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Many computations in the harmonic analysis of automorphic forms, especially concerning Eisenstein series,
or, even worse, trace formulas, expose one to the danger that a naive formal approach leads to incorrect
manipulation of expressions whose convergence is fragile or even volatile. At the same time it is often
clear that some improved formalism can be correct, and may be more intelligible than a classical treatment.
Indeed, the extreme technicality of strictly classical versions of many of these computations gives considerable
impetus to consideration of alternatives.

In [Casselman 1993] it is observed that an approach reminiscent of Hadamard’s partie finie
[Hadamard 1932] is helpful in this regard. Casselman notes that [Zagier 1982] raises similar issues.

In the spirit of [Gelfand-Shilov 1958], in effect following [M. Riesz 1938/40] and [M. Riesz 1949], one can
present partie finie functionals as being obtained by meromorphic continuation with respect to a natural
auxiliary parameter, rather than as results of an ad hoc classical construction as in [Hadamard 1932].
Nevertheless, one may view meromorphic continuation as ad hoc itself.

Thus, we present an elementary uniqueness result (from [Casselman 1993]) for extensions of functionals
satisfying differential equations or similar conditions. Some version of this uniqueness result underlies the
discussion of ‘regularization’ in [Gelfand-Shilov 1958] although it is not made explicit.

As in [Casselman 1993], we set up a formalism sufficient to prove that the volume of SL(2,Z)\SL(2,R)
is determined by the constant term of a spherical Eisenstein series, and prove the simplest case of the
Maaß-Selberg formula for the inner product of truncated Eisenstein series.

1. Hadamard’s example

In [Hadamard 1932], Hadamard considered the behavior of functionals of the form∫ 1

ε

f(x)

x3/2
dx

as ε → 0+. If f is continuous and f(0) 6= 0, then this expression blows up as ε → 0+. Nevertheless,
Hadamard attached meaning to the integral as follows.

Before letting ε→ 0+, integrate by parts:∫ 1

ε

f(x)

x3/2
dx = [

−2f(x)

x1/2
]1ε + 2

∫ 1

ε

f ′(x)

x1/2
dx

= −2f(1) +
−2f(ε)

ε1/2
+ 2

∫ 1

ε

f ′(x)

x1/2
dx = −2f(1) +

(−2)(f(ε)− f(0))

ε1/2
+
−2f(0)

ε1/2
+ 2

∫ 1

ε

f ′(x)

x1/2
dx

Of the four summands, only −2f(0)/ε1/2 blows up as ε → 0+. In fact, assuming that f is at least once
continuously differentiable, the term (−2)(f(ε)− f(0))/ε1/2 goes to 0.
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Hadamard’s surprising insight was to simply drop the term −2f(0)/ε1/2 entirely, calling what remained the
partie finie (‘finite part’) of the integral, denoted

p.f.

∫ 1

0

f(x)

x3/2
dx = −2f(1) + 2

∫ 1

ε

f ′(x)

x1/2
dx

This should rightfully appear to be a scandalous lapse, not obviously justifiable or purposeful. (Nevertheless,
Hadamard developed this idea sufficiently to apply to hyperbolic partial differential equations.)

A few years later [M.Riesz 1938/40] showed that such partie finie functionals are the meromorphic
continuations of convergent integrals, as developed later at length in [Gelfand-Shilov 1958]. In the example
above, consider

us(f) =

∫ 1

0

f(x)xs dx

for f at least once continuously differentiable, and for Re(s) > −1. Integration by parts gives

us(f) = [
f(x)xs+1

s+ 1
]10 −

1

s+ 1

∫ 1

0

f ′(x)xs+1 dx =
f(1)

s+ 1
− 1

s+ 1
us+1(f ′)

Iteration of this gives a meromorphic continuation of us to C with −1,−2,−3, . . . removed. In particular,
there is no pole at s = −3/2, and the latter equation gives

u−3/2(f) =
f(1)

(−3/2) + 1
− 1

(−3/2) + 1

∫ 1

0

f ′(x)x(−3/2)+1 dx = −2f(1) + 2

∫ 1

0

f ′(x)

x1/2
dx

It is striking that meromorphic continuation recovers Hadamard’s formula. While on one hand this makes
Hadamard’s partie finie less suspect, on the other hand it simultaneously illustrates that the extensions of
functionals obtained by meromorphic continuation may have counter-intuitive aspects.

