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• Gelfand pairs (Euler subgroups)
• The Gelfand-Kazhdan criterion

It is important to know that induced representations are multiplicity-free, meaning contain at most one copy
of a given irreducible representation, if and when this is the case.

A typical example of interest is an induced representation

c-IndGH C

of the trivial representation C of a closed unimodular subgroup H of a unimodular totally disconnected
subgroup G. As usual, the induced representation space consists of left H-invariant, locally constant C-
valued functions which are compactly supported left modulo H.

The basic idea (which is useful already in the representation theory of finite groups) is that if no irreducible
occurs twice inside a representation, then the endomorphism algebra should be commutative, and vice-
versa (by Schur’s Lemma). Unfortunately, this principle is not quite valid in general. After the necessary
adaptations are made, instead we have the Gelfand-Kazhdan criterion.

Proofs that endomorphism (convolution) algebras are commutative most often depend upon identifying an
anti-involution to interchange the order of factors, but which nevertheless acts as the identity on the algebra
or suitable subalgebras. Silberger gave such an argument for the spherical Hecke algebras of p-adic reductive
groups, for example. Apparently the first occurrence of the Gelfand-Kazhdan criterion idea is in I.M. Gelfand,
‘Spherical functions on symmetric spaces’, Dokl. Akad. Nauk SSSR 70 (1950), pp. 5-8. An extension of that
idea appeared in I.M. Gelfand and D. Kazhdan, ‘Representations of the group GL(n, k) where k is a local
field’, in Lie Groups and their Representations, Halsted, New York, 1975, pp. 95-118. A relatively recent
survey of some of this is given by B. Gross, ‘Some applications of Gelfand pairs to number theory’, Bull.
A.M.S. 24, no. 2 (1991), pp. 277-301.

Another typical example, in which the representation to be induced from the subgroup is non-trivial, is
the proof that the Whittaker space is multiplicity-free. That is, for suitable ‘generic’ character ψ on the
unipotent radical N of a minimal parabolic in a p-adic reductive group G, consider the Whittaker space

Whψ = IndGN ψ

(Consideration of this object was motivated in part by abstracting the classical use of Fourier coefficients of
modular forms.) The catch-phrase for this multiplicity-freeness property is uniqueness of Whittaker models,
although what is really meant is

dimC HomG(π,Whψ) ≤ 1

for irreducibles π, since not every irreducible π imbeds into the Whittaker space.

1. Gelfand pairs (Euler subgroups)

We assume that the (locally-compact, Hausdorff) topological group G has a countable basis, and is totally
disconnected. The space C∞c (G) of test functions on G is the space of a compactly-supported locally
constant complex-valued function on G. As a colimit (that is, direct limit) of finite-dimensional complex
vector spaces, this space has a uniquely determined topology. The space C∞c (G)∗ of distributions on G is
the complex-linear dual to C∞c (G). (Every linear functional is continuous.)

Let H be a closed subgroup of G, and let σ be a smooth representation of H1 on a complex vectorspace V .
Define the compactly-induced representation

c-IndGHσ =
{
σ-valued functions f on G, locally constant, compactly-supported left modulo H,
so that f(hg) = σ(h)f(g) for all g ∈ G and h ∈ H

}
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Also define the (not-necessarily-compactly-supported) induced representation

IndGHσ =
{
σ-valued functions f on G, uniformly locally constant, so that f(hg) = σ(h)f(g)
for all g ∈ G and h ∈ H

}

Note that the quotient H\G has a right G-invariant measure, since H and G are unimodular.

Let C denote the trivial representation of G (or of H). Say that (G,H) is a Gelfand pair or equivalently
that H is an Euler subgroup of G if, for all irreducible admissible representations π of G, we have

dim HomG(π, IndGH C) × dim HomG(π̌, IndGH C) ≤ 1

where π̌ is the contragredient of π. By Frobenius Reciprocity, this condition is equivalent to

dim HomH(ResGHπ,C) × dim HomH(ResGH π̌,C) ≤ 1

The separate questions about multiplicities seem more difficult to address.

More generally, we will be interested in trying to show that

dim HomG(π, IndGH ψ) ≤ 1

for a one-dimensional representation ψ of H. In fact, again, instead we will prove a symmetrized assertion
involving the contragredient π̌ of π as well.

