Unbounded operators, Friedrichs' extension theorem

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

It is amazing that resolvents $R_{\lambda}=(T-\lambda)^{-1}$ exist, as everywhere-defined, continuous linear maps on a Hilbert space, even for T unbounded, and only densely-defined. Of course, some further hypotheses on T are needed, but these hypotheses are met in useful situations occurring in practice.

In particular, we will need that T is symmetric, in the sense that $\langle T v, w\rangle=\langle v, T w\rangle$ for v, w in the domain of T. And we will need to replace T by its Friedrichs extension, described explicitly below. For example, the Friedrichs extension replaces genuine differentiation by L^{2}-differentiation. [1]

So-called unbounded operators on a Hilbert space V are not literally operators on V, being defined on proper subspaces of V. For unbounded operators on V, the actual domain is an essential part of a description: an unbounded operator T on V is a subspace D of V and a linear map $T: D \longrightarrow V$. The interesting case is that the domain D is dense in V.

The linear map T is most likely not continuous when D is given the subspace topology from V, or it would extend by continuity to the closure of D, presumably V.

Explicit naming of the domain of an unbounded operator is often suppressed, instead writing $T_{1} \subset T_{2}$ when T_{2} is an extension of T_{1}, in the sense that the domain of T_{2} contains that of T_{1}, and the restriction of T_{2} to the domain of T_{1} agrees with T_{1}.

An operator T^{\prime}, D^{\prime} is a sub-adjoint to an operator T, D when

$$
\langle T v, w\rangle=\left\langle v, T^{\prime} w\right\rangle \quad\left(\text { for } v \in D, w \in D^{\prime}\right)
$$

For D dense, for given D^{\prime} there is at most one T^{\prime} meeting the adjointness condition.
The adjoint T^{*} is the unique maximal element, in terms of domain, among all sub-adjoints to T. That there is a unique maximal sub-adjoint requires proof, given below.

An operator T is symmetric when $T \subset T^{*}$, and self-adjoint when $T=T^{*}$. These comparisons refer to the domains of these not-everywhere-defined operators. In the following claim and its proof, the domain of a map S on V is incorporated in a reference to its graph

$$
\operatorname{graph} S=\{v \oplus S v: v \in \operatorname{domain} S\} \subset V \oplus V
$$

[0.0.1] Remark: In practice, anticipating that a given unbounded operator is self-adjoint when extended suitably, a simple version of the operator is defined on an easily described, small, dense domain, specifying a symmetric operator. Then a self-adjoint extension is shown to exist, as in Friedrichs' theorem below.
[0.0.2] Remark: A symmetric operator that fails to be self-adjoint is necessarily unbounded, since bounded symmetric operators are self-adjoint, because of the existence of orthogonal complements in Hilbert spaces. The latter idea is applied to not-necessarily-bounded operators in the following.
[1] [Friedrichs 1934] construction of suitable extensions predates [Sobolev 1937,1938], though the extensions use an abstracted version of what nowadays are usually called Sobolev spaces. The physical motivation for the construction is energy estimates. Existence results for self-adjoint extensions had been discussed in [Neumann 1929], [Stone 1929,30,34], but a useful description of a natural extension first occurred in [Friedrichs 1934]. Further, a Hilbertspace precursor of the Lax-Milgram theorem of [Lax-Milgram 1954] also appears in [Friedrichs 1934], following by the argument Friedrichs uses to prove that his construction gives an extension.

