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It is amazing that resolvents Rλ = (T − λ)−1 exist, as everywhere-defined, continuous linear maps on a
Hilbert space, even for T unbounded, and only densely-defined. Of course, some further hypotheses on T are
needed, but these hypotheses are met in useful situations occurring in practice.

In particular, we will need that T is symmetric, in the sense that 〈Tv,w〉 = 〈v, Tw〉 for v, w in the domain
of T . And we will need to replace T by its Friedrichs extension, described explicitly below. For example,
the Friedrichs extension replaces genuine differentiation by L2-differentiation. [1]

So-called unbounded operators on a Hilbert space V are not literally operators on V , being defined on
proper subspaces of V . For unbounded operators on V , the actual domain is an essential part of a description:
an unbounded operator T on V is a subspace D of V and a linear map T : D −→ V . The interesting case is
that the domain D is dense in V .

The linear map T is most likely not continuous when D is given the subspace topology from V , or it would
extend by continuity to the closure of D, presumably V .

Explicit naming of the domain of an unbounded operator is often suppressed, instead writing T1 ⊂ T2 when
T2 is an extension of T1, in the sense that the domain of T2 contains that of T1, and the restriction of T2
to the domain of T1 agrees with T1.

An operator T ′, D′ is a sub-adjoint to an operator T,D when

〈Tv,w〉 = 〈v, T ′w〉 (for v ∈ D, w ∈ D′)

For D dense, for given D′ there is at most one T ′ meeting the adjointness condition.

The adjoint T ∗ is the unique maximal element, in terms of domain, among all sub-adjoints to T . That there
is a unique maximal sub-adjoint requires proof, given below.

An operator T is symmetric when T ⊂ T ∗, and self-adjoint when T = T ∗. These comparisons refer to the
domains of these not-everywhere-defined operators. In the following claim and its proof, the domain of a
map S on V is incorporated in a reference to its graph

graph S = {v ⊕ Sv : v ∈ domain S} ⊂ V ⊕ V

[0.0.1] Remark: In practice, anticipating that a given unbounded operator is self-adjoint when extended
suitably, a simple version of the operator is defined on an easily described, small, dense domain, specifying
a symmetric operator. Then a self-adjoint extension is shown to exist, as in Friedrichs’ theorem below.

[0.0.2] Remark: A symmetric operator that fails to be self-adjoint is necessarily unbounded, since bounded
symmetric operators are self-adjoint, because of the existence of orthogonal complements in Hilbert spaces.
The latter idea is applied to not-necessarily-bounded operators in the following.

[1] [Friedrichs 1934] construction of suitable extensions predates [Sobolev 1937,1938], though the extensions use

an abstracted version of what nowadays are usually called Sobolev spaces. The physical motivation for the

construction is energy estimates. Existence results for self-adjoint extensions had been discussed in [Neumann 1929],

[Stone 1929,30,34], but a useful description of a natural extension first occurred in [Friedrichs 1934]. Further, a Hilbert-

space precursor of the Lax-Milgram theorem of [Lax-Milgram 1954] also appears in [Friedrichs 1934], following by

the argument Friedrichs uses to prove that his construction gives an extension.
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The direct sum V ⊕ V is a Hilbert space, with natural inner product

〈v ⊕ w, v′ ⊕ w′〉 = 〈v, v′〉+ 〈w,w′〉

Define an isometry U of V ⊕ V by

U : V ⊕ V −→ V ⊕ V by v ⊕ w −→ −w ⊕ v

[0.0.3] Claim: Given T with dense domain D, there is a unique maximal T ∗, D∗ among all sub-adjoints to
T,D. Further, the adjoint T ∗ is closed, in the sense that its graph is closed in V ⊕ V . In fact, the adjoint
is characterized by its graph, which is the orthogonal complement in V ⊕ V to an image of the graph of T ,
namely,

graph T ∗ = orthogonal complement of U(graph T )

Proof: The adjointness condition 〈Tv,w〉 = 〈v, T ∗w〉 for given w ∈ V is an orthogonality condition