It is important to realize that there is the additional technical issue of understanding various notions of
holomorphy or meromorphy of distribution-valued functions, but this is not a serious obstacle.

2. Schwartz functions

A test function on a smooth manifold is is simply a compactly-supported (complex-valued) smooth function.
The set C∞c (X) of all test functions on a smooth manifold X (without boundary) is a diffeomorphism
invariant of X. In general, spaces of test functions are not Fréchetunless X is compact, but in general are
LF-spaces (strict colimits of Fréchetspaces). Let C∞c (X)∗ be the dual of C∞c (X), that is, the distributions
on X.

By contrast, Schwartz spaces of functions on non-compact smooth manifolds M (without boundary) are not
diffeomorphism invariants. The definition depends upon a choice of ‘compactification’, that is, depends upon
an open imbedding

i : M → M̃

of M into a compact manifold M̃ (of the same dimension as M). In the sequel, we will simply take M to be
an open subset of M̃ . Then the space S (M) of Schwartz functions on M (with dependence upon i implicit)
is a closed subspace of C∞c (M̃):

S (M) = closure in C∞c (M̃) ofC∞c (M)

Note that C∞c (M) lies inside C∞c (M̃), but need not inherit its own LF topology from the topology of C∞c (M̃),
since M̃ is compact but M need not be. On the other hand, the compactness of M̃ implies that C∞c (M̃) is
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a Fréchetspace, from which it follows that the closed subspace S (M) is a Fréchetspace, not merely an LF
space.

Recall that a distribution u is said to vanish on an open set U if uf = 0 for all test functions with support
inside U . The support of u is the complement (in the compact manifold M̃) of the union of all open sets
on which u vanishes. Recall that a distribution vanishes on the complement of its support, which is seen as
follows. Since there exists a locally finite cover {ψi} subordinate to the collection of open sets U on which u
vanishes. Then a test function f with support in the union of the sets U is expressible as f =

∑
i ψif , and

this sum is finite. Since ψif has support in some U on which u vanishes, uf =
∑

i uψif = 0.

Also, for an open subset M of a compact smooth manifold M̃ , the Schwartz space S (M) is expressible as

S (M) = {f ∈ C∞c (M̃) : uf = 0 for all distributions u ∈ C∞c (M̃)∗ with sptu ⊂ M̃ −M}

Indeed, the set of distributions with support in M̃ −M is simply the ‘orthogonal complement’ C∞c (M)⊥ of
C∞c (M) in C∞c (M̃). Since the latter is locally convex, by the Hahn-Banach theorem

closure of subspace X = (X⊥)⊥

Thus, one might take the viewpoint that Schwartz functions vanish to infinite order at the boundary of M
in its compactification M̃ .

Either characterization of Schwartz spaces makes it clear that for M ′ another open subset of M̃ with M ′ ⊂M
there is a natural inclusion

S (M ′) ⊂ S (M)

with S (M ′) a closed subspace of S (M). Further, for M ′′ ⊂ M ′ a yet smaller open subset, the obvious
triangle commutes:

S (M ′) → S (M)
↑ ↗

S (M ′′)

And note that for any test function F on M̃ , for f ∈ S (M), f ·F is in S (M). Indeed, with fi in C∞c (M) so
that fi → f in the Fréchettopology on C∞c (M̃), F · fi → F · f , because multiplication by test functions is a
continuous map from C∞c (M̃) to itself. Certainly the supports of all the functions F · fi are inside M , since
multiplication can only shrink supports, so the limit F · f is in the closure S (M) of C∞c (M) in C∞c (M̃).

