Garrett: Identities, moments [Edinburgh, 07 Aug 2008]

Spectral identities and integral moments (joint with Diaconu and Goldfeld)

Idea: integral moments over families of L-functions arise as coefficients in automorphic spectral decompositions.

Example of decomposition: For cuspform f on $G L_{n}$, complex s, cuspform F on $G L_{n-1}$

$$
\begin{aligned}
& L(s, f \otimes F)=s, \bar{F}^{t h} \text { component of } \\
& \quad f \text { restricted to }\left(\begin{array}{ll}
* & 0 \\
0 & 1
\end{array}\right) \approx G L_{n-1}
\end{aligned}
$$

by

$$
L(s, f \otimes F)=\int|\operatorname{det} h|^{s-\frac{1}{2}} F(h) \cdot f\left(\begin{array}{ll}
h & \\
& 1
\end{array}\right) d h
$$

- Exploit non-commutativity of reductive groups to produce nontrivial spectral identities... with positivity property, involving (integral) second moments.

Sample application: Subconvex bounds.
Example: Theorem: t-aspect subconvexity for $L\left(\frac{1}{2}+i t, f\right)$ for $G L_{2}$ over number fields. (Diaconu-PG 2006)

Recipe for identities: With Euler-Gelfand subgroup H of G

Automorphic distribution $u=$ integrate along $H_{k}^{\Delta} \backslash H_{\mathrm{A}}^{\Delta}$

$$
u= \begin{cases}\&_{F \text { on } H} F \otimes F^{\vee} & (\text { along } H \times H) \\ \&_{F \text { on } G}(H \text {-period of } F) \cdot F & \left(\text { along } G^{\Delta}\right)\end{cases}
$$

Apply to $f \otimes f^{\vee}$ on $G \times G$, regularizing as needed, have harsh spectral identity

$$
\left.\mathscr{F}_{F \text { on } H}\left|\langle f, F\rangle_{H}\right|^{2}=\left.\mathscr{F}_{F \text { on } G}\langle\bar{F}, 1\rangle_{H} \cdot\langle | f\right|^{2}, F\right\rangle_{G}
$$

Note: Harsh because in this form archimedean contributions are of exponential decay, swamping interesting phenomena.

Note: The Euler-Gelfand condition is approximately that

$$
\langle f, F\rangle_{H}=\text { Euler product }
$$

Deform u in two ways:

- spread out to classical function on G^{Δ}
- undo residue: 1 is residue of Eisenstein series.

Examples of second-moment identities thus obtainable:
Any Rankin-Selberg configuration...
Hecke-type L-functions for $G L_{n} \times G L_{n-1}$: $H=G L_{n-1}$ and $G=G L_{n}$

Rankin-Selberg L-functions for $G L_{n} \times G L_{n}$:

$$
H=G L_{n} \text { and } G=G L_{n} \times G L_{n}
$$

Triple product L-functions for $S L_{2} \times S L_{2} \times S L_{2}$:

$$
H=S L_{2} \times S L_{2} \times S L_{2} \text { and } G=S p_{3}
$$

Triple product L-functions one cuspform fixed:

$$
H=S L_{2} \times S L_{2} \text { and } G=S p_{2}
$$

Standard L-functions on classical groups:

$$
H=\operatorname{Isom}\langle,\rangle \text { and } G=\operatorname{Isom}(\langle,\rangle \oplus-\langle,\rangle)
$$

Note: overcoming regularization problems is essential.
Packets of cuspidal-data Eisenstein series regularize.
Degenerate Eisenstein series appear as residues.
Notion of Schwartz space and tempered automorphic distributions.

Caution: Not every second-moment asymptotic (with reasonable error term) yields subconvex estimates...

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
Examples: $G L_{2}(\mathbb{Q})$ symmetric powers, eigenvalue aspect convexity bound

$$
L\left(\frac{1}{2}, \operatorname{Sym}^{n} f\right) \ll\left\{\begin{array}{ll}
\left|\mu_{f}\right|^{\frac{n}{4}+\varepsilon} & (\text { for } n \text { even }) \\
\left|\mu_{f}\right|^{\frac{n+1}{4}+\varepsilon} & (\text { for } n \text { odd })
\end{array} \quad \forall \varepsilon>0\right.
$$

Best reasonable asymptotic-with-error (Lindelöf + Weyl)

$$
\sum_{\left|\mu_{f}\right| \leq T}\left|L\left(\frac{1}{2}, \operatorname{Sym}^{n} f\right)\right|^{2}=T^{2} P(\log T)+O\left(T^{2-\text { small }}\right)
$$

gives

$$
\left|L\left(\frac{1}{2}, \operatorname{Sym}^{n} f\right)\right| \ll T^{1-\text { small }}
$$

For $n=2$, fails to break convexity.
For $n \geq 3$, breaks convexity.
Note: The convexity bound is not not known for large n.
For $n \geq 5$, this asymptotic is too good, probably unattainable.
Further, it seems that for $n \geq 3$ an average of $\left|L\left(\frac{1}{2}, \operatorname{Sym}^{n} f\right)\right|^{2}$ does not appear naturally, that is, is not spectrally complete.