The direct sum $V \oplus V$ is a Hilbert space, with natural inner product

$$
\left\langle v \oplus w, v^{\prime} \oplus w^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle+\left\langle w, w^{\prime}\right\rangle
$$

Define an isometry U of $V \oplus V$ by

$$
U: V \oplus V \longrightarrow V \oplus V \quad \text { by } \quad v \oplus w \longrightarrow-w \oplus v
$$

[0.0.3] Claim: Given T with dense domain D, there is a unique maximal T^{*}, D^{*} among all sub-adjoints to T, D. Further, the adjoint T^{*} is closed, in the sense that its graph is closed in $V \oplus V$. In fact, the adjoint is characterized by its graph, which is the orthogonal complement in $V \oplus V$ to an image of the graph of T, namely,

$$
\text { graph } T^{*}=\text { orthogonal complement of } U(\operatorname{graph} T)
$$

Proof: The adjointness condition $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$ for given $w \in V$ is an orthogonality condition

$$
\left.\left\langle w \oplus T^{*} w, U(v \oplus T v)\right\rangle=0 \quad \text { (for all } v \text { in the domain of } T\right)
$$

Thus, the graph of any sub-adjoint is a subset of

$$
X=U(\operatorname{graph} T)^{\perp}
$$

Since T is densely-defined, for given $w \in V$ there is at most one possible value w^{\prime} such that $w \oplus w^{\prime} \in X$, so this orthogonality condition determines a well-defined function T^{*} on a subset of V, by

$$
T^{*} w=w^{\prime} \quad\left(\text { if there exists } w^{\prime} \in V \text { such that } w \oplus w^{\prime} \in X\right)
$$

The linearity of T^{*} is immediate. It is maximal among sub-adjoints to T because the graph of any sub-adjoint is a subset of the graph of G^{*}. Orthogonal complements are closed, so T^{*} has a closed graph.
[0.0.4] Corollary: For $T_{1} \subset T_{2}$ with dense domains, $T_{2}^{*} \subset T_{1}^{*}$, and $T_{1} \subset T_{1}^{* *}$.
[0.0.5] Corollary: A self-adjoint operator has a closed graph.
[0.0.6] Remark: The closed-ness of the graph of a self-adjoint operator is essential in proving existence of resolvents, below.
[0.0.7] Remark: The use of the term symmetric in this context is potentially misleading, but standard. The notation $T=T^{*}$ allows an inattentive reader to forget non-trivial assumptions on the domains of the operators. The equality of domains of T and T^{*} is understandably essential for legitimate computations.
[0.0.8] Proposition: Eigenvalues for symmetric operators T, D are real.
Proof: Suppose $0 \neq v \in D$ and $T v=\lambda v$. Then

$$
\lambda\langle v, v\rangle=\langle\lambda v, v\rangle=\langle T v, v\rangle=\left\langle v, T^{*} v\right\rangle \quad \text { (because } v \in D \subset D^{*} \text {) }
$$

Further, because T^{*} agrees with T on D,

$$
\left.\left\langle v, T^{*} v\right\rangle=\langle v, \lambda v\rangle=\bar{\lambda} \bar{v}, v\right\rangle
$$

Thus, λ is real.
[0.0.9] Definition: A densely-defined symmetric operator T, D is positive (or non-negative) when

$$
\langle T v, v\rangle \geq 0 \quad \text { (for all } v \in D)
$$

Certainly all the eigenvalues of a positive operator are non-negative real.
[0.0.10] Theorem: (Friedrichs) A positive, densely-defined, symmetric operator T, D has a positive selfadjoint extension.

Proof: ${ }^{[2]}$ Define a new hermitian form \langle,\rangle_{1} and corresponding norm $\|\cdot\|_{1}$ by

$$
\langle v, w\rangle_{1}=\langle v, w\rangle+\langle T v, w\rangle \quad(\text { for } v, w \in D)
$$

The symmetry and non-negativity of T make this positive-definite hermitian on D. Note that $\langle v, w\rangle_{1}$ makes sense whenever at least one of v, w is in D.

