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For Γ = SL2(Z), the spherical Eisenstein series

Es(z) =
∑
c,d

ys

|cz + d|2s
(c, d relatively prime, z ∈ H)

takes meaningful values at CM-points, points z ∈ H such that k = Q(z) is quadratic over Q. Especially,
when o = Z[z] is the ring of algebraic integers in the quadratic field, and when o has class number one,

Es(z) =
ζk(s)
ζQ(2s)

When o has larger class number, linear combinations of CM-point values corresponding to the ideal classes
yield the corresponding ratio.

This example was understood in the 19th century, and is the simplest in well-known families of special values
and periods of Eisenstein series.

The next case in order of increasing complexity is that of integrals of the same Es along hyperbolic geodesics
in H that have compact images in Γ\H. These were considered by Hecke and Maass. In fact, from a
contemporary viewpoint the CM-point value example and the hyperbolic geodesic periods example are
identical, as is made clear in the first section,

The first three examples are instances of periods of Eisenstein series on orthogonal groups O(n + 1) with
rational rank 1, along orthogonal groups O(n) with compact arithmetic quotients.

Another family extending the small examples is periods of degenerate Eisenstein series along anisotropic
tori.

Periods of Eisenstein series are interesting prototypes for periods of cuspforms, often unwinding more
completely than the corresponding integrals for cuspforms. In that context, periods attached to degenerate
Eisenstein series are inevitably misleading to some degree. Nevertheless, there is a correct indication that
sharp estimates on periods are often connected to Lindelöf hypotheses and other very serious issues.

See the bibliography for background and some pointers to contemporary literature.

1. `× � GL2(k): CM-point values, hyperbolic geodesic periods

This example is essentially due to Hecke and Maass.

Let ` be a quadratic field extension of a global field k of characteristic not 2. Let G = GL2(k), and H ⊂ G
a copy of `× inside G, by specifying the isomorphism in

`× ⊂ Autk(`) ≈ Autk(k2) = GL2(k)

1



Paul Garrett: Standard compact periods for Eisenstein series (September 7, 2009)

Let P be the standard parabolic of upper-triangular elements in G, and

Es(g) =
∑

γ∈Pk\Gk

ϕ(γ · g)

where ϕ is the everywhere-locallly-spherical vector

ϕ(
(
a ∗

d

)
· k) =

∣∣∣a
d

∣∣∣s (for k in maximal compact in GA)

With Z the center of G, we want to evaluate

period of Es along H =
∫
ZAHk\HA

Es

The subgroup Pk is the isotropy group of a k-line k · e for a fixed non-zero e ∈ k2 ≈ `. The group Gk is
transitive on these k-lines, so Pk\Gk ≈ {k − lines} The critical-but-trivial point is that the action of `× on
` is transitive on non-zero elements. Thus, Pk · `× = GL2(k). That is, the period integral unwinds∫

ZAHk\HA
Es =

∫
ZA(Pk∩Hk)\HA

ϕ =
∫
ZA\HA

ϕ

since H ∩ P = Z. Since ϕ =
⊗

v ϕv factors over primes, the unwound period integral factors over primes∫
ZAHk\HA

Es =
∫
ZAHA

ϕ =
∏
v

∫
Zv\Hv

ϕv

The cleanest way to evaluate the local integrals is to use an integral presentation of the local spherical vector
ϕv akin to better-known archimedean devices involving the Gamma function. That is, present ϕv in terms
of Iwasawa-Tate local zeta integrals

ϕv(g) =
1

ζk,v(2s)
· | det g|sv ·

∫
k×v

|t|2sv · Φv(t · e · g) dt (with ζk,v(2s) =
∫
k×v
|t|2sv Φv(t e) dt)

for Φv a Kv-invariant Schwartz function on k2
v ≈ `v. The leading local zeta factor gives the normalization

ϕv(1) = 1 at g = 1. Then∫
Zv\Hv

ϕv =
1

ζk,v(2s)
·
∫
k×v \`×v

|deth|sv ·
∫
k×v

|t|2sv · Φv(t · e · h) dt dh

Since
|deth|kv

= |N`v/kv
h|kv

= |h|`v
the local factor of the period becomes

1
ζk,v(2s)

·
∫
k×v \`×v

|h|s`v ·
∫
k×v

|t|s`v · Φv(t · e · h) dt dh =
1

ζk,v(2s)
·
∫
k×v \`×v

∫
k×v

|t · h|s`v · Φv(t · e · h) dt dh

=
1

ζk,v(2s)
·
∫
`×v

|h|s`v · Φv(e · h) dt dh =
1

ζk,v(2s)
· ζ`,v(s)

Thus, the product of all the local factors of the period is∫
ZAHk\HA

Es =
ξ`(s)
ξk(2s)

(with Es on GL2(k))
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with ξ including the gamma factors.