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
Examples: $G L_{2}(\mathbb{Q})$ triple products, eigenvalue aspect... analytic conductor

$$
Q(f, g, h)=\prod_{\text {signs }}\left(1+\left| \pm \mu_{f} \pm \mu_{g} \pm \mu_{h}\right|\right) \quad \text { (eight factors) }
$$

Convexity bound

$$
\left|L\left(\frac{1}{2}, f \otimes g \otimes h\right)\right| \ll Q(f, g, h)^{\frac{1}{4}+\varepsilon} \quad \forall \varepsilon>0
$$

Failure: when all three vary,

$$
\sum_{\left|\mu_{f}\right|,\left|\mu_{g}\right|,\left|\mu_{h}\right| \leq T}\left|L\left(\frac{1}{2}, f \otimes g \otimes h\right)\right|^{2}=T^{6} P(\log T)+O\left(T^{6-\text { small }}\right)
$$

fails to break convexity: for $\left|\mu_{f}\right|,\left|\mu_{g}\right|,\left|\mu_{h}\right|$ all $\sim T$, prove

$$
\left|L\left(\frac{1}{2}, f \otimes g \otimes h\right)\right| \ll T^{3-\text { small }}
$$

while $Q(f, g, h)^{\frac{1}{4}} \ll\left(T^{8}\right)^{\frac{1}{4}}=T^{2}$
Success: if only two vary,

$$
\sum_{\left|\mu_{g}\right|,\left|\mu_{h}\right| \leq T}\left|L\left(\frac{1}{2}, f \otimes g \otimes h\right)\right|^{2}=T^{4} P(\log T)+O\left(T^{4-\text { small }}\right)
$$

breaks convexity when not only $\left|\mu_{g}\right|$ and $\left|\mu_{h}\right|$ are $\sim T$, but also $\left|\mu_{g} \pm \mu_{h}\right|$ both $\sim T$.

That is, have subconvex bound away from conductor-dropping.

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
First deformation: to classical function on G^{Δ}
Deform distribution u on $G_{k}^{\Delta} \backslash G_{\mathrm{A}}^{\Delta}$ given by integration-along $H_{k}^{\Delta} \backslash G_{\mathrm{A}}^{\Delta}$ into integration on $G_{k}^{\Delta} \backslash G_{\mathrm{A}}^{\Delta}$ against a left $Z_{k} H_{k}$-invariant classical function φ on G_{A} and wind up

$$
\mathfrak{P}^{\varphi}(g)=\sum_{\gamma \in Z_{k} H_{k} \backslash G_{k}} \varphi(\gamma \cdot g)
$$

Prescription: $\varphi=\bigotimes_{v} \varphi_{v}$ and
$\varphi_{v}(g)=\left\{\begin{array}{lll}1 & \left(\text { for } g=z h k, z \in Z_{v}, h \in H_{v}, k \in K_{v}\right) \\ 0 & \left(\text { for } g \notin Z_{v} H_{v} K_{v}\right) & (v<\infty)\end{array}\right.$
$\varphi_{v}(z h \theta k)=\Phi_{v}(\theta) \quad\left(z \in Z_{v}, h \in H_{v}, k \in K_{v}, \theta \in \Theta_{v}\right) \quad(v \mid \infty)$
where Φ_{v} is suitable function on Θ_{v}, submanifold transverse to H_{v} in G_{v}.

Example: With $G=G L_{n}$ and $H=G L_{n-1}$, Iwasawa decomposition suggests $\Theta=$ unipotent radical of $n-1,1$ parabolic.

Thus, canonical trivial deformation at finite places, although we reserve the possibility of non-trivial p-adic deformations also. (cf. Letang)

Somewhat canonical deformation at $v \mid \infty$: Let Ω be Casimir descended to G_{v} / K_{v}, take $\lambda \in \mathbb{C}$, and specify $\varphi_{v}=\varphi^{\lambda}$ by PDE on G_{v}

$$
(\Omega-\lambda) \varphi_{v}^{\lambda}=u_{v}
$$

where u_{v} is integration along H_{v}, and require invariance: left by H_{v}, right by K_{v}.