Let D_{1} be the closure in V of D with respect to the metric d_{1} induced by $\|\cdot\|_{1}$. We claim that D_{1} is also the d_{1}-completion of D. Indeed, for v_{i} a d-Cauchy sequence in D, v_{i} is Cauchy in V in the original topology, since

$$
\left|v_{i}-v_{j}\right| \leq\left|v_{i}-v_{j}\right|_{1}
$$

For two sequences v_{i}, w_{j} with the same d-limit v, the d-limit of $v_{i}-w_{i}$ is 0 . Thus,

$$
\left|v_{i}-w_{i}\right| \leq\left|v_{i}-w_{i}\right|_{1} \longrightarrow 0
$$

For $h \in V$ and $v \in D_{1}$, the functional $\lambda_{h}: v \rightarrow\langle v, h\rangle$ has a bound

$$
\left|\lambda_{h} v\right| \leq|v| \cdot|h| \leq|v|_{1} \cdot|h|
$$

Thus, the norm of the functional λ_{h} on D_{1} is at most $|h|$. By Riesz-Fischer, there is unique $B h$ in the Hilbert space D_{1} with $|B h|_{1} \leq|h|$, such that

$$
\lambda_{h} v=\langle B h, v\rangle_{1} \quad\left(\text { for } v \in D_{1}\right)
$$

Thus,

$$
|B h| \leq|B h|_{1} \leq|h|
$$

The map $B: V \rightarrow D_{1}$ is verifiably linear. There is an obvious symmetry of B :

$$
\langle B v, w\rangle=\lambda_{w} B v=\langle B v, B w\rangle_{1}=\overline{\langle B w, B v\rangle_{1}}=\overline{\lambda_{v} B w}=\overline{\langle B w, v\rangle}=\langle v, B w\rangle \quad(\text { for } v, w \in V)
$$

Positivity of B is similar:

$$
\langle B v, v\rangle=\lambda_{v} B v=\langle B v, B v\rangle_{1} \geq\langle B v, B v\rangle \geq 0
$$

Next, B has dense image in D_{1} : for $w \in D_{1}$ such that $\langle B h, w\rangle_{1}=0$ for all $h \in V$,

$$
\left.0=\langle w, B h\rangle=\lambda_{h} w=\langle h, w\rangle \quad \text { (for all } h \in V\right)
$$

Thus, $w=0$, proving density of the image of B in D_{1}. Finally B is injective: if $B w=0$, then for all $v \in D_{1}$

$$
0=\langle v, 0\rangle_{1}=\langle v, B w\rangle_{1}=\lambda_{w} v=\langle v, w\rangle
$$

[^0]Since D_{1} is dense in $V, w=0$. Similarly, if $w \in D_{1}$ is such that $\lambda_{v} w=0$ for all $v \in V$, then $0=\lambda_{w} w=\langle w, w\rangle$ gives $w=0$. Thus, $B: V \rightarrow D_{1}$ is bounded, symmetric, positive, injective, with dense image. In particular, B is self-adjoint.

Thus, B has a possibly unbounded positive, symmetric inverse A. Since B injects V to a dense subset D_{1}, necessarily A surjects from its domain (inside D_{1}) to V. We claim that A is self-adjoint. Let $S: V \oplus V \rightarrow V \oplus V$ by $S(v \oplus w)=w \oplus v$. Then

$$
\operatorname{graph} A=S(\operatorname{graph} B)
$$

Also, in computing orthogonal complements X^{\perp}, clearly

$$
(S X)^{\perp}=S\left(X^{\perp}\right)
$$

From the obvious $U \circ S=-S \circ U$, compute

$$
\begin{aligned}
\operatorname{graph} A^{*}= & (U \operatorname{graph} A)^{\perp}=(U \circ S \operatorname{graph} B)^{\perp}=(-S \circ U \operatorname{graph} B)^{\perp} \\
& =-S\left((U \operatorname{graph} B)^{\perp}\right)=-\operatorname{graph} A=\operatorname{graph} A
\end{aligned}
$$

since the domain of B^{*} is the domain of B. Thus, A is self-adjoint.
We claim that for v in the domain of $A,\langle A v, v\rangle \geq\langle v, v\rangle$. Indeed, letting $v=B w$,

$$
\langle v, A v\rangle=\langle B w, w\rangle=\lambda_{w} B w=\langle B w, B w\rangle_{1} \geq\langle B w, B w\rangle=\langle v, v\rangle
$$