[1.0.1] Remark: In this normalization, the unitary line is Re(s) = 1
2 , and∫

ZAHk\HA
E 1

2+it =
ξ`( 1

2 + it)
ξk(1 + 2it)

2. B× � GL2(`)

This is a Galois-twisted version of the diagonal imbedding GL2 ⊂ GL2 × GL2 from the classical Rankin-
Selberg situation.

Let B be a quaternion division algebra over a number field k. By Fujisaki’s lemma, k×AB
×\B×A is compact.

Let ` be a quadratic extension of k splitting B. Define a k-group by G = GL2(`), and let H be the image of
B× inside G by choice of an isomorphism

B× ⊂ Aut`(B) ≈ Aut`(`2) = GL2(`)

Let P be the standard parabolic in G, and

Es(g) =
∑

γ∈P`\G`

ϕ(γ · g)

where ϕ is the everywhere-locally-spherical vector

ϕ(
(
a ∗

d

)
· k) =

∣∣∣a
d

∣∣∣s
`

(for k in maximal compact in GA)

The norm is the product-formula normalization of the norm for `. With Z the center of G, we want to
evaluate

period of Es along H =
∫
ZAHk\HA

Es

The subgroup Pk is the isotropy group of an `-line ` · e for a fixed non-zero e ∈ `2 ≈ B. The group Gk is
transitive on these `-lines, so Pk\Gk ≈ {` − lines in B} The action of B× on B is transitive on non-zero
elements. Thus, Pk ·B× = GL2(`). That is, the period integral unwinds partly∫

ZAHk\HA
Es =

∫
ZA(Pk∩Hk)\HA

ϕ =
∫
k×
A
`×\B×

A

ϕ

since B ∩ P ≈ `×. Since ` is not central in B, this copy of ` is not the central copy in GL2(`).

We do have the factorization ϕ =
⊗

v ϕv over primes, but the integral itself needs further unwinding.

Further unwinding of the integral, as well as evaluation of the local integrals, is facilitated by an integral
presentation of the spherical vectors ϕv, in terms of Iwasawa-Tate/Tamagawa/Godement-Jacquet local zeta
integrals

ϕv(g) =
1

ζ`,v(2s)
· | det g|s`,v ·

∫
`×v

|t|2s`,v · Φv(t · e · g) dt (with ζ`,v(2s) =
∫
`×v
|t|2s`,v Φv(t e) dt)

for Φv a Kv-invariant Schwartz function on `2v ≈ Bv. The leading local zeta factor gives the normalization
ϕv(1) = 1 at g = 1. With Φ =

⊗
Φv, the period integral is∫

k×
A
`×\B×

A

ϕ =
1

ξ`(2s)

∫
k×
A
`×\B×

A

|deth|s` ·
∫
`×
A

|t|2s` · Φ(t · e · h) dt dh
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=
1

ξ`(2s)

∫
k×
A
`×
A
\B×
A

(∫
kA`×\`×A

1
)
|deth|s` ·

∫
`×
A

|t|2s` · Φ(t · e · h) dt dh

because the inner integral already produces a left `×A-invariant function of h ∈ B×A. What’s left of the integral
does now factor into local contributions:

vol (k×A`
×\`×A)

ξ`(2s)

∫
ZA`

×
A
\B×
A

|deth|s` ·
∫
`×
A

|t|2s` · Φ(t · e · h) dt dh =
vol (k×A`

×\`×A)
ξ`(2s)

∫
B×
A

|deth|s` · Φ(t · e · h) dh

Since
|deth|` = |N redh|` = |N redh|2k (for h ∈ B, central simple over k)

the period integral is∫
ZAHk\HA

Es =
vol (k×A`

×\`×A)
ξ`(2s)

· ξB(2s) (with Es on GL2(`))

The zeta function of the quaternion algebra B over k is expressible in terms of that of k, at argument 2s as
in the above,

ξB(2s) =
ξk(2s) · ξk(2s− 1)∏
v rfd ζk,v(2s− 1)

(product over places v ramified for B)

Also, the volume is

vol (k×A`
×\`×A) =

Ress=1ξ`(s)
Ress=1ξk(s)

= Λk(1, χ`/k) (with χ`/k the quadratic character of `/k)

Thus, the period is ∫
ZAHk\HA

Es =
Λk(1, χ`/k) ξk(2s) ξk(2s− 1)
ξ`(2s)

∏
v rfd ζk,v(2s− 1)

=
Λk(1, χ`/k) ξk(2s) ξk(2s− 1)

ξk(2s) Λk(2s, χ`/k)
∏
v rfd ζk,v(2s− 1)

=
Λk(1, χ`/k) ξk(2s− 1)