Spectral decomposition of \mathfrak{P}^{φ}

Over \mathbb{Q}, computing by projecting, the $F^{t h}$ spectral component is

$$
\begin{aligned}
\int_{Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}} F \cdot \mathfrak{P}^{\varphi^{\lambda}} & =\int_{Z_{\mathrm{A}} H_{k} \backslash G_{\mathrm{A}}} F \cdot \varphi^{\lambda} \\
=\int_{Z_{\mathrm{A}} H_{k} \backslash G_{\mathrm{A}}} \frac{\Omega-\lambda}{\lambda_{F}-\lambda} F \cdot \varphi^{\lambda} & =\int_{Z_{\mathrm{A}} H_{k} \backslash G_{\mathrm{A}}} F \cdot \frac{\Omega-\lambda}{\lambda_{F}-\lambda} \varphi^{\lambda}
\end{aligned}
$$

by integrating by parts. Then this is

$$
\begin{gathered}
\frac{1}{\lambda_{F}-\lambda} \int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathrm{A}}} F \cdot\left(u_{v} \otimes \bigotimes_{v<\infty} \varphi_{v}\right)=\frac{1}{\lambda_{F}-\lambda} \cdot \int_{Z_{\mathbb{A}} H_{k} \backslash H_{\mathrm{A}}} F \\
=\frac{H \text {-period of } F}{\lambda_{F}-\lambda}
\end{gathered}
$$

Note: For H large in G, period non-vanishing condition is nontrivial. Local necessary condition

$$
\operatorname{Hom}_{G_{v}}\left(\pi_{F, v}, \operatorname{Ind}_{H_{v}}^{G_{v}} 1\right) \neq 0
$$

Globally non-trivial also: example, with $H=G L_{n-1}$ inside $G=G L_{n}$, for $n \geq 3$ cuspforms have vanishing H-period.

Note: trailing poles of \mathfrak{P}^{λ} appear at eigenvalues of cuspforms with non-vanishing periods.

Note: $G L_{2}$ case suggests that poles are insensitive to choices of data!

Moment expansion after first deformation:

Spherical cuspform f on G, initial unwinding

$$
\begin{gathered}
\int \mathfrak{P}^{\lambda} \cdot|f|^{2}=\int_{Z_{\mathrm{A}} H_{k} \backslash G_{\mathrm{A}}} \varphi^{\lambda} \cdot|f|^{2} \\
=\int_{H_{\mathrm{A}} \backslash G_{\mathrm{A}}} \varphi^{\lambda}(g) \int_{Z_{\mathrm{A}} H_{k} \backslash H_{\mathrm{A}}} f(h g) f^{\vee}(h g) d h d g
\end{gathered}
$$

Expand $h \rightarrow f(h g)$ along H

$$
\begin{gathered}
f(h g)=\mathcal{F}_{F \text { on } H} F(h) \int_{Z_{\mathrm{A}} H_{k} \backslash H_{\mathrm{A}}} f(\eta g) \bar{F}(\eta) d \eta \\
=\sum_{F \text { on } H} F(h)\langle g \cdot f, F\rangle_{H}
\end{gathered}
$$

with right-translation action of $g \in G_{\mathbb{A}}$ on functions f. Thus,

$$
\begin{gathered}
\int \mathfrak{P}^{\lambda} \cdot|f|^{2} \\
=\sum_{F \text { on } H} \int_{H_{\mathrm{A} \backslash G_{\mathrm{A}}} \varphi^{\lambda}(g) \int_{Z_{\mathrm{A}} H_{k} \backslash H_{\mathrm{A}}} F(h)\langle g \cdot f, F\rangle_{H} f^{\vee}(h g) d h d g}=\sum_{F \text { on } H} \int_{H_{\mathrm{A} \backslash G_{\mathrm{A}}}} \varphi^{\lambda}(g) \cdot\left|\langle g \cdot f, F\rangle_{H}\right|^{2} d g
\end{gathered}
$$

As φ^{λ} is non-trivially deformed only at ∞, in the integral over $H_{\mathrm{A}} \backslash G_{\mathrm{A}}$ the element $g=\left\{g_{v}\right\}$ can be taken in H_{v} except at ∞. Thus, with the expected entanglement at archimedean places, moment expansion:

$$
\int \mathfrak{P}^{\lambda} \cdot|f|^{2}=\sum_{F \text { on } H} \int_{H_{\infty} \backslash G_{\infty}} \varphi_{\infty}^{\lambda}\left(g_{\infty}\right) \cdot\left|\left\langle g_{\infty} \cdot f, F\right\rangle_{H}\right|^{2} d g_{\infty}
$$

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
Second deformation: undoing residues
Note: Typically, convergence of \mathfrak{P}^{φ} requires further deformation on H_{A} itself. This can be subsumed in more sweeping second deformation of the 1 on H_{A} to Eisenstein series on H_{A}.

