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Integral moments

Paul Garrett garrett@math.umn.edu http:;/www.math.umn.edu/garrett/
(with Diaconu and Goldfeld)

e Idea: integral moments over families of L-functions arise as coefficients in
automorphic spectral decompositions.

e Example: in several cases, extract subconvex bounds

e Note: in some applications a subconvex bound replaces Lindelof

Sample of moments and bounds: Euler-Riemann zeta

(RH =)Lindelsf ((3+it) < t° ve>0 (unknown)
convexity ((3+it) < tate ve>0 (true, easy)
T
2k'" moment = / (% +it) " dt
0
Example of integral moments
Ziw) = [ loh+ )P e ar
1
which has natural boundary for £ > 3 (Diaconu-PG-Goldfeld).

T
Lindelsf <= / ¢(3 +it) P dt < T (for all k, £ > 0)
0

Suitable moment estimates yield subconvex bounds:

r fo \C +at)|? dt <« T1te #= subconvex bd
fo IC(3 +it)|*dt < T #= subconvex bd

fo (3 +it)|*dt = TP(logT)+O(T*°) = subconvex bd

fo \C +it)|?*dt < Tt with2k >6 == subconvex bd
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T
1918 Hardy-Littlewood: /\C(% +it)|?dt ~ TlogT (#= subconvex bound)
0
1921 Weyl (not by moments): |((5 +it)] < (1+ t])s+e (= subconvex)

1926 Ingham: /T|§(% +it)|*dt ~ 5= T(logT)* (#= subconvex bound)
0
1979 Heath-Brown:
/T|C(% +it)|*dt ~ T -P(logT) + O(T%Jrs) (= subconvex bound)
0
Our prototype: 1982, A. Good: holo cuspform f

/|L +it, )2 dt = aT(logT+b) + O((TlogT)*?) = subconvex

Proof mechanism:
(1) automorphic spectral decomposition
(2) L-functions as decomposition coefficients.

Examples of decomposition coefficients and L-functions:

[ris(Y ) = Asn (FonGa)
(fg, Es) = A(s,f®g) (f,gonGLy)
Decomposition example: SLs(Z)\$H

< Y > 1 < 71>
b ~ g B4+ — b F,) -E,ds + .
<1 71 > 4mi Re (s :l< 7 > i <171>
F cfm (s) )

Over a number field:

(@, F) 1 /
b ~ - F O FEs\)-FEs,d

F cfm

(®, x o det)
det
* E: Toder] xodet

See sum over Y, integral over t.
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Create integral kernel/Poincaré series ™ such that:
Integral moment of cuspform f produced by integral
oW 1 . ., 7 —w
[t = o [LG it an) LG i) [~ d

Spectral expansion of L™

1—w J—
= (%) 1 L(: +a,F)
ipa’w = —w 73 'El—l—a + = 2 g(l —itF,Oé,w) - F
T2 I(3) 2F0§L2 \F ) i
1 1 —
L ((a+s5)f(a+1~s) G(1— s,0.w) - By ds
AT JRe (s)=1 (2 —2s)
with

F(oz—|—21—s) F(a—2|—s) F(a—;—l—w) F(a—l—s;l—l—w)

o+ %)

(at+3)

G(s,a,w) =7~

Continuous part cancels pole of leading term at o = 0. Evaluated at a = 0:

[eoene = o [eg ] [~ a

and
w 1 L(z,F) . . .
‘,BO’ = <p01eatw=1> + 3 Z <FQ,F> -G(L —it.,0,w) - F
F on GLo
1 £(s)€(1 —s) T(*5°) D(*=F)
+ — b d
ATt Jre(s)=1  &(2 — 25) I'(3) ’

Over Q(i) grossencharacters appear (Diaconu-Goldfeld 2006)

Similarly over number fields.
With suitable data,

Theorem: t-aspect subconvexity for GL, over number fields
(Diaconu-PG 2006)
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Proof ingredients: First, over QQ:

Spectral expansion of P™ gives meromorphic continuation

Obtain meromorphic continuation of generating function Z(w)

Leading pole at w = 1.

Trailing poles at pu = py with p(p — 1) eigenvalue for waveform f.

Need polynomial vertical growth

Need spectral gap (Kim-Shahidi): separate cuspidal poles from leading pole

Need asymptotics of triple integrals

s

of eigenfunctions (Sarnak, Bernstein-Reznikoff, Kroétz-Stanton). Namely,
exponentially decreasing, not merely rapidly.