〈w ⊕ T ∗w, U(v ⊕ Tv)〉 = 0 (for all v in the domain of T )

Thus, the graph of any sub-adjoint is a subset of

X = U(graph T )⊥

Since T is densely-defined, for given w ∈ V there is at most one possible value w′ such that w ⊕ w′ ∈ X, so
this orthogonality condition determines a well-defined function T ∗ on a subset of V , by

T ∗w = w′ (if there exists w′ ∈ V such that w ⊕ w′ ∈ X)

The linearity of T ∗ is immediate. It is maximal among sub-adjoints to T because the graph of any sub-adjoint
is a subset of the graph of G∗. Orthogonal complements are closed, so T ∗ has a closed graph. ///

[0.0.4] Corollary: For T1 ⊂ T2 with dense domains, T ∗2 ⊂ T ∗1 , and T1 ⊂ T ∗∗1 . ///

[0.0.5] Corollary: A self-adjoint operator has a closed graph. ///

[0.0.6] Remark: The closed-ness of the graph of a self-adjoint operator is essential in proving existence of
resolvents, below.

[0.0.7] Remark: The use of the term symmetric in this context is potentially misleading, but standard.
The notation T = T ∗ allows an inattentive reader to forget non-trivial assumptions on the domains of the
operators. The equality of domains of T and T ∗ is understandably essential for legitimate computations.

[0.0.8] Proposition: Eigenvalues for symmetric operators T,D are real.

Proof: Suppose 0 6= v ∈ D and Tv = λv. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 (because v ∈ D ⊂ D∗)

Further, because T ∗ agrees with T on D,

〈v, T ∗v〉 = 〈v, λv〉 = λv̄, v〉

Thus, λ is real. ///
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[0.0.9] Definition: A densely-defined symmetric operator T,D is positive (or non-negative) when

〈Tv, v〉 ≥ 0 (for all v ∈ D)

Certainly all the eigenvalues of a positive operator are non-negative real.

[0.0.10] Theorem: (Friedrichs) A positive, densely-defined, symmetric operator T,D has a positive self-
adjoint extension.

Proof: [2] Define a new hermitian form 〈, 〉1 and corresponding norm || · ||1 by

〈v, w〉1 = 〈v, w〉+ 〈Tv,w〉 (for v, w ∈ D)

The symmetry and non-negativity of T make this positive-definite hermitian on D. Note that 〈v, w〉1 makes
sense whenever at least one of v, w is in D.

Let D1 be the closure in V of D with respect to the metric d1 induced by || · ||1. We claim that D1 is also
the d1-completion of D. Indeed, for vi a d-Cauchy sequence in D, vi is Cauchy in V in the original topology,
since

|vi − vj | ≤ |vi − vj |1

For two sequences vi, wj with the same d-limit v, the d-limit of vi − wi is 0. Thus,

|vi − wi| ≤ |vi − wi|1 −→ 0

For h ∈ V and v ∈ D1, the functional λh : v → 〈v, h〉 has a bound

|λhv| ≤ |v| · |h| ≤ |v|1 · |h|

Thus, the norm of the functional λh on D1 is at most |h|. By Riesz-Fischer, there is unique Bh in the Hilbert
space D1 with |Bh|1 ≤ |h|, such that

λhv = 〈Bh, v〉1 (for v ∈ D1)

Thus,
|Bh| ≤ |Bh|1 ≤ |h|

The map B : V → D1 is verifiably linear. There is an obvious symmetry of B:

〈Bv,w〉 = λwBv = 〈Bv,Bw〉1 = 〈Bw,Bv〉1 = λvBw = 〈Bw, v〉 = 〈v,Bw〉 (for v, w ∈ V )

Positivity of B is similar:

〈Bv, v〉 = λvBv = 〈Bv,Bv〉1 ≥ 〈Bv,Bv〉 ≥ 0

Next, B has dense image in D1: for w ∈ D1 such that 〈Bh,w〉1 = 0 for all h ∈ V ,

0 = 〈w,Bh〉 = λhw = 〈h,w〉 (for all h ∈ V )

Thus, w = 0, proving density of the image of B in D1. Finally B is injective: if Bw = 0, then for all v ∈ D1

0 = 〈v, 0〉1 = 〈v,Bw〉1 = λwv = 〈v, w〉

[2] We essentially follow [Riesz-Nagy 1955], pages 329-334.
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Since D1 is dense in V , w = 0. Similarly, if w ∈ D1 is such that λvw = 0 for all v ∈ V , then 0 = λww = 〈w,w〉
gives w = 0. Thus, B : V → D1 is bounded, symmetric, positive, injective, with dense image. In particular,
B is self-adjoint.