Let Q be minimal parabolic in H, E^{β} minimal-parabolic Eisenstein series on H attached to vector $\eta^{\beta}=\bigotimes_{v} \eta_{v}^{\beta}$ with η_{v}^{β} in $\beta^{\text {th }}$ principal series on H_{v}.
E^{β} has a constant residue: deform 1 into E^{β}.
At $v<\infty$, canonical trivial deformation of η_{v} by right K_{v}-invariance to φ_{v} on G_{v}.

At $v \mid \infty$, over \mathbb{Q} for example, make semi-canonical deformation of η_{v} by right K_{v}-invariance, left Q_{v}-equivariance, solving PDE

$$
(\Omega-\lambda) \varphi_{v}^{\lambda, \beta}=\eta_{v}^{\beta}
$$

Set

$$
\varphi^{\lambda, \beta}=\varphi_{\infty}^{\lambda, \beta} \otimes \bigotimes_{v<\infty} \varphi_{v}^{\beta}
$$

Overlying Poincaré series

$$
\mathfrak{Q}^{\lambda, \beta}(g)=\sum_{\gamma \in Z_{k} Q_{k} \backslash G_{k}} \varphi^{\lambda, \beta}
$$

The original Poincaré series \mathfrak{P} is essentially a residue of \mathfrak{Q}.
Overlying identity is expansion of $\int \mathfrak{Q}^{\lambda, \beta} \cdot|f|^{2}$ in two different ways, as above with $\int \mathfrak{P}^{\lambda, \beta} \cdot|f|^{2}$.

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
Example: of overlying identity:
With $H=G L_{2} \subset G=G L_{3}$, for simplicity suppressing first deformation: \mathfrak{Q} is really just E^{β} on $H=G L_{2}$, and for cuspform f on $G L_{3}$

$$
\int E^{\beta} \cdot f=G L_{2} \times G L_{3} \text { Hecke-type integral }
$$

Moment expansion of $\int \mathfrak{Q} \cdot|f|^{2}$ begins

$$
\&_{F_{1}, F_{2} \text { on } G L_{2}} \Lambda\left(\beta, F_{1} \otimes \bar{F}_{2}\right) \cdot \Lambda\left(\frac{1}{2}, f \otimes F_{1}\right) \bar{\Lambda}\left(\frac{1}{2}, f \otimes F_{2}\right)
$$

Spectral expansion of \mathfrak{Q} has non-trivial cuspidal components: for F cuspform on $G L_{3}$

$$
\int \mathfrak{Q} \cdot F=\Lambda\left(\frac{1}{2}, F \otimes E^{\beta}\right)=\Lambda\left(\frac{1}{2}+\beta_{1}, F\right) \cdot \Lambda\left(\frac{1}{2}+\beta_{2}, F\right)
$$

Taking residue at $\beta=1$ annihilates off-diagonal terms in moment expansion and annihilates cuspidal terms on spectral side.

This recovers identity for $\int \mathfrak{P} \cdot|f|^{2}$.
More generally: for $G L_{n-1} \subset G L_{n}$, a similar second deformation, undo-ing a single residue, gives Rankin-Selberg convolutions on $G L_{n-1}$ as coefficients in the moment expansion. Undoing $n-2$ residues recovers non-trivial cuspidal components in the spectral expansion.

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
Asymptotics of weights in moments

$$
\int \mathfrak{P}^{\lambda} \cdot|f|^{2}=\mathcal{F}_{F \text { on } H} \int_{H_{\infty} \backslash G_{\infty}}\left(g_{\infty}\right) \cdot\left|\left\langle g_{\infty} \cdot f, F\right\rangle_{H}\right|^{2} d g_{\infty}
$$

Explicit classical computations barely possible for $G L_{1} \subset G L_{2}$. For $F=1$ on $G L_{1}$, the $F^{\text {th }}$ integral becomes

$$
\int_{-\infty}^{\infty}\left|L\left(\frac{1}{2}+i t, f\right)\right|^{2} \mathrm{wt}(t) d t
$$

where with $\Phi^{\lambda}(x) \sim\left(1+x^{2}\right)^{-\lambda / 2}$, for example, $\operatorname{wt}(t)$ is

$$
\iiint \Phi^{\lambda}(x) \psi\left(\left(y-y^{\prime}\right) x\right) W_{F, \infty}\left(\begin{array}{ll}
y & \\
& 1
\end{array}\right) \bar{W}_{F, \infty}\left(\begin{array}{ll}
y^{\prime} & \\
& 1
\end{array}\right)\left(\frac{y}{y^{\prime}}\right)^{i t}
$$