2. Gelfand-Kazhdan criterion

We treat IndGH ψ with ψ one-dimensional. The case that ψ is the trivial one-dimensional representation C
is already of considerable interest, and the following argument can be meaningfully read assuming that ψ is
trivial.

An anti-involution σ on a group G is a bijection G→ G so that

(gh)σ = hσgσ

Theorem: (Gelfand-Kazhdan) Let ψ and ψσ be one-dimensional representations of a closed unimodular
subgroup H of G. Suppose that there is an anti-involution σ of G so that σ stabilizes H, ψ(hσ) = ψσ(h),
and σ acts trivially on all distributions u so that

u(Lhη) = ψ(h) · u(η)

u(Rhη) = ψσ(h)−1 · u(η)

for η ∈ C∞c (G). Then
dim HomG(π, IndGH ψ) × dim HomH(ResGH π̌, ψ

σ) ≤ 1

Proof: By Frobenius reciprocity,

HomG(π, IndGHψ) ≈ HomH(ResGHπ, ψ)

Thus, supposing that there are non-trivial intertwinings from π and π̌ to IndGHψi (with i = 1, 2, respectively)
amounts to supposing that we have non-zero H-homomorphisms

s : π → ψ
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t : π̌ → ψσ

We obtain G-homomorphisms
S : C∞c → π̌

T : C∞c → ˇ̌π

by taking (for η ∈ C∞c (G), v ∈ π, λ ∈ π̌)

(Sη)(v) =
∫
G

η(x) s(x · v) dx

(Tη)(λ) =
∫
G

η(x) t(x · λ) dx

The admissibility of π implies that π is reflexive, that is, that

ˇ̌π ≈ π

By direct computation, right translation Rg by g ∈ G, and left translation Lh by h ∈ H interact with S and
T by

S(Rgη) = g · (Sη)

T (Rgη) = g · (Tη)

S(Lhη) = ψ(h) · Sη

T (LHη) = ψσ(h) · Tη

The first assertion, for example, is verified as follows: for v ∈ π,

S(Rgη)(v) =
∫
G

η(xg) s(x · v) dx =
∫
G

η(x) s(xg−1 · v) dx = Sη(g−1v)

by replacing x by xg−1. The last expression is simply the contragredient action of g, that is, on π̌. The left
H-invariance follows by

S(Lhη)(v) =
∫
G

η(h−1x) s(x · v) dx =
∫
G

η(x) s(hx · v) dx =
∫
G

η(x)ψ(h) s(x · v) dx = S(η)(v)

where we replace x by hx, and then invoke the H-equivariance of s. The corresponding assertions for T are
proven similarly. That is, both S and T are left H-equivariant as indicated, and are right G-equivariant.
In particular, they do give G-homomorphisms from C∞c (G) (with right regular representation) to π and π̌,
respectively.

Let 〈, 〉 be the usual canonical bilinear map

〈, 〉 : π × π̌ → C

by
〈v, λ〉 = λ(v)

and denote the induced linear map
〈, 〉 : π ⊗ π̌ → C

by the same symbol. Define

B = 〈, 〉 ◦ (T ⊗ S) : C∞c (G)⊗ C∞c (G) → π ⊗ π̌ → C
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(Note the reversal of S and T .) The functional B is in the space of distributions C∞c
∗(G × G), is left

(H,ψσ) × (H,ψ)-equivariant and right G∆-invariant, where G∆ is the diagonal copy of G in G × G. Note
the reversal of ψ and ψσ due to the reversal of S and T .

Lemma: With B, t, S as above, for α, β in C∞c (G), we have

B(α⊗ β) = t(S(β ∗ α))

Proof: Apart from an issue of interchange of integration and application of linear operators, this is a purely
formal computation:

B(α⊗ β) = Tα(Sβ) =
∫
G

α(x) t(x · Sβ) dx =
∫
G

α(x) t(S(R−1
x · β)) dx

by the G-equivariance of S. Moving the integral inside t ◦ S, this becomes

(t ◦ S)
(∫

G

α(x)R−1
x · β dx

)
= (t ◦ S)(β ∗ α)

by definition of convolution.