Following L. Schwartz, we may define the Schwartz functions S (Rn) on Rn to be test functions on a smooth
one-point compactification Rn ∪ {∞} ≈ Sn (as an n-sphere) which vanish to infinite order at the point
at infinity, that is, which are annihilated by all distributions supported on {∞}. This depends upon the
imbedding (or, equivalently, upon the metric): the (stereographic) imbedding i : Rn → Sn appropriate to
this example is

i(x) = 2(|x|2 + 1)−1 · x⊕ (|x|2 − 1)(|x|2 − 1)−1 ∈ Rn ⊕ R

Define Fréchetspaces S (0,∞), and restrictions

S [0,∞) = Res[0,∞) S (−∞,∞) = Res[0,∞) S (S1) = Res[0,∞) C
∞
c (S1)

S (0,∞] = Res(0,∞] S (−∞,∞)

S [0,∞] = C∞c (S1) / S (−∞, 0)

[2.0.1] Proposition: For any T1 < T2,

S (0,∞) = S (0, T2) + S (T1,∞)
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S [0,∞] = S [0, T2) + S (T1,∞]

S (T1, T2) = S (0, T2) ∩S (T1,∞)

S (T1, T2) = S [0, T2) ∩S (T1,∞]

The inversion map

inv : x→ 1

x

stabilizes S (0,∞) and S [0,∞] and gives a natural isomorphism

S [0,∞)→ S (0,∞]

simply by sending x→ f(x) to x→ f(1/x).

Define a space of locally integrable functions of moderate growth by

Mod(0,∞) = {f ∈ L1
loc(0,∞) : sup

x>0
(x+

1

x
)−N |f(x)| < +∞ for some N}

Any u ∈ Mod(0,∞) gives a continuous functional on S (0,∞) by integration, with positive-dilation-invariant
measure dx/x: for f ∈ S (0,∞),

u(f) =

∫ ∞
0

u(x) f(x)
dx

x

Also, let
C∞mod(0,∞) = C∞(0,∞) ∩Mod(0,∞)

be the smooth functions on (0,∞) of moderate growth at 0 and infinity. The indicated integral formula
imbeds Mod(0,∞) (and, hence, S (0,∞) and C∞mod(0,∞)) in the dual:

S (0,∞) ⊂ C∞mod(0,∞) ⊂ Mod(0,∞) ⊂ S (0,∞)∗

The inversion map x→ 1/x acts on the duals by

inv(u)(f) = u(inv f)

for f ∈ S (0,∞). Since inv preserves the measure dx/x, this action of inv on elements in the dual, when
restricted to Mod(0,∞), agrees with the natural action on functions.

3. A formal lemma on extensions

[3.0.1] Proposition: Let A, B, C be modules over a (not necessarily commutative) C-algebra R. Let

0→ A

i

→ B

s

→ C → 0

be a short exact sequence, and let T be an R-endomorphism of B which stabilizes A (as subobject of B), so
induces an R-endomorphism on C ≈ B/A by

T (b+A) = Tb+A

Then we have a natural exact sequence

0→ kerA T → kerB T → kerC T → A/TA→ B/TB → C/TC → 0
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Proof: This is the long exact homology sequence attached to the short exact sequence

0 0 0
↓ ↓ ↓

0→ A
i
−→ B

s
−→ C → 0

T ↓ T ↓ T ↓
0→ A

i
−→ B

s
−→ C → 0

↓ ↓ ↓
0 0 0

of the complexes

Ã : 0→ A
T
→A→ 0, B̃ : 0→ B

T
→B → 0, C̃ : 0→ C

T
→C → 0

That is, Ho(Ã) = kerA T , H1(Ã) = A/TA, and similarly for B and C. ///

[3.0.2] Corollary: In the situation of the previous proposition, if T gives a bijection of A to itself, then the
natural map

kerB T → kerC T

is an isomorphism. ///

4. Extension of integration by parts

Let
〈, 〉 : A× S → C

be a complex bilinear pairing of C[D]-modules. Assume that

〈Du, f〉 = −〈u,Df〉

for all u ∈ A and f ∈ S. Let Ao be a C[D]-subspace of A possessing a C-algebra structure, and on which D
acts as a derivation in the sense that