Λk(2s, χ`/k) ·
∏
v rfd ζk,v(2s− 1)

(Es on GL2(`))

[2.0.1] Remark: In this normalization, the unitary line is Re(s) = 1
2 , and∫

ZAHk\HA
E 1

2+it =
Λk(1, χ`/k) ξk(2it)

Λk(1 + 2it, χ`/k) ·
∏
v rfd ζk,v(2it)

(E 1
2+it on GL2(`))

3. (B 
k `)\
� GSp∗(1, 1)

Let B be a quaternion division algebra over a number field k, not split by a quadratic extension ` of k. Let
` = k(ω), where tr `/k(ω) = 0. Let θ be the main involution of B, and extend it `-linearly to C = B ⊗k `.
Define a B-valued quaternion-hermitian form on the two-dimensional B-vectorspace C by

〈x, y〉 = (1⊗ tr `/k)
(
ω · yθ · x

)
∈ B (for x, y ∈ C)

Choice of a right B-basis for C gives an isomorphism

GL2(B) ≈ AutB(C)
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The similitude group G = GSp∗(1, 1) of the form 〈, 〉 is

G = {g ∈ GL2(B) : 〈gx, gy〉 = ν(g) for ν(g) ∈ k×} ∼ GSp∗(1, 1)

The subgroup
H = {h ∈ C× : hθh ∈ k×} (as opposed to lying in `×)

of C× imbeds in G, since for h ∈ H

〈hx, hy〉 = (1⊗ tr `/k)
(
ω · (hy)θ · hx

)
= (1⊗ tr `/k)

(
ω · yθ · hθh · x

)
= (hθh)(1⊗ tr `/k)

(
ω · yθ · hθh · x

)
since the trace is k-linear and hθh is in k, not merely in `.

Let P be a proper k-parabolic in G, characterized as the stabilizer of a fixed isotropic B-line B · ein C. The
simplest choice is e = 1, so B = B · 1. Define an Eisenstein series

Es(g) =
∑

γ∈P`\G`

ϕ(γ · g)

where ϕ is an everywhere-spherical vector presented by an integral,

ϕ(g) =
1

ξB(2s)
|det g|s

∫
B×
A

|det t|2s · Φ(t · e · g) dt

where, if necessary, det denotes a suitable reduced norm. The leading factor arranges that ϕ(1) = 1. With
Z the center of G, we want to evaluate

period of Es along H =
∫
ZAHk\HA

Es

To begin unwinding the period integral, Hk must be transitive on isotropic B-lines. Indeed, for 0 6= x ∈ C
such that 〈x, x〉 = 0, then xθx ∈ k×, so x ∈ H. Thus, x · x−1 = 1, proving the transitivity. Thus,∫

ZAHk\HA
Es =

∫
ZA(Pk∩Hk)\HA

ϕ =
∫
ZAB×\C\

A

ϕ (with C\ = {h ∈ C : hθh ∈ k×})

The integral presentation of ϕ gives

1
ξB(2s)

∫
ZAB×\C\

A

|deth|s
∫
B×
A

|det t|2s · Φ(t · e · h) dt dh

=
1

ξB(2s)

∫
ZAB

×
A
\C\
A

(∫
ZAB×\B×A

1
)
|deth|s

∫
B×
A

|det t|2s · Φ(t · e · h) dt dh

=
vol (ZAB×\B×A)

ξB(2s)

∫
C\
A

|deth|s Φ(e · h) dh = =
vol (ZAB×\B×A) · ξC\(s)

ξB(2s)

The zeta function of C\ is only slightly more complicated than the zeta function of a quaternion algebra,
and, up to a finite product from ramified primes,∫

ZAHk\HA
Es = vol (ZAB×\B×A) ·

(
finite

)
· ξk(2s) ξk(2s− 2) ξ`(2s− 1)

ξk(2s)ξk(2s− 1)

Cancelling where possible,∫
ZAHk\HA

Es = vol (ZAB×\B×A) ·
(
finite

)
· ξk(2s− 2) · Λk(2s− 1, χ`/k)
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[3.0.1] Remark: In this normalization, the unitary line is Re(s) = 3
2 , and the period is∫

ZAHk\HA
E 3

2+it =
(
const

)
·
(
finite

)
· ξk(1 + 2it) · Λk(2 + 2it, χ`/k)

4. Degenerate Eisenstein series along anisotropic tori

Let [` : k] = n and let H be a copy of `× in G = GLn(k). Let P be the standard (n− 1, 1) parabolic in G,
namely, fixing the line spanned by the nth standard basis vector en under right matrix multiplication. Let
χs be the character on PA defined by

χs

(
A ∗
0 d

)
=
∣∣∣detA
dn−1

∣∣∣s (where A ∈ GLn−1 and d ∈ GL1)