Thus, B has a possibly unbounded positive, symmetric inverse A. Since B injects V to a dense subset
D1, necessarily A surjects from its domain (inside D1) to V . We claim that A is self-adjoint. Let
S : V ⊕ V → V ⊕ V by S(v ⊕ w) = w ⊕ v. Then

graph A = S(graph B)

Also, in computing orthogonal complements X⊥, clearly

(S X)⊥ = S
(
X⊥
)

From the obvious U ◦ S = −S ◦ U , compute

graph A∗ = (U graph A)⊥ = (U ◦ S graph B)⊥ = (−S ◦ U graph B)⊥

= −S
(
(U graph B)⊥

)
= − graphA = graph A

since the domain of B∗ is the domain of B. Thus, A is self-adjoint.

We claim that for v in the domain of A, 〈Av, v〉 ≥ 〈v, v〉. Indeed, letting v = Bw,

〈v,Av〉 = 〈Bw,w〉 = λwBw = 〈Bw,Bw〉1 ≥ 〈Bw,Bw〉 = 〈v, v〉

Similarly, with v′ = Bw′, and v ∈ D1,

〈v,Av′〉 = 〈v, w′〉 = λw′v = 〈v,Bw′〉1 = 〈v, v′〉1 (v ∈ D1, v′ in the domain of A)

Since B maps V to D1, the domain of A is contained in D1. We claim that the domain of A is dense in D1

in the d-topology, not merely in the subspace topology from V . Indeed, for v ∈ D1 〈, 〉1-orthogonal to the
domain of A, for v′ in the domain of A, using the previous identity,

0 = 〈v, v′〉1 = 〈v,Av′〉

Since B injects V to D1, A surjects from its domain to V . Thus, v = 0.

Last, prove that A is an extension of S = 1V + T . On one hand, as above,

〈v, Sw〉 = λSwv = 〈v,BSw〉1 (for v, w ∈ D)

On the other hand, by definition of 〈, 〉1,

〈v, Sw〉 = 〈v, w〉1 (for v, w ∈ D)

Thus,
〈v, w −BSw〉1 = 0 (for all v, w ∈ D)

Since D is d-dense in D1, BSw = w for w ∈ D. Thus, w ∈ D is in the range of B, so is in the domain of A,
and

Aw = A(BSw) = Sw

Thus, the domain of A contains that of S and extends S. ///

Let Rλ = (T −λ)−1 for λ ∈ C when this inverse exists as a linear operator defined at least on a dense subset
of V .
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[0.0.11] Theorem: Let T be self-adjoint and densely defined. For λ ∈ C, λ 6∈ R, the operator Rλ is
everywhere defined on V , and the operator norm is estimated by

||Rλ|| ≤
1

|Imλ|

For T positive, for λ 6∈ [0,+∞), Rλ is everywhere defined on V , and the operator norm is estimated by

||Rλ|| ≤


1

|Imλ|
(for Re(λ) ≤ 0)

1

|λ|
(for Re(λ) ≥ 0)

Proof: For λ = x+ iy off the real line and v in the domain of T ,

|(T − λ)v|2 = |(T + x)v|2 + 〈(T − x)v, iyv〉+ 〈iyv, (T − x)v〉+ y2|v|2

= |(T + x)v|2 − iy〈(T − x)v, v〉+ iy〈v, (T − x)v〉+ y2|v|2

The symmetry of T , and the fact that the domain of T ∗ contains that of T , implies that

