-isotype of representation gen’d by Θϕ(1)

be the map to the trivial representation co-isotype of the O(Q)v ×Nv representation generated by Θϕ(1).

First, we claim that any Schwartz-Bruhat function f with support on non-isotropic vectors in Q maps to 0
under q. Specifically, on the support of f the function x → Q[x] is certainly continuous, being polynomial,
and non-zero by assumption, so uniformly bounded away from 0 by the compactness of support of f . Thus,
ordv Q[x] is bounded from above for x in the support of f . Say ordv Q[x] ≤ n. Thus, for any fixed x in the
support of f , the function t → ψ(t · Q[x]/2) on $−n−1ov is a non-trivial character on $−n−1ov, hence has
integral 0 over $−n−1ov. By standard apparatus for Jacquet modules, this implies that f maps to 0 in the
quotient map to the Jacquet module.

Let Z be the set of isotropic vectors in Q. By the previous claim, the map q to the co-isotype factors through
S(Z). That is, the co-isotype is a quotient of S(Z).

By Witt’s theorem, the collection of isotropic vectors for Q falls into exactly two O(Q)v-orbits: {0} and all
non-zero isotropic vectors. (By the local results for the Hasse-Minkowski theorem, since 8` > 4 there do
exist non-zero Q-isotropic vectors locally at all finite primes v.)

From this, invoking the exact sequence above, (and using Frobenius Reciprocity) we see that the trivial-
representation co-isotype π fits into a short exact sequence

0→ S(Z − {0})1 → π → S({0})→ 0

of Pv-representations (trivial representation of O(Q)v), where S(Z)1 is shorthand for the O(Q)v trivial
co-isotype of the Schwartz-Bruhat space S(Z − {0}) on the open subset Z − {0} of Z.

In particular, we claim that every O(Q)v-invariant distribution on S(Z) is a linear combination of the
functional

uo(f) = f(0)

and the functional

u1(f) =

∫
Q

f(x) dx

where we lift f back to a Schwartz-Bruhat function on the whole vector space Q of the quadratic form, over
kv. Certainly these two functionals are both O(Q)v-invariant and are linearly independent. Thus, from the
previous computation, it must be the the trivial-representation O(Q)v co-isotype is the direct sum of these
two trivial representations of O(Q)v.

It remains to identify the representation of the Levi component Mv of the parabolic Pv of SL2(kv) which
occurs in these two spaces. On the subspace in the co-isotype corresponding to the functional uo, the Levi
component of SL2(kv) acts by the character χ4` coming from the definition of the Weil representation: with

m =

(
a 0
0 a−1

)
,

uo(mf) = uo(|a|4` f(∗a)) = |a|4` uo(f(∗a)) = |a|4` f(0 · a) = |a|4` f(0) = |a|4` uo(f)

On the subspace corresponding to the functional u1, the effect of such m is a little messier to verify but
turns out to be |a|1−4`.
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Thus, finally, we see that the Jacquet module for SL2(kv) of the theta kernel is

χ4` ⊕ χ1−4`

Noting that we hadn’t done any normalizing, this is none other than the Jacquet module of the principal
series. ///
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