D(u · v) = Du · v + u ·Dv

Suppose that there is an element 1 in S with the property that D1 = 0. The following is an extension of the
usual integration by parts formula (without boundary terms):

[4.0.1] Proposition: For u, v ∈ Ao,
〈Du · v, 1〉 = 〈−u ·Dv, 1〉

Proof: This is a direct computation:

0 = 〈u · v, 0〉 = 〈u · v,D1〉 = −〈D(u · v), 1〉 = −〈Du · v + u ·Dv, 1〉

from which we have
〈Du · v, 1〉 = −〈u ·Dv, 1〉

as desired. ///

Let A and S be U = C[X1, . . . , Xn]-modules, with a U -subspace Ao which has an algebra structure, where
the Xi do not necessarily commute with each other. Assume that for any Xi

〈Xiu, f〉 = −εi〈u,Xif〉
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where the sign εi = ±1 may depend upon i. Assume that each Xi acts as a derivation on Ao. Let

∆ = ε1X
2
1 + . . .+ εnX

2
n

Suppose that there is an element 1 ∈ S so that Xi1 = 0 for all indices i. Then we have an extension of the
formula often known as Green’s formula:

[4.0.2] Proposition: For u, v ∈ Ao,

〈∆u · v, 1〉 = 〈u ·∆v, 1〉

Proof: It certainly suffices to proves that for each X = Xi we have the corresponding identity

〈X2u · v, 1〉 = 〈u ·X2v, 1〉

Note that this would make the coefficients εi irrelevant. Observe that

X(Xu · v − u ·Xv) = (X2u · v +Xu ·Xv)− (Xu ·Xv + u ·X2v) = X2u · v − u ·X2v

Therefore, with X = Xi and ε = εi,

0 = 〈Xu · v − u ·Xv, 0〉 = 〈Xu · v − u ·Xv,X1〉 = −ε〈X(Xu · v − u ·Xv), 1〉 = −ε〈X2u · v − u ·X2v, 1〉

which yields the desired identity. ///

5. Maaß-Selberg relation for SL(2,Z)
Granting the legitimacy of computations with extended versions of integrals as above, we can give an elegant
proof of the Maaß-Selberg relations for SL(2,Z).

For z = x + iy in the complex upper half-plane H, following Maaßdefine the simplest spherical Eisenstein
series as usual by

Es(x+ iy) =
∑

m,n coprime

ys

|mz + n|2s

This converges nicely for <(s) > 1, and has a Fourier expansion

Es(x+ iy) = ys + c(s) y1−s + (higher-order terms)

where the higher-order terms do not immediately concern us, apart from the fact that they are of rapid
decay as y → +∞. Direct computation shows that

c(s) =
ξ(2s− 1)

ξ(2s)

where

ξ(s) = π−s/2 Γ(
s

2
) ζQ(s)

with Riemann’s zeta function ζQ. The expression ys + c(s)y1−s is the constant term of the Eisenstein
series. It is well known that Es has a meromorphic continuation in s. The explicit details of the situation
would allow us to conclude directly that the only pole in the half-plane <(s) > 1

2 is at s = 1, but we want
an approach to study of poles that will apply in situations where much less explicit information is available.
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Because of the nature of the constant term, away from poles and zeros of c(s) the Eisenstein series Es cannot
be square-integrable on the usual fundamental domain

F = {x+ iy ∈ H : |x| ≤ 1

2
, |x+ iy| ≥ 1}

with regard to the SL(2,R)-invariant measure dx dy/y2. However, for large positive T define the truncation
ΛT Es = ET

s of the Eisenstein series by

ET
s (x+ iy) =

{
ys + c(s)y1−s + (higher-order terms) (for y ≤ T )

0 + (higher-order terms) (for y > T )

Since the higher-order terms are rapidly decreasing on the fundamental domain, the truncated Eisenstein
series are square-integrable on the fundamental domain.