Similarly, with $v^{\prime}=B w^{\prime}$, and $v \in D_{1}$,

$$
\left\langle v, A v^{\prime}\right\rangle=\left\langle v, w^{\prime}\right\rangle=\lambda_{w^{\prime}} v=\left\langle v, B w^{\prime}\right\rangle_{1}=\left\langle v, v^{\prime}\right\rangle_{1} \quad\left(v \in D_{1}, v^{\prime} \text { in the domain of } A\right)
$$

Since B maps V to D_{1}, the domain of A is contained in D_{1}. We claim that the domain of A is dense in D_{1} in the d-topology, not merely in the subspace topology from V. Indeed, for $v \in D_{1}\langle,\rangle_{1}$-orthogonal to the domain of A, for v^{\prime} in the domain of A, using the previous identity,

$$
0=\left\langle v, v^{\prime}\right\rangle_{1}=\left\langle v, A v^{\prime}\right\rangle
$$

Since B injects V to D_{1}, A surjects from its domain to V. Thus, $v=0$.
Last, prove that A is an extension of $S=1_{V}+T$. On one hand, as above,

$$
\langle v, S w\rangle=\lambda_{S w} v=\langle v, B S w\rangle_{1} \quad(\text { for } v, w \in D)
$$

On the other hand, by definition of \langle,\rangle_{1},

$$
\langle v, S w\rangle=\langle v, w\rangle_{1} \quad(\text { for } v, w \in D)
$$

Thus,

$$
\langle v, w-B S w\rangle_{1}=0 \quad(\text { for all } v, w \in D)
$$

Since D is d-dense in $D_{1}, B S w=w$ for $w \in D$. Thus, $w \in D$ is in the range of B, so is in the domain of A, and

$$
A w=A(B S w)=S w
$$

Thus, the domain of A contains that of S and extends S.
Let $R_{\lambda}=(T-\lambda)^{-1}$ for $\lambda \in \mathbb{C}$ when this inverse exists as a linear operator defined at least on a dense subset of V.

Paul Garrett: Unbounded operators, Friedrichs' extension theorem (May 25, 2014)
[0.0.11] Theorem: Let T be self-adjoint and densely defined. For $\lambda \in \mathbb{C}, \lambda \notin \mathbb{R}$, the operator R_{λ} is everywhere defined on V, and the operator norm is estimated by

$$
\left\|R_{\lambda}\right\| \leq \frac{1}{|\operatorname{Im} \lambda|}
$$

For T positive, for $\lambda \notin[0,+\infty), R_{\lambda}$ is everywhere defined on V, and the operator norm is estimated by

$$
\left\|R_{\lambda}\right\| \leq \begin{cases}\frac{1}{|\operatorname{Im} \lambda|} & (\text { for } \operatorname{Re}(\lambda) \leq 0) \\ \frac{1}{|\lambda|} & (\text { for } \operatorname{Re}(\lambda) \geq 0)\end{cases}
$$

Proof: For $\lambda=x+i y$ off the real line and v in the domain of T,

$$
\begin{gathered}
|(T-\lambda) v|^{2}=|(T+x) v|^{2}+\langle(T-x) v, i y v\rangle+\langle i y v,(T-x) v\rangle+y^{2}|v|^{2} \\
=|(T+x) v|^{2}-i y\langle(T-x) v, v\rangle+i y\langle v,(T-x) v\rangle+y^{2}|v|^{2}
\end{gathered}
$$

The symmetry of T, and the fact that the domain of T^{*} contains that of T, implies that

$$
\langle v, T v\rangle=\left\langle T^{*} v, v\right\rangle=\langle T v, v\rangle
$$