See also Goldfeld-Hoffstein-Lockhart, Hoffstein-Ramakrishnan for asymp-
totics of

(F' cuspform)

Use positivity of moment sum-and-integral ... Landau’s lemma

Complications over number field:

Freeze parameters w at all but one place... thus, breaking t-aspect convexity
at a single place, not hybrid

Poles at eigenvalues of one Laplacian presumably accumulate, ... requiring
finesse proving polynomial vertical growth
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The diagonal/positivity property:
The diagonal form

Z/\L(%Ht,f@x)\z..,
X

rather than a smeared-out form

Z//L(%+it17f®X1)'L(%—it2,7®X2)...

X1,X2
is essential, or at least extremely convenient.
Arises as deformation of diagonal distribution.

Simpler example: Distribution u on S! x S! integrating along the diagonal
u(f®g) = | f-g
S’l
Has diagonal Fourier expansion
u = Ze2winm ® e—27riny
since, by Plancherel,

R S Fn)g(—n) = > f@glm,n) - a(m,n)

Similarly for any diagonal integral.

Clean-but-harsh pure diagonal distributions often usefully deformed to nearly-
diagonal more-classical function.
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Something appealing that doesn’t work: to obtain 2k moments for
G Lo cuspforms?

Corresponding idea in more tangible situation of classical Fourier series: let
u be the distribution on

H:§1><...><Sl

-

Vv

2k

given by integration along the subgroup

1 ...Tk

0 = {(xl,...,xk,yl,...,yk) L/ = 1} Cc H
Yi--- Yk

The Fourier expansion is concentrated along a diagonal line:

u = E 627Tin($1+...—|—13k—y1—...—yk)
n

For automorphic forms: let

H:{(xl 1>><...><<x’f 1>><<yl 1>><...><<y’“ 1)}%GL%’“

and let u be integration along

0 = {elements in H with - Tk 1}
Yi .- Yk

For cuspform f on G Lo, restrict

F=fe.0fef0. f

2k

to Hp\Hpa and evaluate u on it. Over @), produces

/Oo )A(% it f)

— o0

2k
‘ dt

Obstacle: spectral interpretation/expansion for 2k > 2?7 Can deform to
soften exponential decay of gamma factors, but...
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Technicality: the weight in the integral moment

At a = 0, finite-prime factors are literal Hecke-Jacquet-Langlands Mellin
transforms of local Whittaker functions

Ly(s, f@x) = /k [yI° % X(y) Wy (y 1)

v

LU(%Ht’f)‘Q B //‘y/y/w'wf’”(y 1) Wf,v<y/ 1)

Deformation at archimedean places entangles this with integration over
unipotent radical: with additive character 1) and

() () 0

|L,(5 + it, f)|? is deformed into

and

(local factor at archimedean v>

- _///%(n) ' Jys™ % Wy(hn) - W .o (W'n)-
) ///%(nw((y_y/)x)'Wf,v(h)'Wf,v(h’).ly’/y\i_%
_ /_/@U(y_y/)'wf’”(h)'Wf,v(h/)'|y//y\f}_%

Except for holomorphic discrete series, these seem not usefully expressible by
classical special functions.

The map from data ¢, to these integrals is definitely not surjective to an
elementary space of functions.

Nevertheless, asymptotically ¢~ for data ¢, (1 T) = (1 +2%)~w/?

7
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Other features/possibilities for GL,

Over quadratic extensions of @), should break convexity in y-aspect, with
same proof.

Full x-aspect over number field subtler, like hybrid bounds.

Allow deformation at finite place, should break convexity in depth: unlimited
ramification of x’s at fized place. (Delia Letang, work-in-progress)

Replace cuspform by (packet of) Eisenstein series:

. should break t-aspect convexity for Dedekind zetas of number fields,
via fourth moments.

and should break t-aspect convexity for Hecke L-functions with
grossencharacters, via fourth moments.

. and should break y-aspect convexity for quadratic fields.

. and should break convexity in depth by deforming finite prime data.
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Higher rank example (Diaconu-PG-Goldfeld, 2006)

Create P" to produce moment expansion for GL3(Q) cuspform f

/ PO |f]2 =
F on GL2

2
L(%—F’itl—’l'tz,f)~L(%+Z't1+’l't2,f)
M, dt; dt
+//‘ C(1 — 2ity) A

More-continuous part is sort of integral moment of standard L(s, f) of f.