Define ϕs by
ϕs(p · k) = χs(p) (with k in maximal compact, p ∈ PA)

and define an Eisenstein series by
Es(g) =

∑
γ∈Pk\Gk

ϕs(γ · g)

We will compute the period of Es along the copy of `× in G. With Z the center of G, this is∫
ZA`×\`×A

Es =
∫
ZA\`×A

ϕs

by unwinding, since
Pk · `× = Gk

The function ϕs factors over primes, as does the unwound integral, giving vth local factor∫
k×v \`×v

ϕs,v(h) dh

To evaluate this, again use an integral representation of ϕs,v as

ϕs,v(g) =
1

ζk,v(ns)
|det g|sv

∫
k×v

|t|ns Φ(t · en · g) dt

where Φ is a suitable Schwartz function. Substituting this in the local integral, the local integral unwinds to∫
ZA\`×A

ϕs =
1

ζk,v(ns)

∫
`×
A

|deth|sv Φ(en · g) dh =
ζ`(s)

ζk,v(ns)

Thus, apart from modifications at finitely-many places, the period of this degenerate Eisenstein series over
a maximal anisotropic torus attached to the field extension ` of k is∫

ZA`×\`×A
Es =

ξ`(s)
ξk(ns)
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5. Appendix: zeta functions of quaternion algebras

Let B be a quaternion algebra over a number field k. For a Schwartz function Φ =
⊗

v Φv on BA, at almost
all places v, we claim that ∫

B×v

|det t|s Φv(t) dt = ζkv
(s) · ζkv

(s− 1)

Indeed, we can suppose that Bv is split, and use an Iwasawa decomposition NMK with

n =
(

1 x
0 1

)
and m =

(
a 0
0 d

)
In these coordinates, the Haar measure is

d(mnk) = dmdndk

Then ∫
B×v

|det t|s Φv(t) dt =
∫
Mv·Nv

|det t|s Φv(t) dt =
∫
Mv·Nv

|ad|s Φv

(
a ax
0 d

)
dmdn

Almost everywhere, Φv is the characteristic function of the local integers. Replace x by x/a and integrate
in x, leaving ∫

Mv

|a|s−1 |d|s Φv

(
a a
0 d

)
dm

This is a product of two Iwasawa-Tate integrals, namely

ζkv (s− 1) ζkv (s)

For ` a quadratic extension of k not splitting B, let C = B ⊗k ` and

C\ = {h ∈ C : hθh ∈ k×}

At a place v of k splitting in `, the vth local zeta integral for ξC\(s) becomes∫
Φv

(
a ax
0 t/a

)
Φv

(
a′ a′x′

0 t/a′

)
|t|2s

where Φv is the characteristic function of the integral-coordinate matrices. Replace x by x/a and x′ by x′/a′

and integrate x, x′ away to obtain∫
Φv

(
a a
0 t/a

)
Φv

(
a′ a′

0 t/a′

)
1

|a| |a′|
|t|2s

Thus, a and a′ are integral, and t/a and t/a′ are integral. Taking an outer integral over t, this becomes

∑
j≥0

(q−j)2s
1− qj+1

1− q
1− qj+1

1− q
=

1
(1− q)2

∑
j≥0

[
(q−2s)j − 2q · (q1−2s)j + q2 · (q2−2s)j

]

=
1

(1− q)2
[ 1

1− q−2s
− 2q

1− q1−2s
+

q2

1− q2−2s

]
=

1 + q1−2s

(1− q−2s) (1− q1−2s) (1− q2−2s)

=
1− q2−4s

(1− q−2s) (1− q1−2s)2 (1− q2−2s)
(at split place)
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At a place v of k inert in `, the vth local zeta integral for ξC\(s) becomes∫
Φv

(
a ax
0 t/a

)
|t|s` =

∫
Φv

(
a ax
0 t/a

)
|t|2s

since t is integrated just in k×v . Replace x by x/a and integrate in x to obtain∫
Φv

(
a a
0 t/a

)
1
|a|`
|t|2s

This becomes∑
j≥0

(q−j)2s
1− (q2)j+1

1− q2
=

1
1− q2

[ 1
1− q−2s

− q2

1− q2−2s

]
=

1
(1− q−2s) (1− q2−2s)

(at inert place)

To compare the inert place computation with that for the split place, insert corresponding factors, giving

1− q2−4s

(1− q−2s) (1− q1−2s) (1 + q2−2s) (1− q2−2s)
(at inert place)

The sign is χ`/k. Thus, up to finitely-many factors corresponding to ramification,

ξC\(s) =
ξk(2s) ξk(2s− 2) ξk(2s− 1) Λk(2s− 1, χ`/k)

ξk(4s− 2)
=

ξk(2s) ξk(2s− 2) ξ`(2s− 1)
ξk(4s− 2)
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