To justify the exchange of integration and application of the operator t◦S, note that the indicated integral is
actually a finite sum. Or, as a more general approach, start from the observation that C∞c (G) is a countable
colimit of finite-dimensional vectorspaces, so is an LF-space, and thus is quasi-complete. This implies that
the Gelfand-Pettis integral of any compactly-supported continuous C∞c (G)-valued function f exists. (!)
Thus, further, for any continuous linear operator L on C∞c (G),

L

(∫
G

f(x) dx
)

=
∫
G

L(f(x)) dx

The desired exchange is a special case of this. ///

Corollary: The distribution u on G defined by u(η) = t(S(η)) is left H-equivariant by ψ and right H-
equivariant by (ψσ)−1, meaning that

u(Lhη) = ψ(h) · u(η)

u(Rhη) = ψσ(h)−1 · u(η)

Proof: Given η ∈ C∞c (G) and given h ∈ H, let β ∈ C∞c (G) be such that

Rhη ∗ β = Rhη

For example, if K is a small-enough compact open subgroup of G so that Rhη is left K-invariant, take β to
be meas (K)−1 on K and 0 off K. Then

u(Rhη) = (t ◦ S)(Rhη) = (t ◦ S)((Rhη) ∗ β) = (t ◦ S)(η ∗ L−1
h β) = B(L−1

h β, η)

by the way that convolution and translations interact. Then this is

B(L−1
h β ⊗ η) = ψσ(h)−1 ·B(β ⊗ η)

by the left H-equivariance of B by ψσ in its first argument. Going back by the same procedure, we conclude
that

u(Rhη) = ψσ(h)−1 · u(η)

Even more simply, for β so that
(Lhη) ∗ β = Lhη
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we compute that
u(Lhη) = B(β ⊗ Lhη) = ψ(h) ·B(β ⊗ η) = ψ(h) · u(η)

This proves the equivariance. ///

For anti-involution σ define an action on η ∈ C∞c (G) by
ησ(g) = η(gσ)

As usual, we have

Lemma: For α, β in C∞c (G),
(α ∗ β)σ = βσ ∗ ασ

Proof: This is by computation: for g ∈ G

(α ∗ β)σ(g) = (α ∗ β)(gσ) =
∫
G

α(gσx−1)β(x) dx =
∫
G

α(x−1)β(xgσ) dx

=
∫
G

α(x)β(x−1gσ) dx =
∫
G

α(xσ)β((gx−1)σ) dx

replacing x successively by xg, x−1, and xσ. This is∫
G

ασ(x)βσ(gx−1) dx = (βσ ∗ ασ)(g)

as claimed. ///

Corollary:
B(α⊗ β) = B(βσ ⊗ ασ)

Proof: The hypothesis of σ-invariance of u is (by definition) that
u(ησ) = u(η)

for all η ∈ C∞c (G). Therefore,
B(α⊗ β) = u(β ∗ α) = u((β ∗ α)σ) = u(ασ ∗ βσ) = B(βσ ⊗ ασ)

///

Corollary: For η in C∞c (G), Tη = 0 implies S(ησ) = 0, and similarly Sη = 0 implies T (ησ) = 0.

Proof: Suppose that Tα = 0. Then for all β in C∞c (G)
0 = 〈Tη, Sβ〉 = B(η ⊗ β) = B(βσ ⊗ ησ) = 〈Tβσ, Sησ〉

by the identity of the previous corollary. That is, Sησ gives the trivial linear functional on π, so must be 0
in π̌. The other assertion is similarly proven. ///

That is, kerT determines kerS and vice-versa.

Now π is irreducible, so by Schur’s lemma the kernel of S : C∞c (G) → π determines S uniquely up to a
constant multiple. Since π is irreducible admissible, the same assertion holds for T . And we can certainly
recover s : π → C unambiguously from S (and t from T ), as follows. Given v ∈ π, let η be meas (K)−1 times
the characteristic function of K, where K is any sufficiently small compact open subgroup of G. Then

(Sη)(v) =
∫
G

η(x) s(x · v) dx = s(v)

That is, from kerS we recover S uniquely up to a constant, and then recover s uniquely up to a constant.
The analogous assertion holds for kerT , T , and t.

Then t certainly determines T , which determines kerT . From above, kerT determines kerS, which (by the
previous paragraph) determines s up to a constant. We could have fixed t and let s be arbitrary, which
would show that if the space of t’s were positive-dimensional then the space of s’s would be at most one-
dimensional. The symmetrical argument reversing the role of s and t goes through in the same manner,
wherein we use the assumed admissibility of π (and, thus, π̌). This proves the theorem. ///
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