〈v, Tv〉 = 〈T ∗v, v〉 = 〈Tv, v〉

Thus,
|(T − λ)v|2 = |(T − x)v|2 + y2|v|2 ≥ y2|v|2

Thus, for y 6= 0, (T − λ)v 6= 0. Let D be the domain of T . On (T − λ)D there is an inverse Rλ of T − λ,
and for w = (T − λ)v with v ∈ D,

|w| = |(T − λ)v| ≥ |y| · |v| = |y| · |Rλ(T − λ)v| = |y| · |Rλw|

which gives

|Rλw| ≤
1

|Imλ|
· |w| (for w = (T − λ)v, v ∈ D)

Thus, the operator norm on (T − λ)D satisfies ||Rλ|| ≤ 1/|Imλ| as claimed.

We must show that (T − λ)D is the whole Hilbert space V . If

0 = 〈(T − λ)v, w〉 (for all v ∈ D)

then the adjoint of T − λ can be defined on w simply as (T − λ)∗w = 0, since

〈Tv,w〉 = 0 = 〈v, 0〉 (for all v ∈ D)

Thus, T ∗ = T is defined on w, and Tw = λw. For λ not real, this implies w = 0. Thus, (T − λ)D is dense
in V .

Since T is self-adjoint, it is closed, so T − λ is closed. The equality

|(T − λ)v|2 = |(T − x)v|2 + y2|v|2

gives
|(T − λ)v|2 �y |v|2

Thus, for fixed y 6= 0, the map
v ⊕ (T − λ)v −→ (T − λ)v
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respects the metrics, in the sense that

|(T − λ)v|2 ≤ |(T − λ)v|2 + |v|2 �y |(T − λ)v|2 (for fixed y 6= 0)

The graph of T − λ is closed, so is a complete metric subspace of V ⊕ V . Since F respects the metrics, it
preserves completeness. Thus, the metric space (T −λ)D is complete, so is a closed subspace of V . Since the
closed subspace (T − λ)D is dense, it is V . Thus, for λ 6∈ R, Rλ is everywhere-defined. Its norm is bounded
by 1/|Imλ|, so it is a continuous linear operator on V .

Similarly, for T positive, for Re(λ) ≤ 0,

|(T − λ)v|2 = |Tv|2 − λ〈Tv, v〉 − λ〈v, Tv〉+ |λ|2 · |v|2 = |Tv|2 + 2|Reλ|〈Tv, v〉+ |λ|2 · |v|2 ≥ |λ|2 · |v|2

Then the same argument proves the existence of an everywhere-defined inverse Rλ = (T − λ)−1, with
||Rλ|| ≤ 1/|λ| for Reλ ≤ 0. ///

[0.0.12] Theorem: (Hilbert) For points λ, µ off the real line, or, for T positive, for λ, µ off [0,+∞),

Rλ −Rµ = (λ− µ)RλRµ

For the operator-norm topology, λ→ Rλ is holomorphic at such points.

Proof: Applying Rλ to

1V − (T − λ)Rµ =
(
(T − µ)− (T − λ)

)
Rµ = (λ− µ)Rµ

gives
Rλ(1V − (T − λ)Rµ) = Rλ

(
(T − µ)− (T − λ)

)
Rµ = Rλ(λ− µ)Rµ

Then
Rλ −Rµ
λ− µ

= RλRµ

For holomorphy, with λ→ µ,

Rλ −Rµ
λ− µ

−R2
µ = RλRµ −R2

µ = (Rλ −Rµ)Rµ = (λ− µ)RλRµRµ

Taking operator norm, using ||Rλ|| ≤ 1/|Imλ|,∣∣∣∣∣∣Rλ −Rµ
λ− µ

−R2
µ

∣∣∣∣∣∣ ≤ |λ− µ|
|Imλ| · |Imµ|2

Thus, for µ 6∈ R, as λ→ µ, this operator norm goes to 0, demonstrating the holomorphy.

For positive T , the estimate ||Rλ|| ≤ 1/|λ| for Reλ ≤ 0 yields holomorphy on the negative real axis by the
same argument. ///
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