Thus,

$$
|(T-\lambda) v|^{2}=|(T-x) v|^{2}+y^{2}|v|^{2} \geq y^{2}|v|^{2}
$$

Thus, for $y \neq 0,(T-\lambda) v \neq 0$. Let D be the domain of T. On $(T-\lambda) D$ there is an inverse R_{λ} of $T-\lambda$, and for $w=(T-\lambda) v$ with $v \in D$,

$$
|w|=|(T-\lambda) v| \geq|y| \cdot|v|=|y| \cdot\left|R_{\lambda}(T-\lambda) v\right|=|y| \cdot\left|R_{\lambda} w\right|
$$

which gives

$$
\left|R_{\lambda} w\right| \leq \frac{1}{|\operatorname{Im} \lambda|} \cdot|w| \quad(\text { for } w=(T-\lambda) v, v \in D)
$$

Thus, the operator norm on $(T-\lambda) D$ satisfies $\left\|R_{\lambda}\right\| \leq 1 /|\operatorname{Im} \lambda|$ as claimed.
We must show that $(T-\lambda) D$ is the whole Hilbert space V. If

$$
0=\langle(T-\lambda) v, w\rangle \quad(\text { for all } v \in D)
$$

then the adjoint of $T-\lambda$ can be defined on w simply as $(T-\lambda)^{*} w=0$, since

$$
\langle T v, w\rangle=0=\langle v, 0\rangle \quad(\text { for all } v \in D)
$$

Thus, $T^{*}=T$ is defined on w, and $T w=\bar{\lambda} w$. For λ not real, this implies $w=0$. Thus, $(T-\lambda) D$ is dense in V.

Since T is self-adjoint, it is closed, so $T-\lambda$ is closed. The equality

$$
|(T-\lambda) v|^{2}=|(T-x) v|^{2}+y^{2}|v|^{2}
$$

gives

$$
|(T-\lambda) v|^{2} \ll_{y}|v|^{2}
$$

Thus, for fixed $y \neq 0$, the map

$$
v \oplus(T-\lambda) v \longrightarrow(T-\lambda) v
$$

respects the metrics, in the sense that

$$
|(T-\lambda) v|^{2} \leq|(T-\lambda) v|^{2}+|v|^{2} \ll{ }_{y}|(T-\lambda) v|^{2} \quad(\text { for fixed } y \neq 0)
$$

The graph of $T-\lambda$ is closed, so is a complete metric subspace of $V \oplus V$. Since F respects the metrics, it preserves completeness. Thus, the metric space $(T-\lambda) D$ is complete, so is a closed subspace of V. Since the closed subspace $(T-\lambda) D$ is dense, it is V. Thus, for $\lambda \notin \mathbb{R}, R_{\lambda}$ is everywhere-defined. Its norm is bounded by $1 /|\operatorname{Im} \lambda|$, so it is a continuous linear operator on V.

Similarly, for T positive, for $\operatorname{Re}(\lambda) \leq 0$,

$$
|(T-\lambda) v|^{2}=|T v|^{2}-\lambda\langle T v, v\rangle-\bar{\lambda}\langle v, T v\rangle+|\lambda|^{2} \cdot|v|^{2}=|T v|^{2}+2|\operatorname{Re} \lambda|\langle T v, v\rangle+|\lambda|^{2} \cdot|v|^{2} \geq|\lambda|^{2} \cdot|v|^{2}
$$