Qualitative computation in the simple case of $G L_{1} \subset G L_{2}$: asymptotics extracted without (futile) demand for further detail. Let $y=e^{u}$ and $y^{\prime}=e^{v}$. Note essential interchange by Fourier of

$$
A^{\lambda}(x)=\frac{1}{(1-i x)^{\lambda}}+\frac{1}{(1+i x)^{\lambda}} \quad B^{\lambda}(\xi)=|\xi|^{\lambda-1} e^{-|\xi|}
$$

Integrate first in x :

$$
\widehat{\Phi}^{\lambda}\left(e^{u}-e^{v}\right) \sim \widehat{A}^{\lambda}\left(e^{u}-e^{v}\right)
$$

rough along $e^{u}=e^{v}$, rapidly decreasing in $\left|e^{u}-e^{v}\right|$. Multiplication by $W\left(e^{u}\right) W\left(e^{v}\right)$ adds decay, leaves diagonal roughness. Integral against $e^{i t(u-v)}$ is Fourier, then restriction to anti-diagonal. Fourier returns something asymptotically A^{λ} on anti-diagonal, rapidly decreasing on diagonal:

$$
A^{\lambda}\left(t_{1}-t_{2}\right) \cdot(\text { rapidly decreasing })\left(t_{1}+t_{2}\right)
$$

Restriction to anti-diagonal $(t,-t)$ gives essentially

$$
A^{\lambda}(t) \sim|t|^{-\lambda}
$$

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]

Spectral decomposition, (cancellation of) poles

Beyond L^{2} : singular terms... Recall:
Classic example: decomposition of $E_{\alpha} \cdot E_{\beta}$ on $G L_{2}$ with $\alpha=\frac{1}{2}+i a$ and $\operatorname{Re} \beta>1$. With

$$
E_{\alpha}=y^{\alpha}+c_{\alpha} y^{1-\alpha}+\ldots
$$

guided by constant terms,

$$
F=E_{\alpha} \cdot E_{\beta}-\left(E_{\alpha+\beta}+c_{\alpha} E_{(1-\alpha)+\beta}\right)
$$

not only L^{2} but integrable against $E_{\frac{1}{2}+i t}$.
Integrate F against truncated $\wedge^{T} E_{s}$, unwind, let $T \rightarrow+\infty$

$$
\int F \cdot \wedge^{T} E_{s}=\int_{0}^{\infty} c_{P} F \cdot\left\{\begin{array}{clc}
y^{s} & (\text { for } 0<y<T) & \frac{d y}{y^{2}} \\
-c_{s} y^{1-s} & (\text { for } T<y) &
\end{array}\right.
$$

In constant term $c_{P} F$ insufficiently-decreasing terms cancel

$$
\begin{gathered}
c_{P} F=\sum_{\xi \neq 0} W_{\xi}^{\alpha} W_{-\xi}^{\beta}+y^{\alpha} \cdot c_{\beta} y^{(1-\beta)}+c_{\alpha} y^{1-\alpha} c_{\beta} y^{(1-\beta)} \\
-c_{\alpha+\beta} y^{1-(\alpha+\beta)}-c_{\alpha} \cdot c_{(1-\alpha)+\beta} y^{\alpha-\beta}
\end{gathered}
$$

Limit of higher part is Rankin-Selberg $\Lambda\left(s, E^{\alpha} \otimes E^{\beta}\right) / \xi(2 s)$, normalized to

$$
\frac{\xi(s+\alpha+\beta-1) \cdot \xi(s-\alpha+\beta) \cdot \xi(s+\alpha-\beta) \cdot \xi(s+1-\alpha-\beta)}{\xi(2 s) \cdot \xi(2 \alpha) \cdot \xi(2 \beta)}
$$

Other part of integral as in Maass-Selberg

$$
\begin{gathered}
\int\left(c_{\alpha+\beta} y^{1-\alpha-\beta}+c_{\alpha} c_{(1-\alpha)+\beta} y^{\alpha-\beta}\right) \cdot\left\{\begin{array}{cc}
y^{s} & (0<y<T) \\
c_{s} y^{1-s} & (0<y<T)
\end{array} \frac{d y}{y^{2}}\right. \\
=c_{\alpha+\beta} \frac{T^{s-\alpha-\beta}}{s-\alpha-\beta}-c_{\alpha+\beta} c_{s} \frac{T^{(1-s)-\alpha-\beta}}{(1-s)-\alpha-\beta} \\
\quad+c_{\alpha} c_{(1-\alpha)+\beta} \frac{T^{s-(1-\alpha)-\beta-1}}{s-(1-\alpha)-\beta-1} \\
\quad-c_{\alpha} c_{(1-\alpha)+\beta} c_{s} \frac{T^{-s-(1-\alpha)-\beta}}{-s-(1-\alpha)-\beta}
\end{gathered}
$$