M

F

dt

/|L 5 i, f®F)|

Spectral expansion of GL3 Poincaré series is induced from G Lo

2,1

LYY = (oco—part) - ES

L(3a+1 l7ﬁ) 1,2

+ (co—part) - 2 2 B
F o;?Lg (F, F) SF
(3G +1—5) - (252 +5)
+ / (co—part) -
Re (s)=1 ¢(2 —2s)
o plil

a a ds
+1 +1
atl, s—=5=, —s—=5—

Only G Lo cuspforms appear in spectral expansion of B! No G L3 cuspforms!
It is good that no cuspidal data beyond G Ly appears.

But this is also confusing: obscures easiest heuristics for computing and
understanding spectral expansion of 3.

In fact, P>v is a residue of overlying Poincaré series Q%" with more
balanced spectral expansion, and retaining meaningful moment expansion.
More on this later.
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GL,(Q) more generally

Moment expansion:

F
/‘BO’W‘WQ_ / /8 F)f M,(s)ds + ...
FonGL,_, Y Re(s)=3 (7 F)
Spectral expansion of L™
Pr = (co—part) - B,
L(na+n—2 4 1 F)
t 2 27 . E’I’L—2,2
+ Fz;;L oo —part) F.F) Liap
on 2
+ / (co—part) x L(na+2n_2 t1-5X%) L(na+2n_2 +5,%x)
Re (s)=1 L(2 —2s,X%)
« g2l . ds

a+l, s—(n— 2)a+1 —s—(n—Q)%

Only GLo cuspforms appear in spectral expansion of B!
No GL3, GLy, GLs, ... cuspforms!

Construction of kernel P

o-(5) (0 )

Z = center G, K, maximal compact in G,. Let ¢ = ), ¢, with

S%((Sl 2) - Ky) = ‘(det A)/d”_l‘: (for v finite)

Extend by 0 off H,Z,K,. For v|oo require the same right left equivariance
and K,-invariance, with ¢, determined by values on U,. For example, take

1,1 = —w
sov< 0 1)=<1+\x1|2+---+|xn_1\2> /2

Kernel is

P = > el

YEZr Hi\G

10
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More-continuous terms: higher integral moments

Most-continuous part of moment expansion for G L,
' o .
//A IL(3 +it, f @ EY\p)* M dt dt

o 2
I <o<n—1 L( + it + ity, f)

: : M dtdt
hi<jcran C(1 —it; +ity)

where N
A={tcR" ' :t;+...+t,_1 =0}

More generally, let n — 1 =m - k. For F on GL,,, let

FA=F®...QF onGL,, x...xGL,,

g

k

In moment expansion have

/R (5)=1 /A|L(S’f ® Epa, %+it)\2MF,t,s ds dt

2
// H1<g<k; L(S—i-ltg,f@F) M ds dt
Hl<j<g<]€ L 1 —Zt —FZtg,F@FV)

~ a kind of higher moment of L(% +it, f @ F)

11
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Wave-packets of Eisenstein series

Replace cuspform f on GL,, by (packet of ) minimal-parabolic Eisenstein series
Ej with 8 € €1,

Most-continuous part of the moment expansion

. . 2
[licu<n 1<e<n—1 C(Bu+ 3 it +ite) gt di
H1§j<£<n C(l - Z'tj + itﬁ)
where, again, N
A={teR" ' : t1+...+t,1 =0}
At 3 =0¢€ C"! (ignore vanishing of Eg!)
1 . : n
s+t + it ~
// == G5 : ,6) M dt dt
A H1§j<e<n C(1 —it; + ity)
= GL,, produces high moments of C.
Example: for GL3, where A = {(t1,—t1)} ~ R,
it +ity)3 - ¢(% + it —ity)3 ]
//C it +it,)” C,(Q it —ity) M dt dt,
1 — 2Zt1)

Example: for GL4

+@t+zt1) CC( +it+ito)t - C(5 + it + itg)*
—’ltl-l-ZtQ)C(l—itl-i-itg)C(l—ZtQ—F’ltg)

Actually, these should be integrated as in corresponding packets.

