(January 16, 2008)

Fujisaki's lemma (after Weil)

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[0.0.1] Theorem: (Fujisaki's Lemma) For a number field k let

$$\mathbb{J}^1 = \{ \alpha \in \mathbb{J}_k : |\alpha| = 1 \}$$

Then the quotient $k^{\times} \setminus \mathbb{J}^1$ is compact.

Proof: Give $A = A_k$ a Haar measure so that $k \setminus A$ has measure 1. First, we have the Minkowski-like claim that a compact subset C of A with measure greater than 1 cannot *inject* to the quotient $k \setminus A$. Indeed, suppose, to the contrary, that C injects to the quotient. Letting f be the characteristic function of C,

$$1 < \int_{\mathbb{A}} f(x) \, dx = \int_{k \setminus \mathbb{A}} \sum_{\gamma \in k} f(\gamma + x) \, dx \le \int_{k \setminus \mathbb{A}} 1 \, dx = 1 \qquad \text{(last inequality by injectivity)}$$

contradiction, proving the claim.

Fix compact $C \subset A$ with measure greater than 1. For idele α , the change-of-measure on A is

$$\frac{d(\alpha x)}{dx} = |\alpha|$$

Thus, neither αC nor $\alpha^{-1}C$ inject to the quotient $k \setminus A$.

So there are $x \neq y$ in k so that $x + \alpha C = y + \alpha C$. Subtracting, $x - y \in \alpha(C - C) \cap k$. Since $x - y \neq 0$ and k is a field, $k^{\times} \cap \alpha(C - C) \neq \phi$. Likewise, $k^{\times} \cap \alpha^{-1}(C - C) \neq \phi$.

Thus, there are a, b in k^{\times} such that

$$a \cdot \alpha \in C - C$$
 $b \cdot \alpha^{-1} \in C - C$

There is an obvious constraint

$$ab = (a \cdot \alpha)(b \cdot \alpha^{-1}) \in (C - C)^2 \cap k^{\times} = \text{compact} \cap \text{discrete} = \text{finite}$$

Let Ξ be the latter finite set. That is, given $|\alpha| = 1$, there is $a \in k^{\times}$ such that $a \cdot \alpha \in C - C$, and $\xi \in \Xi$ (ξ is *ab* just above) such that (ξa^{-1}) $\cdot \alpha^{-1} \in C - C$. That is,

$$(a \cdot \alpha, (a \cdot \alpha)^{-1}) \in (C - C) \times \xi^{-1}(C - C)$$

The topology on \mathbb{J} is obtained by imbedding $\mathbb{J} \to \mathbb{A} \times \mathbb{A}$ by $\alpha \to (\alpha, \alpha^{-1})$ and taking the subset topology. Thus, for each $\xi \in \Xi$,

$$((C-C) \times \xi^{-1}(C-C)) \cap \mathbb{J} = \text{compact in } \mathbb{J}$$

The continuous image in $k^{\times} \setminus \mathbb{J}$ of each of these finitely-many compacts is compact, and their union covers the closed subset $k^{\times} \setminus \mathbb{J}^1$, so the latter is compact. ///

Exercise: Adapt the proof to treat *division algebras* k: one must keep track of left and right more scrupulously than was done above.