All this goes to 0 as $T \rightarrow+\infty$ for $\operatorname{Re} \alpha$ fixed, $\operatorname{Re} s$ fixed, and $\operatorname{Re} \beta$ sufficiently large. Thus,
$\lim _{T} \int\left(E_{\alpha} \cdot E_{\beta}-\left(E_{\alpha+\beta}+c_{\alpha} E_{(1-\alpha)+\beta}\right)\right) \cdot \wedge^{T} E_{s}=\frac{\Lambda\left(s, E_{\alpha} \otimes E_{\beta}\right)}{\xi(2 s)}$
Whole integral converges for $\alpha=\frac{1}{2}+i a$ and $s=\frac{1}{2}+i t$ and $\operatorname{Re} \beta>1$, so identity holds in that range, namely

$$
\begin{aligned}
\int\left(E_{\frac{1}{2}+i a} \cdot E_{\beta}\right. & \left.-\left(E_{\frac{1}{2}+i a+\beta}+c_{\frac{1}{2}+i a} E_{\frac{1}{2}+i a+\beta}\right)\right) \cdot E_{\frac{1}{2}+i t} \\
& =\frac{\Lambda\left(\frac{1}{2}+i t, E_{\frac{1}{2}+i a} \otimes E_{\beta}\right)}{\xi(1+2 i t)}
\end{aligned}
$$

Cuspidal components are directly Rankin-Selberg integrals, so:
\Longrightarrow Spectral expansion with two singular terms:

$$
\begin{aligned}
& E_{\alpha} \cdot E_{\beta}=E_{\alpha+\beta}+c_{\alpha} E_{(1-\alpha)+\beta}+\frac{1}{2 \pi} \int \frac{\Lambda\left(\frac{1}{2}+i t, E_{\alpha} \otimes E_{\beta}\right)}{\xi(1+2 i t)} \cdot E_{\frac{1}{2}+i t} \\
& \quad+\sum_{F} \frac{\Lambda\left(\frac{1}{2}+i a, \bar{F} \otimes E_{\beta}\right)}{\langle F, F\rangle} \cdot F \quad\left(\text { with } \alpha=\frac{1}{2}+i t \text { and } \operatorname{Re} \beta \gg 1\right)
\end{aligned}
$$

Contour dance: Unobviously, this expression fails for $\operatorname{Re} \beta<1$. Must be more circumspect to move to $\beta=\frac{1}{2}+i b$ from $\operatorname{Re} \beta>1$. This example is useful because it admits alternative computation. In

$$
\int \frac{\xi(i t+i a+\beta) \xi(i t-i a+\beta) \xi(i t+i a+1-\beta) \xi(i t-i a+1-\beta)}{\xi(1+2 i t) \xi(1+2 i a) \xi(2 \beta)} E_{\frac{1}{2}+i t}
$$

(1a) Move β to $\operatorname{Re} \beta=1+\varepsilon$. (1b) Move $s=\frac{1}{2}+i t$ to $\frac{1}{2}+2 \varepsilon+i t$. For $a \neq 0$, each of the two factors

$$
\xi\left(s-\frac{1}{2}+i a+1-\beta\right) \xi\left(s-\frac{1}{2}-i a+1-\beta\right)
$$

catches a pole of ξ at 0 , that is, at $s=\beta-\frac{1}{2}+i a=\beta-1+\alpha$ and $s=\beta-\frac{1}{2}-i a=\beta-1+(1-\alpha)$, with residues multiples of

$$
E_{\beta-1+\alpha} \quad \text { and } \quad E_{\beta-1+(1-\alpha)}
$$

(2a) Move β to $\operatorname{Re} \beta=1-\varepsilon$. (2b) Move s back to $\frac{1}{2}+i t$. Each of

$$
\xi\left(s-\frac{1}{2}+i a+\beta\right) \xi\left(s-\frac{1}{2}-i a+\beta\right)
$$

catches a pole of ξ at 1 , that is, at $s=-\beta+\frac{1}{2} \pm i a$, with residues multiples of

$$
E_{-\beta+\alpha} \quad \text { and } \quad E_{-\beta+1-\alpha}
$$

(3) Now move β to $\beta=\frac{1}{2}+i b$.
\Longrightarrow Spectral expansion with four singular terms: using functional equation of E_{s}