Note that, from the definition, the Eisenstein series and the function c(s) behave nicely with regard to
complex conjugation:

Es̄ = Es c(s̄) = c(s)

[5.0.1] Theorem: (Maaß-Selberg) For two complex r, s, with r(r−1) 6= s(s−1) (so that the denominators
in the following formula are not zero), ∫

SL2(Z)\H
ET

r (z)ET
s (z)

dx dy

y2

=
T r+s−1

r + s− 1
+ c(r)

T (1−r)+s−1

(1− r) + s− 1
+ c(s)

T r+(1−s)−1

r + (1− s)− 1
+ c(r) c(s)

T (1−r)+(1−s)−1

(1− r) + (1− s)− 1

Proof: Although the whole Eisenstein series are not square-integrable, we have extended the pairing on
functions (given initially by absolutely convergent integrals), and we have an extension of Green’s identity

〈(∆Er) · Es, 1〉 = 〈Er ·∆(Es), 1〉

for products paired against 1. In particular, since ∆Es = s(s− 1)Es, this gives

r(r − 1) 〈Er · Es, 1〉 = 〈(∆Er) · Es, 1〉 = 〈Er ·∆(Es), 1〉 = s(s− 1) 〈Er · Es, 1〉

For r(r − 1) 6= s(s− 1), this implies that
〈Er · Es, 1〉 = 0

Thus, letting Y T
s = Es − ET

s denote the ‘tail’,

0 = 〈Er · Es, 1〉 = 〈ET
r · ET

s , 1〉+ 〈ET
r · Y T

s , 1〉+ 〈Y T
r · ET

s , 1〉+ 〈Y T
r · Y T

s , 1〉 = 0 + 0 + 〈Y T
r · Y T

s , 1〉

The first 0 is because 〈Er ·Es, 1〉 = 0. The second and third 0’s are because the ‘tails’ Y T
s are ‘orthogonal’ to

the truncated Eisenstein series in the sense that the integral is absolutely convergent and can be evaluated
as

〈Y T
r · ET

s , 1〉 =

∫
SL2(Z)\H

Y T
r (z)ET

s (z)
dx dy

y2
=

∫
|x|≤1/2

∫
y≥T

Y T
r (z)ET

s (z)
dx dy

y2

=

∫
y≥T

(yr + c(r)y1−r) (constant Fourier coefficient of ET
s (z)) y−1 dy

y

=

∫
y≥T

(yr + c(r)y1−r) 0 y−1 dy

y
= 0
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since, by construction,the constant term of ET
s vanishes for y > T . Thus, again,

0 = 〈Er · Es, 1〉 = 〈Y T
r · Y T

s , 1〉 =

∫ ∞
T

(yr + c(r)y1−r) · (ys + c(s)y1−s) y−1 dy

y

where the last ‘integral’ is understood as being in the extended sense (since, after all, for no values of r, s
does it converge). Thus, rearranging the equation 0 = 〈Er · Es, 1〉, we have

〈ET
r · ET

s , 1〉 = −
∫ ∞
T

(yr + c(r)y1−r) · (ys + c(s)y1−s) y−1 dy

y

=
T r+s−1

r + s− 1
+ c(r)

T (1−r)+s−1

(1− r) + s− 1
+ c(s)

T r+(1−s)−1

r + (1− s)− 1
+ c(r) c(s)

T (1−r)+(1−s)−1

(1− r) + (1− s)− 1

of course evaluating the ‘integrals’ in an extended sense. ///
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Hyperboliques, Paris, 1932.

[Zagier 1982] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, pp. 415-437 (1982).

8