Then the same argument proves the existence of an everywhere-defined inverse $R_{\lambda}=(T-\lambda)^{-1}$, with $\left\|R_{\lambda}\right\| \leq 1 /|\lambda|$ for $\operatorname{Re} \lambda \leq 0$.
[0.0.12] Theorem: (Hilbert) For points λ, μ off the real line, or, for T positive, for λ, μ off $[0,+\infty)$,

$$
R_{\lambda}-R_{\mu}=(\lambda-\mu) R_{\lambda} R_{\mu}
$$

For the operator-norm topology, $\lambda \rightarrow R_{\lambda}$ is holomorphic at such points.
Proof: Applying R_{λ} to

$$
1_{V}-(T-\lambda) R_{\mu}=((T-\mu)-(T-\lambda)) R_{\mu}=(\lambda-\mu) R_{\mu}
$$

gives

$$
R_{\lambda}\left(1_{V}-(T-\lambda) R_{\mu}\right)=R_{\lambda}((T-\mu)-(T-\lambda)) R_{\mu}=R_{\lambda}(\lambda-\mu) R_{\mu}
$$

Then

$$
\frac{R_{\lambda}-R_{\mu}}{\lambda-\mu}=R_{\lambda} R_{\mu}
$$

For holomorphy, with $\lambda \rightarrow \mu$,

$$
\frac{R_{\lambda}-R_{\mu}}{\lambda-\mu}-R_{\mu}^{2}=R_{\lambda} R_{\mu}-R_{\mu}^{2}=\left(R_{\lambda}-R_{\mu}\right) R_{\mu}=(\lambda-\mu) R_{\lambda} R_{\mu} R_{\mu}
$$

Taking operator norm, using $\left\|R_{\lambda}\right\| \leq 1 /|\operatorname{Im} \lambda|$,

$$
\left\|\frac{R_{\lambda}-R_{\mu}}{\lambda-\mu}-R_{\mu}^{2}\right\| \leq \frac{|\lambda-\mu|}{|\operatorname{Im} \lambda| \cdot|\operatorname{Im} \mu|^{2}}
$$

Thus, for $\mu \notin \mathbb{R}$, as $\lambda \rightarrow \mu$, this operator norm goes to 0 , demonstrating the holomorphy.
For positive T, the estimate $\left\|R_{\lambda}\right\| \leq 1 /|\lambda|$ for $\operatorname{Re} \lambda \leq 0$ yields holomorphy on the negative real axis by the same argument.
[Friedrichs 1934] K.O. Friedrichs, Spektraltheorie halbbeschränkter Operatoren, Math. Ann. 109 (1934), 465-487, 685-713,
[Friedrichs 1935] K.O. Friedrichs, Spektraltheorie halbbeschränkter Operatoren, Math. Ann. 110 (1935), 777-779.
[Lax-Milgram 1954] P.D. Lax, A.N. Milgram, Parabolic equations, in Contributions to the theory of p.d.e., Annals of Math. Studies 33, Princeton Univ. Press, 1954.

Paul Garrett: Unbounded operators, Friedrichs' extension theorem (May 25, 2014)
[Neumann 1929] J. von Neumann, Allgemeine Eigenwerttheorie Hermitsescher Funktionaloperatoren, Math. Ann. 102 (1929), 49-131.
[Riesz-Nagy 1952, 1955] F. Riesz, B. Szökefalvi.-Nagy, Functional Analysis, English translation, 1955, L. Boron, from Lecons d'analyse fonctionelle 1952, F. Ungar, New York.
[Sobolev 1937] S.L. Sobolev, On a boundary value problem for polyharmonic equations (Russian), Mat. Sb. 2 (44) (1937), 465-499.
[Sobolev 1938] S.L. Sobolev, On a theorem of functional analysis (Russian), Mat. Sb. N.S. 4 (1938), 471-497.
[Stone 1929] M.H. Stone, Linear transformations in Hilbert space, I, II, Proc. Nat. Acad. Sci. 16 (1929), 198-200, 423-425.
[Stone 1930] M.H. Stone, Linear transformations in Hilbert space, III: operational methods and group theory, Proc. Nat. Acad. Sci. 16 (1930), 172-5.
[Stone 1932] M.H. Stone, Linear transformations in Hilbert space, New York, 1932.

[^0]: ${ }^{[2]}$ We essentially follow [Riesz-Nagy 1955], pages 329-334.