$$
\begin{gathered}
E_{\alpha} \cdot E_{\beta}=E_{\alpha+\beta}+c_{\alpha} E_{(1-\alpha)+\beta}+c_{\beta} E_{\alpha+1-\beta}+c_{\alpha} c_{\beta} E_{1-\alpha+1-\beta} \\
\quad+\frac{1}{2 \pi} \int \frac{\Lambda\left(\frac{1}{2}+i t, E_{\alpha} \otimes E_{\beta}\right)}{\xi(1+2 i t)} \cdot E_{\frac{1}{2}+i t} \\
+\sum_{F} \frac{\Lambda\left(\frac{1}{2}+i a, \bar{F} \otimes E_{\beta}\right)}{\langle F, F\rangle} \cdot F \quad\left(\alpha=\frac{1}{2}+i t \text { and } \beta=\frac{1}{2}+i b\right)
\end{gathered}
$$

Check that this procedure is correct, hence necessary, by repeating earlier computation but with $\alpha=\frac{1}{2}+i a$ and $\beta=\frac{1}{2}+i b$.

Similar, more complicated continuation necessary with Poincaré series $\mathfrak{P}^{\alpha, \lambda}$.

This is how pole of $E_{1+\alpha}$ at $\alpha=0$ in spectral expansion of $\mathfrak{P}^{\alpha, \lambda}$ is cancelled by continuous part.

Relevant fragment E_{1}^{*} of Eisenstein series $E_{1+\alpha}$ in $\mathfrak{P}^{0, \lambda}$ is zeroorder term in Laurent expansion near $\alpha=0$. Not eigenfunction for Casimir Ω, but satisfies

$$
\Omega E_{1}^{*}=(\text { non-zero constant }) \quad \text { and } \quad \Omega^{2} E_{1}^{*}=0
$$

\Longrightarrow leading constant in main term of asymptotic is essentially

$$
\int E_{1}^{*} \cdot|f|^{2}
$$

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]

Naive approach to $G L_{3}$

Imagining that the actual spectral relation for $G L_{3} \times G L_{2}$ produces an asymptotic-with-error for classical moments... and proceeding naively thereafter... what should we get?

Bonus: introduces conductor dropping.
For f on $G L_{3}, F$ on $G L_{2}, t \in \mathbb{R}$, analytic conductor $Q_{t, F, f}$ is of degree 6 in t, with archimedean data μ_{F} of F, archimedean data $\nu_{1}, \nu_{2}, \nu_{3}$ of f with $\sum_{j} \nu_{j}=0$

$$
\begin{gathered}
Q_{t, F, f}=\prod_{j=1,2,3}\left(1+\left|t+\mu_{F}+\nu_{j}\right|\right)\left(1+\left|t-\mu_{F}+\nu_{j}\right|\right) \\
\sim\left(\left(1+\left|t+\mu_{F}\right|\right) \cdot\left(1+\left|t-\mu_{F}\right|\right)\right)^{3} \\
\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll \begin{cases}Q_{t, F, f}^{1 / 4+\varepsilon} & \text { (convexity) } \\
Q_{t, F, f}^{\varepsilon} & \text { (Lindelolf) } f \text { fixed) }\end{cases}
\end{gathered}
$$

Two extremes: conductor dropping where one of $\left|t \pm \mu_{F}\right|$ small. Away from conductor dropping is where t, μ_{F}, and both $\left|t \pm \mu_{F}\right|$ all large.

Away from... : $Q \leq T$ implies $|t| \ll T^{1 / 6},\left|\mu_{F}\right| \ll T^{1 / 6}$, and with Lindelöf and Weyl
$($ sum of such L 's with $Q \leq T) \ll T^{1 / 6} \cdot\left(T^{1 / 6}\right)^{2} \cdot T^{\varepsilon}=T^{\frac{1}{2}+\varepsilon}$
Near... : Take $\left|t-\mu_{F}\right|$ small. $Q \leq T$ implies $\left|\mu_{F}\right| \ll T^{1 / 3}$ with t nearby. With Lindelöf and Weyl
(sum of such L's with $Q \leq T) \ll 1 \cdot\left(T^{1 / 3}\right)^{2} \cdot T^{\varepsilon}=T^{\frac{2}{3}+\varepsilon}$

Under naive optimism, might be reasonable to prove

$$
\mathcal{F}_{t, F: Q \leq T}\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}=T^{\frac{2}{3}} P(\log T)+O\left(T^{\frac{2}{3}-\text { small }}\right)
$$

Then, under various hypotheses (fixed F or fixed t),

$$
\left.\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll Q^{\frac{1}{3}-\text { small }} \quad \text { (with } Q=Q_{t, F, f}\right)
$$

But this is worse than

$$
\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll Q^{\frac{1}{4}+\varepsilon} \quad \text { (convexity) }
$$

Aggressive optimism might suggest an error term comparable to away-from-conductor-dropping:

$$
\mathcal{E}_{t, F: Q \leq T}\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}=T^{\frac{2}{3}} P(\log T)+\ldots+O\left(T^{\frac{1}{2}-\text { small }}\right)
$$

If so, then, under various hypotheses, subconvex bound

$$
\left.\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll Q^{\frac{1}{4}-\text { small }} \quad \text { (with } Q=Q_{t, F, f}\right)
$$

Too much to hope for?
Typical: conductor-dropping gives dominant portion of moment, masking natural sub-families.