12
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Caution: not all moments results bear on subconvexity:

Assume Lindelof, Weyl’s Law to determine asymptotic-with-error for moment,
see implied pointwise estimate.

Failure to match convexity ... does not imply corresponding asymptotic-with-
error is useless.

Outcome depends upon the parameters varied in the L-functions... upon the
family averaged-over.

Much more difficult to understand joint asymptotics-with-error. Do not
expect to prove hybrid subconvexity. Essentially no result of this type is
known! Thus, be cautious about reasonable forms of joint asymptotics-with-
error, though Iwaniec-Sarnak formulation makes sense for hybrid estimates.

Of special interest are second moments, most easily produced by spectral
identities.

Simplest failure to match convexity:
T
/ C(3 +it)|*dt = T P(logT) + O(T' =l (known)
0

implies, by standard methods,
<Gz +at)? < (1+ )t =med

and then )
C(3 +it)] < (14 J¢])z 7o

But convexity is )
C(3+it) < (1+]t)ate

Small shift in exponent is very small, so cannot help get the exponent below
1/4. Fuailed to match convexity.

Success:
T
/ ¢(3 +it)|*dt = T P(logT) + O(T' =l (known)
0
does break convexity.

13
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Example: second moments of GLy L-functions

Convezity bound in terms of analytic conductor (Iwaniec-Sarnak)

LA +it, )] <o (L [t 4+ pg) 775 (14|t — pyp)37e

Success: t-aspect (as above). Fix f.

L(L +it, f)] <oy (L+[t)2 4 (convexity)

From
T
| 1L it P de = T P(ogT) + 0Tt (fixed )
0

Get pointwise )
L(5 +it, )l <ep (L4 [thzmmed

breaking convexity in the t-aspect.

Failure: eigenvalue-aspect Fix t.
DL +it, )] <o (1 |pgl)?*e (convexity)
From

Z |L(% +ito7f)‘2 — T2 P(lOgT) +O(T2—small)
|u|<T

since (Weyl) number of f with |us| < T is of the order of T2, would have
L5 +it, )] <epe (14 [pghtsmed

failing to equalize convexity.

14
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Example: Rankin-Selberg convolutions

Convexity bound in terms of analytic conductor

1, ite
L +it, f ® g)] < ( 10+ |tiﬂfiﬂg|))
s1gns
t-aspect? Fix f, g.
IL(X +it, fR9)] <cpq 1+t (convexity)
From
T
/ IL(L +it,f@g)?dt = T P(logT) + O(T' =™ (fixed f)
0
get pointwise )
L2 +it, f®g)| <cp (L4 [t])z7om!
breaking convexity in t-aspect.
Too good for existence of corresponding spectral family.
g-aspect Fix t, f.
IL(3 +it, f @ g)| <erp (14 |ngl)' ™ (convexity)

From
Y LG +it, feg) = T? PlogT) + O(T**=1)
|.Ug|§T

would have
‘L(% +it, f ® 9)‘ <Le t, f (1+ |:“g|)1_sma11

breaking convexity.

Plausible spectral family.

15
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Spectral identity, Rankin-Selberg for G L,
Avoiding conductor dropping considerations...
Can produce spectral identity

//ipo’wwf@E%wP = Y LG+t fog)P - wtg) +...

g cfm on GL2

with positivity and diagonal properties, weight depends upon archimedean
data of g (and of fixed t and f).

P has good spectral expansion on G Ly X GLs.

Apparently:

Leading pole of P at w = 2.

Trailing poles of P at u = pp € C with cuspform F' eigenvalue pu(p — 1).

Known spectral gap should allow subconvex bound.
Over number field, separate parameters at archimedean places.

Deformation at finite set of finite places should allow averaging g in depth.

16
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Rankin-Selberg for GL3?
Avoiding conductor dropping considerations...
A spectral identity exists, producing g-aspect moment

/"B'\f®Es|2 = Z IL(s, f @ g)|* - wt(g) + ...

g cfm on GL3

with positivity and diagonal properties, and weight function depending only
upon archimedean data of ¢ (and ¢t and f).

L itself has good spectral expansion on GL3 X GLs.
Convexity bound:

9

LG +it, f @ g)l s (1 lmD( + 21+ 1)) *

Asymptotic with very good error

9
Z |L(37f®g)‘2 — T5P(10gT)+O(T§ —Small)
lps|<T

would break convexity in g-aspect.
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