For either fixed F or fixed t, (f fixed throughout) conductordropping cannot occur.

Conductor-dropping occurs in full(er) spectral family, sabotaging naive treatment of simpler sub-families.

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]

Overcome hurdle of conductor-dropping?

Integral moments can discount conductor-dropping regime, and/or enhance away-from-dropping regime.

Futile example: By same heuristic, naive modification of classical moments should satisfy

$$
\mathcal{F}_{t, F: Q \leq T} Q^{a} \cdot\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}=T^{a+\frac{2}{3}} P(\log T)+O\left(T^{a+\frac{2}{3}-\text { small }}\right)
$$

On subfamilies yields same non-subconvex bound

$$
\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll Q^{\frac{1}{3}-\text { small }}
$$

Same non-subconvex bound follows from asymptotics-with-error for integral moments

$$
\mathcal{F}_{t, F} Q^{-w} \cdot\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}
$$

Better example: optimistically, by same heuristic, might prove
$\mathcal{F}_{t, F: Q \leq T} \frac{1}{1+|t|} \cdot\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}=T^{\frac{1}{3}} P(\log T)+O\left(T^{\frac{1}{3}-\text { small }}\right)$
and on subfamilies

$$
\frac{1}{1+|t|} \cdot\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2} \ll Q^{\frac{1}{3}-\text { small }}
$$

For fixed F, have $Q \sim t^{1 / 6}$, and obtain subconvex

$$
\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll|t|^{\frac{1}{2}} \cdot Q^{\frac{1}{6}-\text { small }}=Q^{\frac{1}{12}+\frac{1}{6}-\text { small }}=Q^{\frac{1}{4}-\text { small }}
$$

Can our Poincaré series be made to do anything like this?

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]
The weight function $\eta(t, F)$ in integral moment

$$
\mathcal{F}_{t, F: Q \leq T} \eta(t, F) \cdot\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}
$$

must be allowed to be function not only of

$$
Q \sim\left(\left(1+\left|t-\mu_{F}\right|\right) \cdot\left(1+\left|t+\mu_{F}\right|\right)\right)^{3}
$$

but more general symmetric function of $\left|t+\mu_{F}\right|$ and $\left|t-\mu_{F}\right|$.
Plausible example: by same heuristic, might prove

$$
\psi_{t, F: Q \leq T} \frac{\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}}{1+\left|t-\mu_{F}\right|+\left|t+\mu_{F}\right|}=T^{\frac{1}{3}} P(\log T)+O\left(T^{\frac{1}{3}-\text { small }}\right)
$$

and on subfamilies

$$
\frac{\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}}{1+\left|t-\mu_{F}\right|+\left|t+\mu_{F}\right|} \ll Q^{\frac{1}{3}-\text { small }}
$$

For fixed F, have $Q \sim t^{1 / 6},\left|t \pm \mu_{F}\right| \sim t$, and obtain subconvex

$$
\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right| \ll Q^{\frac{1}{4}-\text { small }} \quad(t \text {-aspect })
$$

Garrett: Identities, moments [Edinburgh, 07 Aug 2008]

More possibilities

In fact, there is no mandate to think only in terms of averages with bounds described in terms of the analytic conductor Q.

True, the trivial/convexity bound naturally arises in that form, and there is interest in surpassing that bound on its own terms.

Nevertheless, we are not constrained to describe all phenomena in those terms.

For example, in place of $G L_{3} \times G L_{2}$ moments

$$
\mathscr{F}_{t, F: Q \leq T}\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}
$$

which include conductor-dropping complications, we could consider moments of a different shape,

$$
\&_{|t| \leq T, F:\left|\mu_{F}\right| \leq T}\left|L\left(\frac{1}{2}+i t, f \otimes F\right)\right|^{2}
$$

An asymptotic with power-saving in an error term would break convexity.

This method would break convexity for $G L_{n} \times G L_{n-1}$.
All such nearly-classical moments are potential targets for integral moments produced by spectral identities.

At this point, due to the difficulty of understanding the asymptotic phenomena produced in spectral identities for moments, it is not clear which of these targets can be hit.

